1
|
Xu L, Zhang Y, Lu Y, Zhang Z. Ru-Catalyzed Asymmetric Hydrogenation of Chiral δ-Hydroxy-β-Keto Acid Derivatives. J Org Chem 2025. [PMID: 40380927 DOI: 10.1021/acs.joc.4c02766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
Ru-catalyzed stereoselective asymmetric hydrogenation of multifunctionalized ketones has been a formidable challenge, and few related successful works have been reported. Herein, we report our research on Ru-catalyzed asymmetric hydrogenation of chiral δ-hydroxy-β-keto acid derivatives, which achieves excellent diastereoselectivity (up to >99% de). This procedure provides a new route for the synthesis of pure syn- and anti-3,5-dihydroxy acid derivatives, which serve as key intermediates in natural products and drug molecules, such as statins.
Collapse
Affiliation(s)
- Limin Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuxuan Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Ouyang B, Wang G, Hu Z, Liu Q, Zhao W, Zhao X. A novel directed evolution approach for co-evolution of β-glucosidase activity and organic acid tolerance. J Biotechnol 2025; 401:1-10. [PMID: 39983995 DOI: 10.1016/j.jbiotec.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Directed evolution is a potent tool for protein engineering; however, Error-prone PCR and DNA Shuffling often lead to a high frequency of negative and reverse mutations, especially in the case of large genes. This study introduces two innovative techniques to tackle these challenges: Segmental error-prone PCR (SEP) and Directed DNA shuffling (DDS). SEP involves averagely dividing large genes into small fragments, independently and randomly mutagenizing them in vitro, and reassembling them as well as other unmutated fragments in Saccharomyces cerevisiae. DDS selectively amplifies mutated fragments of positive variants from SEP and reassembles them in S. cerevisiae to produce complete genes with cumulative positive mutations. We have used these two techniques to simultaneously improve the activity of β-glucosidase and its tolerance to organic acids, which validates the effectiveness and feasibility of the approach.
Collapse
Affiliation(s)
- Bei Ouyang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Guoping Wang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China; Shenzhen Longgang Buji High School, Shenzhen 518123, China
| | - Ziyan Hu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Qiling Liu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Wenwen Zhao
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xihua Zhao
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
3
|
Yuan P, Wang Q, Deng X, Zhang X, Fan D, Bai Y. Coimmobilized Dual Enzymes in a Continuous Flow Reactor for the Efficient Synthesis of Optically Pure γ/δ-Lactones. ACS APPLIED MATERIALS & INTERFACES 2025; 17:867-879. [PMID: 39693126 DOI: 10.1021/acsami.4c14644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Enzyme catalysis is a promising method for producing chiral chemicals with high stereoselectivity under mild conditions. However, the traditional batch reaction suffers from low enzyme stability, low cofactor recycling, and poor enzyme reusability. Here, we present a continuous-flow method using coimmobilized dual enzymes for the synthesis of chiral γ-/δ-lactones, which are widely used in fragrances and flavors. Typically, a carbonyl reductase mutant SmCRM5 from Serratia marcescens, was coimmobilized by covalent binding with BmGDH, a glucose dehydrogenase capable of recovering and recycling the cofactor NADPH. After immobilization, SmCRM5 and BmGDH exhibited a 8.9-/8.7-fold increase in catalytic efficiency (kcat/Km) and a 57-/15-fold increase in half-life at 30 °C, respectively. We demonstrated that coimmobilized dual enzymes used in a continuous flow reactor showed a higher reaction rate and a higher space-time yield (1586 g·L-1 d-1) than free enzymes and immobilized enzymes in a batch reaction for the production of (R)-δ-decalactone. This continuous flow reactor can run continuously for more than 650 h with 99% ee and 80% conversion, and the total volume exceeds 1500 reactor volumes. The robustness of this continuous-flow immobilized enzyme system provides a green and efficient method for the synthesis of high value-added chiral chemicals.
Collapse
Affiliation(s)
- Pengyu Yuan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Qing Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Xuelei Deng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyan Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Daidi Fan
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
4
|
Sun Y, Wu J, Xu J, Yang L. Metabolic Engineering of Escherichia coli for the Production of l-Homoserine. CHEM & BIO ENGINEERING 2024; 1:223-230. [PMID: 39974203 PMCID: PMC11835149 DOI: 10.1021/cbe.3c00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2025]
Abstract
l-Homoserine embodies significant functional properties as an amino acid of utmost importance, showcasing remarkable utility within the industrial realm. As synthetic biology and biotechnology continue to advance, the synthesis of l-homoserine through microbial fermentation emerges as a compelling and eco-conscious approach. This Review summarized the recent progress in systematic metabolic engineering strategies for improving l-homoserine production in Escherichia coli, including blocking the competing and degrading pathways, strengthening the key enzymes and precursors, and genetic modification of transport systems. We discussed and compared these systematic metabolism strategies, which have laid a solid foundation for the microbial industrial production of l-homoserine.
Collapse
Affiliation(s)
- Yijie Sun
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China 310058
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China 311200
| | - Jianping Wu
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China 310058
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China 311200
| | - Jiaqi Xu
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China 310058
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China 311200
| | - Lirong Yang
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China 310058
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China 311200
| |
Collapse
|
5
|
Dai C, Cao HX, Tian JX, Gao YC, Liu HT, Xu SY, Wang YJ, Zheng YG. Structural-guided design to improve the catalytic performance of aldo-keto reductase KdAKR. Biotechnol Bioeng 2023; 120:3543-3556. [PMID: 37641876 DOI: 10.1002/bit.28535] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/07/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Aldo-keto reductases (AKRs) are important biocatalysts that can be used to synthesize chiral pharmaceutical alcohols. In this study, the catalytic activity and stereoselectivity of a NADPH-dependent AKR from Kluyveromyces dobzhanskii (KdAKR) toward t-butyl 6-chloro (5S)-hydroxy-3-oxohexanoate ((5S)-CHOH) were improved by mutating its residues in the loop regions around the substrate-binding pocket. And the thermostability of KdAKR was improved by a consensus sequence method targeted on the flexible regions. The best mutant M6 (Y28A/L58I/I63L/G223P/Y296W/W297H) exhibited a 67-fold higher catalytic efficiency compared to the wild-type (WT) KdAKR, and improved R-selectivity toward (5S)-CHOH (dep value from 47.6% to >99.5%). Moreover, M6 exhibited a 6.3-fold increase in half-life (t1/2 ) at 40°C compared to WT. Under the optimal conditions, M6 completely converted 200 g/L (5S)-CHOH to diastereomeric pure t-butyl 6-chloro-(3R, 5S)-dihydroxyhexanoate ((3R, 5S)-CDHH) within 8.0 h, with a space-time yield of 300.7 g/L/day. Our results deepen the understandings of the structure-function relationship of AKRs, providing a certain guidance for the modification of other AKRs.
Collapse
Affiliation(s)
- Chen Dai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hai-Xing Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Jia-Xin Tian
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yan-Chi Gao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hua-Tao Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Shen-Yuan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
6
|
Shanbhag AP. Stairway to Stereoisomers: Engineering Short- and Medium-Chain Ketoreductases To Produce Chiral Alcohols. Chembiochem 2023; 24:e202200687. [PMID: 36640298 DOI: 10.1002/cbic.202200687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/15/2023]
Abstract
The short- and medium-chain dehydrogenase/reductase superfamilies are responsible for most chiral alcohol production in laboratories and industries. In nature, they participate in diverse roles such as detoxification, housekeeping, secondary metabolite production, and catalysis of several chemicals with commercial and environmental significance. As a result, they are used in industries to create biopolymers, active pharmaceutical intermediates (APIs), and are also used as components of modular enzymes like polyketide synthases for fabricating bioactive molecules. Consequently, random, semi-rational and rational engineering have helped transform these enzymes into product-oriented efficient catalysts. The rise of newer synthetic chemicals and their enantiopure counterparts has proved challenging, and engineering them has been the subject of numerous studies. However, they are frequently limited to the synthesis of a single chiral alcohol. The study attempts to defragment and describe hotspots of engineering short- and medium-chain dehydrogenases/reductases for the production of chiral synthons.
Collapse
Affiliation(s)
- Anirudh P Shanbhag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India.,Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS-TIFR), Bellary Road, Bangalore, 560003, India
| |
Collapse
|
7
|
Cheng F, Zhai QY, Gao XF, Liu HT, Qiu S, Wang YJ, Zheng YG. Tuning enzymatic properties by protein engineering toward catalytic tetrad of carbonyl reductase. Biotechnol Bioeng 2021; 118:4643-4654. [PMID: 34436762 DOI: 10.1002/bit.27925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/03/2021] [Accepted: 08/22/2021] [Indexed: 01/20/2023]
Abstract
Enzyme engineering toward catalytic-tetrad residues usually results in activity loss. Unexpectedly, we found that a directed evolution campaign yielded a beneficial residue A100 in KmCR (a carbonyl reductase from Kluyveromyces marxianus ZJB14056), which is a residue of catalytic tetrad and conserved according to multiple sequence alignment. Inspired by this finding, we performed saturation mutagenesis on all the four residues of catalytic tetrad of KmCR. A number of variants with improved enzymatic activities were obtained. Among them, the variant KmCR_A100S exhibited increased catalytic efficiency (kcat /KM = 47.3 s-1 ·mM-1 ), improved stereoselectivity (from moderate selectivity (deP = 66.7%) to strict (S)-selectivity (deP > 99.5%)), and extended substrate scope, compared to those of KmCR_WT. In silico analysis showed that a relay system was rebuilt in KmCR via the beneficial residue S100. Furthermore, comparison of 11 protein engineering campaigns indicated that the beneficial position is easily overlooked due to the long distance (>10 Å) from ketone substrates. Since CRs share similar catalytic mechanism, the knowledge gained from this study has universal significance to CR engineering.
Collapse
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Qiu-Yao Zhai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Xiao-Fan Gao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Hua-Tao Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Shuai Qiu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
8
|
Li SF, Xie JY, Qiu S, Xu SY, Cheng F, Wang YJ, Zheng YG. Semirational engineering of an aldo-keto reductase KmAKR for overcoming trade-offs between catalytic activity and thermostability. Biotechnol Bioeng 2021; 118:4441-4452. [PMID: 34374988 DOI: 10.1002/bit.27913] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 01/05/2023]
Abstract
Enzyme engineering usually generates trade-offs between activity, stability, and selectivity. Herein, we report semirational engineering of an aldo-keto reductase (AKR) KmAKR for simultaneously enhancing its thermostability and catalytic activity. Previously, we constructed KmAKRM9 (W297H/Y296W/K29H/Y28A/T63M/A30P/T302S/N109K/S196C), which showed outstanding activity towards t-butyl 6-chloro-(3R,5S)-dihydroxyhexanoate ((3R,5S)-CDHH), and t-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate, the key chiral building blocks of rosuvastatin and atorvastatin. Under the guidance of computer-aided design including consensus residues analysis and molecular dynamics (MD) simulations, K164, S182, S232, and Q266 were dug out for their thermostability conferring roles, generating the "best" mutant KmAKRM13 (W297H/Y296W/K29H/Y28A/T63M/A30P/T302S/N109K/S196C/K164E/S232A/S182H/Q266D). The Tm and T50 15 values of KmAKRM13 were 10.4 and 6.1°C higher than that of KmAKRM9 , respectively. Moreover, it displayed a significantly elevated organic solvent tolerance over KmAKRM9 . Structural analysis indicated that stabilization of the α-helixes mainly contributed to thermostability enhancement. Under the optimized conditions, KmAKRM13 completely asymmetrically reduced 400 g/l t-butyl 6-chloro-(5S)-hydroxy-3-oxohexanoate ((5S)-CHOH) in 8.0 h at a high substrate to catalyst ratio (S/C) of 106.7 g/g, giving diastereomerically pure (3R,5S)-CDHH (>99.5% d.e.P ) with a space-time yield (STY) of 449.2 g/l·d.
Collapse
Affiliation(s)
- Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Jian-Yong Xie
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Shuai Qiu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Shen-Yuan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
9
|
Jin LQ, Chen XX, Jin YT, Shentu JK, Liu ZQ, Zheng YG. Immobilization of recombinant Escherichia coli cells expressing glucose isomerase using modified diatomite as a carrier for effective production of high fructose corn syrup in packed bed reactor. Bioprocess Biosyst Eng 2021; 44:1781-1792. [PMID: 33830378 DOI: 10.1007/s00449-021-02560-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022]
Abstract
To improve the operational stability of glucose isomerase in E. coli TEGI-W139F/V186T, the immobilized cells were prepared with modified diatomite as a carrier and 74.1% activity of free cells was recovered after immobilization. Results showed that the immobilized cells still retained 86.2% of the initial transformational activity after intermittent reused 40 cycles and the yield of D-fructose reached above 42% yield at 60 °C. Moreover, the immobilized cells were employed in the continuous production of High Fructose Corn Syrup (HFCS) in a recirculating packed bed reactor for 603 h at a constant flow rate. It showed that the immobilized cells exhibited good operational stability and the yield of D-fructose retained above 42% within 603 h. The space-time yield of high fructose corn syrup reached 3.84 kg L-1 day-1. The investigation provided an efficient immobilization method for recombinant cells expressing glucose isomerase with higher stability, and the immobilized cells are a promising biocatalyst for HFCS production.
Collapse
Affiliation(s)
- Li-Qun Jin
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xian-Xiao Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yi-Ting Jin
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jun-Kang Shentu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
10
|
Tailoring an aldo-keto reductase KmAKR for robust thermostability and catalytic efficiency by stepwise evolution and structure-guided consensus engineering. Bioorg Chem 2021; 109:104712. [PMID: 33735657 DOI: 10.1016/j.bioorg.2021.104712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/28/2021] [Indexed: 01/13/2023]
Abstract
t-Butyl 6-cyano-(3R,5R)-dihydroxyhexanoate ((3R,5R)-2) is an advanced chiral diol intermediate of the cholesterol-lowering drug atorvastatin. KmAKRM5 (W297H/Y296W/K29H/Y28A/T63M) constructed in our previous work, displayed good biocatalytic performance on (3R,5R)-2. In the present work, stepwise evolution was applied to further enhance the thermostability and activity of KmAKRM5. For thermostability enhancement, N109 and S196 located far from the active site were picked out by structure-guided consensus engineering, and mutated by site-directed mutagenesis (SDM). For catalytic efficiency improvement, the residues A30 and T302 adjacent to the substrate-binding pocket were subjected to site-saturation mutagenesis (SSM). As a result, the "best" mutant KmAKRM9 (W297H/Y296W/K29H/Y28A/T63M/A30P/T302S/N109K/S196C) was developed, of which T5015 and Tm were 5.0 °C and 8.2 °C higher than those of KmAKRM5. Moreover, compared to KmAKRM5, KmAKRM9 displayed a 1.9-fold (846 vs 2436 min) and 6.7-fold (126 vs 972 min) longer half-lives at 40 and 50 °C, respectively. Structural analysis suggested that beneficial mutations introduced additional hydrophobic interactions and hydrogen bonds, contributing rigidification of the flexible loops and the increase of internal forces, hence increasing the thermostability and activity. 5 g DCW (dry cell weight) L-1KmAKRM9 completely reduced 350 g L-1t-butyl 6-cyano-(5R)-hydroxy-3-oxo-hexanoate ((5R)-1), within 3.7 h at 40 °C, yielding optically pure (3R,5R)-2 (d.e.p > 99.5%) with a space-time yield (STY) of 1.82 kg L-1 d-1. Hence, KmAKRM9 is a robust biocatalyst for the synthesis of (3R,5R)-2.
Collapse
|
11
|
Zhang XJ, Zhou R, Wu D, Tang YQ, Wang MY, Liu ZQ, Zheng YG. Efficient production of an ezetimibe intermediate using carbonyl reductase coupled with glucose dehydrogenase. Biotechnol Prog 2020; 37:e3068. [PMID: 32822119 DOI: 10.1002/btpr.3068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 11/09/2022]
Abstract
Ezetimibe is a top-selling hypolipidemic drug for the treatment of cardiovascular diseases. Biosynthesis of (4S)-3-[(5S)-5-(4-fluorophenyl)-5-hydroxypentanoyl]-4-phenyl-1,3-oxazolidin-2-one ((S)-ET-5) using carbonyl reductase has shown advantages including high catalytic efficiency, excellent stereoselectivity, mild reaction conditions, and environmental friendness, and was considered as the key step for ezetimibe production. The regeneration efficiency of the cofactor, nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) is one of the main restricted factor. Recombinant Escherichia coli strain (smCR125) coexpressing carbonyl reductase (CR125) and glucose dehydrogenase were successfully constructed and applied for the production of (S)-ET-5 for the first time. Without extra addition of the coenzyme NADPH, the yield of 99.8% and the enantiomeric excess (e.e.) of 99.9% were achieved under ET-4 concentration of 200 g/L. Using a substrate fed-batch strategy, under the optimal conditions, the substrate ET-4 concentration was increased to 250 g/L with the yield of 98.9% and the e.e. of 99.9% after 12 hr reaction. The space-time yield of 494.5 g L-1 d-1 and the space-time yield per gram biocatalyst of 24.7 g L-1 d-1 g-1 DCW were achieved, which were higher than ever reported for the biosynthesis of the ezetimibe intermediate.
Collapse
Affiliation(s)
- Xiao-Jian Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Rong Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Di Wu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Qun Tang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Meng-Ying Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
12
|
Heterologous overexpression of a novel halohydrin dehalogenase from Pseudomonas pohangensis and modification of its enantioselectivity by semi-rational protein engineering. Int J Biol Macromol 2020; 146:80-88. [DOI: 10.1016/j.ijbiomac.2019.12.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/06/2019] [Accepted: 12/22/2019] [Indexed: 02/08/2023]
|
13
|
Effect of dissolved oxygen on L-methionine production from glycerol by Escherichia coli W3110BL using metabolic flux analysis method. J Ind Microbiol Biotechnol 2020; 47:287-297. [PMID: 32052230 DOI: 10.1007/s10295-020-02264-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
L-Methionine is an essential amino acid in humans, which plays an important role in the synthesis of some important amino acids and proteins. In this work, metabolic flux of batch fermentation of L-methionine with recombinant Escherichia coli W3110BL was analyzed using the flux balance analysis method, which estimated the intracellular flux distributions under different dissolved oxygen conditions. The results revealed the producing L-methionine flux of 4.8 mmol/(g cell·h) [based on the glycerol uptake flux of 100 mmol/(g cell·h)] was obtained at 30% dissolved oxygen level which was higher than that of other dissolved oxygen levels. The carbon fluxes for synthesizing L-methionine were mainly obtained from the pathway of phosphoenolpyruvate to oxaloacetic acid [15.6 mmol/(g cell·h)] but not from the TCA cycle. Hence, increasing the flow from phosphoenolpyruvate to oxaloacetic acid by enhancing the enzyme activity of phosphoenolpyruvate carboxylase might be conducive to the production of L-methionine. Additionally, pentose phosphate pathway could provide a large amount of reducing power NADPH for the synthesis of amino acids and the flux could increase from 41 mmol/(g cell·h) to 51 mmol/(g cell·h) when changing the dissolved oxygen levels, thus meeting the requirement of NADPH for L-methionine production and biomass synthesis. Therefore, the following modification of the strains should based on the improvement of the key pathway and the NAD(P)/NAD(P)H metabolism.
Collapse
|
14
|
Xue F, Zhang LH, Xu Q. Significant improvement of the enantioselectivity of a halohydrin dehalogenase for asymmetric epoxide ring opening reactions by protein engineering. Appl Microbiol Biotechnol 2020; 104:2067-2077. [DOI: 10.1007/s00253-020-10356-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/15/2019] [Accepted: 01/05/2020] [Indexed: 02/03/2023]
|
15
|
Tang W, Chen L, Deng J, Kuang Y, Chen C, Yin B, Wang H, Lin J, Wei D. Structure-guided evolution of carbonyl reductase for efficient biosynthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01411g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This study reported an attractive engineered carbonyl reductase from Gluconobacter oxydans through a structure-guided rational design to catalyze the synthesis of high concentration (R)-HPBE.
Collapse
Affiliation(s)
- Wen Tang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Lulu Chen
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Jian Deng
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Yuyao Kuang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering
- Biomedical Nanotechnology Center
- School of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
| | - Bo Yin
- National University of Singapore (Suzhou) Research Institute
- Suzhou 215123
- People's Republic of China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
16
|
Cheng P, Tang M, Chen Z, Liu W, Jiang X, Pei X, Su W. Dual-enzyme and NADPH co-embedded organic–inorganic hybrid nanoflowers prepared using biomimetic mineralization for the asymmetric synthesis of (R)-(−)-pantolactone. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00158a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A SA-coated hNF composite was designed to co-immobilize dual enzymes and coenzyme NADP+ for the asymmetric synthesis of d-(−)-pantolactone.
Collapse
Affiliation(s)
- Pengfei Cheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Manman Tang
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou
- PR China
| | - Zhiji Chen
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou
- PR China
| | - Wen Liu
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou
- PR China
| | - Xinpeng Jiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Xiaolin Pei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- PR China
| |
Collapse
|
17
|
Sinha R, Shukla P. Current Trends in Protein Engineering: Updates and Progress. Curr Protein Pept Sci 2019; 20:398-407. [PMID: 30451109 DOI: 10.2174/1389203720666181119120120] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
Proteins are one of the most important and resourceful biomolecules that find applications in health, industry, medicine, research, and biotechnology. Given its tremendous relevance, protein engineering has emerged as significant biotechnological intervention in this area. Strategic utilization of protein engineering methods and approaches has enabled better enzymatic properties, better stability, increased catalytic activity and most importantly, interesting and wide range applicability of proteins. In fact, the commercialization of engineered proteins have manifested in economically beneficial and viable solutions for industry and healthcare sector. Protein engineering has also evolved to become a powerful tool contributing significantly to the developments in both synthetic biology and metabolic engineering. The present review revisits the current trends in protein engineering approaches such as rational design, directed evolution, de novo design, computational approaches etc. and encompasses the recent progresses made in this field over the last few years. The review also throws light on advanced or futuristic protein engineering aspects, which are being explored for design and development of novel proteins with improved properties or advanced applications.
Collapse
Affiliation(s)
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| |
Collapse
|
18
|
Zhang XJ, Fan HH, Liu N, Wang XX, Cheng F, Liu ZQ, Zheng YG. A novel self-sufficient biocatalyst based on transaminase and pyridoxal 5′-phosphate covalent co-immobilization and its application in continuous biosynthesis of sitagliptin. Enzyme Microb Technol 2019; 130:109362. [DOI: 10.1016/j.enzmictec.2019.109362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 12/31/2022]
|
19
|
Asymmetric synthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate using a self-sufficient biocatalyst based on carbonyl reductase and cofactor co-immobilization. Bioprocess Biosyst Eng 2019; 43:21-31. [PMID: 31542820 DOI: 10.1007/s00449-019-02201-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/15/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
tert-Butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate [(3R,5S)-CDHH] is the key chiral intermediate to synthesize the side chain of the lipid-lowering drug rosuvastatin. Carbonyl reductases showed excellent activity for the biosynthesis of (3R,5S)-CDHH. The requirement of cofactor NADH/NADPH leads to high cost for the industrial application of carbonyl reductases. In this study, a self-sufficient biocatalyst based on carbonyl reductase and NADP+ co-immobilization strategy was developed on an amino resin carrier LX-1000HAA (SCR-NADP+@LX-1000HAA). The self-sufficient biocatalyst achieved in situ cofactor regeneration and showed the activity recovery of 77.93% and the specific activity of 70.45 U/g. Asymmetric synthesis of (3R,5S)-CDHH using SCR-NADP+@LX-1000HAA showed high enantioselectivity (> 99% e.e.) and yield (98.54%). Batch reactions were performed for ten cycles without extra addition of NADP+, and the total yield of (3R,5S)-CDHH achieved at 10.56 g/g biocatalyst. The present work demonstrated the potential of the self-sufficient biocatalyst for the asymmetric biosynthesis of rosuvastatin intermediate.
Collapse
|
20
|
Zhang XJ, Zheng L, Wu D, Zhou R, Liu ZQ, Zheng YG. Production of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate using carbonyl reductase coupled with glucose dehydrogenase with high space-time yield. Biotechnol Prog 2019; 36:e2900. [PMID: 31486281 DOI: 10.1002/btpr.2900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 11/09/2022]
Abstract
tert-Butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate ((3R,5S)-CDHH) is an important chiral intermediate for the synthesis of rosuvastatin. The biotechnological production of (3R,5S)-CDHH is catalyzed from tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) by a carbonyl reductase, and this synthetic pathway is becoming a primary route for (3R,5S)-CDHH production due to its high enantioselectivity, mild reaction conditions, low cost, process safety, and environmental friendship. However, the requirement of the pyridine nucleotide cofactors, reduced nicotinamide adenine dinucleotide (NADH) or reduced nicotinamide adenine dinucleotide phosphate (NADPH) limits its economic flexibility. In the present study, a recombinant Escherichia coli strain harboring carbonyl reductase R9M and glucose dehydrogenase (GDH) was constructed with high carbonyl reduction activity and cofactor regeneration efficiency. The recombinant E. coli cells were applied for the efficient production of (3R,5S)-CDHH with a substrate conversion of 98.8%, a yield of 95.6% and an enantiomeric excess (e.e.) of >99.0% under 350 g/L of (S)-CHOH after 12 hr reaction. A substrate fed-batch strategy was further employed to increase the substrate concentration to 400 g/L resulting in an enhanced product yield to 98.5% after 12 hr reaction in a 1 L bioreactor. Meanwhile, the space-time yield was 1,182.3 g L-1 day-1 , which was the highest value ever reported by a coupled system of carbonyl reductase and glucose dehydrogenase.
Collapse
Affiliation(s)
- Xiao-Jian Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ling Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Di Wu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Rong Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
21
|
Jin LQ, Yang B, Xu W, Chen XX, Jia DX, Liu ZQ, Zheng YG. Immobilization of recombinant Escherichia coli whole cells harboring xylose reductase and glucose dehydrogenase for xylitol production from xylose mother liquor. BIORESOURCE TECHNOLOGY 2019; 285:121344. [PMID: 30999186 DOI: 10.1016/j.biortech.2019.121344] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
In this study, recombinant E. coli BL21(DE3)/pCDFDuet-1-XR-GDH harboring xylose reductase (XR) and glucose dehydrogenase (GDH) were immobilized and applied for the production of xylitol from xylose mother liquor (XML). Various immobilization methods were screened and the cross-linking approach with diatomite and polyetherimide as the raw materials and glutaraldehyde as the cross-linking agent was the optimal one, and the recovery activity reached of 80.3% after immobilization. The half-life of immobilized cells was 1.52 times to that of free cells. Batch experiments showed that the enzyme activity of immobilized cells remained 70.5% of the initial activity after 10 batches and the space-time yield of xylitol reached of 11.5 g/(L h). The production of xylitol from xylose mother liquor by immobilized E. coli cells containing xylose reductase and glucose dehydrogenase was reported for the first time, which paved a foundation for industrial production of xylitol from waste xylose mother liquor.
Collapse
Affiliation(s)
- Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Bo Yang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wei Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xian-Xiao Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Dong-Xu Jia
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
22
|
Li A, Yuchi Q, Li X, Pang W, Li B, Xue F, Zhang L. Discovery of a novel ortho-haloacetophenones-specific carbonyl reductase from Bacillus aryabhattai and insight into the molecular basis for its catalytic performance. Int J Biol Macromol 2019; 138:781-790. [PMID: 31351953 DOI: 10.1016/j.ijbiomac.2019.07.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/25/2022]
Abstract
To exploit robust biocatalysts for chiral 1-(2-halophenyl)ethanols synthesis, an ortho-haloacetophenones-specific carbonyl reductase (BaSDR1) gene from Bacillus aryabhattai was cloned and expressed in Escherichia coli. The impressive properties regarding BaSDR1 application include preference for NADH as coenzyme, noticeable tolerance against high cosubstrate concentration, and remarkable catalytic performance over a broad pH range from 5.0 to 10.0. The optimal temperature was 35 °C, with a half-life of 3.1 h at 35 °C and 0.75 h at 45 °C, respectively. Notably, BaSDR1 displayed excellent catalytic performance toward various ortho-haloacetophenones, providing chiral 1-(2-halophenyl)ethanols with 99% ee for all the substrates tested. Most importantly, the docking results indicated that the enzyme-substrate interactions and the steric hindrance of halogen atoms act in a push-pull manner in regulating enzyme catalytic ability. These results provide valuable clues for the structure-function relationships of BaSDR1 and the role of halogen groups in catalytic performance, and offer important reference for protein engineering and mining of functional compounds.
Collapse
Affiliation(s)
- Aipeng Li
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057 Shenzhen, China
| | - Qingxiao Yuchi
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Xue Li
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Wei Pang
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Bin Li
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Feng Xue
- School of Marine and Bioengineering, Yancheng Institute of Technology, 224051 Yancheng, China.
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China.
| |
Collapse
|
23
|
Foley AM, Maguire AR. The Impact of Recent Developments in Technologies which Enable the Increased Use of Biocatalysts. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Aoife M. Foley
- School of Chemistry; Analytical & Biological Chemistry Research Facility; Synthesis & Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| | - Anita R. Maguire
- School of Chemistry & School of Pharmacy; Analytical & Biological Chemistry Research Facility; Synthesis & Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| |
Collapse
|
24
|
Biocatalyzed Synthesis of Statins: A Sustainable Strategy for the Preparation of Valuable Drugs. Catalysts 2019. [DOI: 10.3390/catal9030260] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are the largest selling class of drugs prescribed for the pharmacological treatment of hypercholesterolemia and dyslipidaemia. Statins also possess other therapeutic effects, called pleiotropic, because the blockade of the conversion of HMG-CoA to (R)-mevalonate produces a concomitant inhibition of the biosynthesis of numerous isoprenoid metabolites (e.g., geranylgeranyl pyrophosphate (GGPP) or farnesyl pyrophosphate (FPP)). Thus, the prenylation of several cell signalling proteins (small GTPase family members: Ras, Rac, and Rho) is hampered, so that these molecular switches, controlling multiple pathways and cell functions (maintenance of cell shape, motility, factor secretion, differentiation, and proliferation) are regulated, leading to beneficial effects in cardiovascular health, regulation of the immune system, anti-inflammatory and immunosuppressive properties, prevention and treatment of sepsis, treatment of autoimmune diseases, osteoporosis, kidney and neurological disorders, or even in cancer therapy. Thus, there is a growing interest in developing more sustainable protocols for preparation of statins, and the introduction of biocatalyzed steps into the synthetic pathways is highly advantageous—synthetic routes are conducted under mild reaction conditions, at ambient temperature, and can use water as a reaction medium in many cases. Furthermore, their high selectivity avoids the need for functional group activation and protection/deprotection steps usually required in traditional organic synthesis. Therefore, biocatalysis provides shorter processes, produces less waste, and reduces manufacturing costs and environmental impact. In this review, we will comment on the pleiotropic effects of statins and will illustrate some biotransformations nowadays implemented for statin synthesis.
Collapse
|
25
|
Shen JW, Qi JM, Zhang XJ, Liu ZQ, Zheng YG. Efficient Resolution of cis-(±)-Dimethyl 1-Acetylpiperidine-2,3-dicarboxylate by Covalently Immobilized Mutant Candida antarctica Lipase B in Batch and Semicontinuous Modes. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jiang-Wei Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jia-Mei Qi
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiao-Jian Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
26
|
Enhanced L-methionine production by genetically engineered Escherichia coli through fermentation optimization. 3 Biotech 2019; 9:96. [PMID: 30800607 DOI: 10.1007/s13205-019-1609-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022] Open
Abstract
Microbial fermentation for L-methionine (L-Met) production based on natural renewable resources is attractive and challenging. In this work, the effects of medium composition and fermentation conditions were investigated to improve L-Met production by genetically engineered Escherichia coli MET-3. Statistical optimization techniques including Plackett-Burman (PB) design and Box-Behnken design (BBD) were adopted first to optimize the culture medium. Results of PB-designed experiments indicated that the culture medium components including glucose, yeast extract, KH2PO4, and MgSO4.7H2O had significant effects on L-Met biosynthesis. With their best-predicted concentration established by BBD (glucose 37.43 g/L, yeast extract 0.95 g/L, KH2PO4 1.82 g/L, and MgSO4.7H2O 4.51 g/L), L-Met titer was increased to 3.04 g/L from less than 2.0 g/L. For further enhancement of L-Met biosynthesis, the fermentation conditions of batch cultivation carried out in a 5-L fermentor were optimized, and the optimum results were obtained at an agitation rate of 300 rpm, medium pH of 7.0, and induction temperature of 28 °C. Based on the optimization parameters, fed-batch fermentation with the modified medium was conducted. As a result, great improvement of L-Met titer (12.80 g/L) and yield (0.13 mol/mol) were achieved, with an increase of 38.53% and 30.0% compared with those of the basal medium, respectively. Furthermore, higher L-Met productivity of 0.261 g/L/h was obtained, representing 2.13-fold higher in comparison to the original medium. The results may provide a helpful reference for further study on strain improvement and fermentation control.
Collapse
|
27
|
Zhang XJ, Deng HZ, Liu N, Gong YC, Liu ZQ, Zheng YG. Molecular modification of a halohydrin dehalogenase for kinetic regulation to synthesize optically pure (S)-epichlorohydrin. BIORESOURCE TECHNOLOGY 2019; 276:154-160. [PMID: 30623870 DOI: 10.1016/j.biortech.2018.12.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Asymmetric synthesis of chiral epichlorohydrin (ECH) from 1,3-dichloro-2-propanol (1,3-DCP) using halohydrin dehalogenases (HHDHs) is of great value due to the 100% theoretical yield and high enantioselectivity. The vital problem in the asymmetric synthesis is to prepare optically pure ECH. In this study, key amino acid residues located at halide ion channels of HheC (P175S/W249P) (HheCPS) were modified to regulate the kinetic parameters. HheCPS I81W, F86N and V94R were constructed with the corresponding halide ion channels destroyed. The catalytically efficiencies (kcat/Km) of the three mutants exhibited 0.38-, 0.23- and 0.23-fold decrease toward (S)-ECH and the reverse reaction was significantly inhibited. As the results, (S)-ECH was synthesized with >99% enantiomeric excess (e.e.) and 63.42%, 67.08% and 57.01% yields, respectively, under 20 mM 1,3-DCP as substrate. To our knowledge, this is the first investigation of the molecule kinetic modification of HHDHs and also the first report for the biosynthesis of optically pure (S)-ECH from 1,3-DCP using HHDHs.
Collapse
Affiliation(s)
- Xiao-Jian Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Han-Zhong Deng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Nan Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yi-Chuan Gong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
28
|
Xu JM, Li JQ, Zhang B, Liu ZQ, Zheng YG. Fermentative production of the unnatural amino acid L-2-aminobutyric acid based on metabolic engineering. Microb Cell Fact 2019; 18:43. [PMID: 30819198 PMCID: PMC6393993 DOI: 10.1186/s12934-019-1095-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/25/2019] [Indexed: 01/13/2023] Open
Abstract
Background l-2-aminobutyric acid (l-ABA) is an unnatural amino acid that is a key intermediate for the synthesis of several important pharmaceuticals. To make the biosynthesis of l-ABA environmental friendly and more suitable for the industrial-scale production. We expand the nature metabolic network of Escherichia coli using metabolic engineering approach for the production of l-ABA. Results In this study, Escherichia coli THR strain with a modified pathway for threonine-hyperproduction was engineered via deletion of the rhtA gene from the chromosome. To redirect carbon flux from 2-ketobutyrate (2-KB) to l-ABA, the ilvIH gene was deleted to block the l-isoleucine pathway. Furthermore, the ilvA gene from Escherichia coli W3110 and the leuDH gene from Thermoactinomyces intermedius were amplified and co-overexpressed. The promoter was altered to regulate the expression strength of ilvA* and leuDH. The final engineered strain E. coli THR ΔrhtAΔilvIH/Gap-ilvA*-Pbs-leuDH was able to produce 9.33 g/L of l-ABA with a yield of 0.19 g/L/h by fed-batch fermentation in a 5 L bioreactor. Conclusions This novel metabolically tailored strain offers a promising approach to fulfill industrial requirements for production of l-ABA. Electronic supplementary material The online version of this article (10.1186/s12934-019-1095-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian-Miao Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jian-Qiang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
29
|
Xue F, Ya X, Xiu Y, Tong Q, Wang Y, Zhu X, Huang H. Exploring the Biocatalytic Scope of a Novel Enantioselective Halohydrin Dehalogenase from an Alphaproteobacterium. Catal Letters 2019. [DOI: 10.1007/s10562-019-02659-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Aggarwal N, Ananthathamula R, Karanam VK, Doble M, Chadha A. Understanding substrate specificity and enantioselectivity of carbonyl reductase from Candida parapsilosis ATCC 7330 (CpCR): Experimental and modeling studies. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Xue F, Ya X, Tong Q, Xiu Y, Huang H. Heterologous overexpression of Pseudomonas umsongensis halohydrin dehalogenase in Escherichia coli and its application in epoxide asymmetric ring opening reactions. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Improvement of carbonyl reductase activity for the bioproduction of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate. Bioorg Chem 2018; 80:733-740. [DOI: 10.1016/j.bioorg.2018.07.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/25/2022]
|
33
|
Wan N, Tian J, Wang H, Tian M, He Q, Ma R, Cui B, Han W, Chen Y. Identification and characterization of a highly S-enantioselective halohydrin dehalogenase from Tsukamurella sp. 1534 for kinetic resolution of halohydrins. Bioorg Chem 2018; 81:529-535. [PMID: 30245234 DOI: 10.1016/j.bioorg.2018.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 02/05/2023]
Abstract
Halohydrin dehalogenases are remarkable enzymes which possess promiscuous catalytic activity and serve as potential biocatalysts for the synthesis of chiral halohydrins, epoxides and β-substituted alcohols. The enzyme HheC exhibits a highly R enantioselectivity in the processes of dehalogenation of vicinal halohydrins and ring-opening of epoxides, which attracts more attentions in organic synthesis. Recently dozens of novel potential halohydrin dehalogenases have been identified by gene mining, however, most of the characterized enzymes showed low stereoselectivity. In this study, a novel halohydrin dehalogenase of HheA10 from Tsukamurella sp. 1534 has been heterologously expressed, purified and characterized. Substrate spectrum and kinetic resolution studies indicated the HheA10 was a highly S enantioselective enzyme toward several halohydrins, which produced the corresponding epoxides with the ee (enantiomeric excess) and E values up to >99% and >200 respectively. Our results revealed the HheA10 was a promising biocatalyst for the synthesis of enantiopure aromatic halohydrins and epoxides via enzymatic kinetic resolution of racemic halohydrins. What's more important, the HheA10 as the first individual halohydrin dehalogenase with the highly S enantioselectivity provides a complementary enantioselectivity to the HheC.
Collapse
Affiliation(s)
- Nanwei Wan
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Jiawei Tian
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Huihui Wang
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Meiting Tian
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Qing He
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ran Ma
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Baodong Cui
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Wenyong Han
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yongzheng Chen
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
34
|
Efficient Biosynthesis of Xylitol from Xylose by Coexpression of Xylose Reductase and Glucose Dehydrogenase in Escherichia coli. Appl Biochem Biotechnol 2018; 187:1143-1157. [DOI: 10.1007/s12010-018-2878-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/28/2018] [Indexed: 01/02/2023]
|
35
|
Metabolic engineering of E. coli for the production of O-succinyl-l-homoserine with high yield. 3 Biotech 2018; 8:310. [PMID: 30002999 DOI: 10.1007/s13205-018-1332-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
O-succinyl-l-homoserine (OSH) is a promising platform chemical for the production of C4 chemicals with huge market potential which can be produced by fermentation from glucose. To construct a strain capable of producing OSH with high yield, the metJ (encodes transcriptional repressor) and metI (encodes a subunit of dl-methionine transporter) were deleted in Escherichia coli W3110 to obtain a strain E. coli ∆JI. Then, overexpression of metL (encodes bifunctional aspartate kinase/homoserine dehydrogenase II) and inactivation of metB (encodes cystathionine γ-synthase) were implemented in one step, and the OSH titer of the resulting strain E. coli ∆JIB* TrcmetL was dramatically increased to 7.30 g/L. The feedback regulation was further relieved by progressively overexpressing metAfbr (encodes homoserine O-succinyltransferase), yjeH (encodes l-methionine exporter), and thrAfbr (encodes bifunctional aspartate kinase/homoserine dehydrogenase I) to increase the metabolic flux from aspartate to OSH. The 100% rationally designed strain E. coli ∆JIB* TrcmetL/pTrc-metAfbr -Trc-thrAfbr -yjeH produced 9.31 g/L OSH from 20 g/L glucose (0.466 g/g glucose) in batch fermentation, which represents the highest OSH yield from glucose reported to date. The culture profiles of the newly constructed strains were recorded to investigate their productive properties. The effects of l-methionine addition on the fermentation process of the optimal strain were also studied. Our results demonstrate that tuning the expression level of metL, inactivation of metB, and attenuation of feedback resistance of the crucial enzymes in the biosynthetic pathway are the key factors that impact the OSH production in E. coli.
Collapse
|
36
|
Ping L, Chen F, Cui F, Hu W, Sun W, Li N, Yang Y. Enhancement of quality retention of Grifola frondosa fruiting bodies by erythorbic acid treatment. 3 Biotech 2018; 8:305. [PMID: 30002995 PMCID: PMC6033772 DOI: 10.1007/s13205-018-1305-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/24/2018] [Indexed: 12/01/2022] Open
Abstract
In this paper, the effects of erythorbic acid (EA) treatment with different concentrations on the quality of Grifola frondosa fruiting bodies stored at 4 °C for 27 days were studied by determining the changes in moisture content, weight loss, browning, electrolyte leakage, malondialdehyde (MDA), and nutritional compounds. The activities of polyphenoloxidase (PPO), cellulase and other antioxidant enzymes including superoxide dismutase (SOD), catalase, and peroxidase (POD) were also measured. Results showed that 0.1% EA-treated G. frondosa fruiting body maintained lower weight loss (< 6.0%, w/w), electrolyte leakage (< 45.8%), MDA (< 4.17 µmol kg-1), and higher moisture content (> 90.7%, w/w). Lower activities of PPO (< 72.64 × 103 U kg-1) and cellulase (< 189.86 × 103 U kg-1) in 0.1% EA-treated samples were observed compared with the other treatments. As a stereoisomer of ascorbic acid (AA), EA also could enhance SOD and POD activities of G. frondosa fruiting bodies. Our findings were the first time to evaluate the effect of EA on maintaining quality in G. frondosa fruiting bodies, and proved that low concentrations of EA (especially 0.1% EA, w/v) treatments were beneficial to preserve G. frondosa fruiting body with even higher efficiency than AA treatment. This study paved a foundation for the enhancement of quality retention of G. frondosa fruiting bodies.
Collapse
Affiliation(s)
- Lifeng Ping
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023 People’s Republic of China
| | - Fengmei Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 People’s Republic of China
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 People’s Republic of China
- Parchn Sodium Isovitamin C Co. Ltd, Dexing, 334221 People’s Republic of China
| | - Wanjun Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 People’s Republic of China
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 People’s Republic of China
- Parchn Sodium Isovitamin C Co. Ltd, Dexing, 334221 People’s Republic of China
| | - Na Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 People’s Republic of China
| | - Yan Yang
- National Engineering Research Center of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403 People’s Republic of China
| |
Collapse
|
37
|
Wang XX, Lin CP, Zhang XJ, Liu ZQ, Zheng YG. Improvement of a newly cloned carbonyl reductase and its application to biosynthesize chiral intermediate of duloxetine. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Liu ZQ, Lu MM, Zhang XH, Cheng F, Xu JM, Xue YP, Jin LQ, Wang YS, Zheng YG. Significant improvement of the nitrilase activity by semi-rational protein engineering and its application in the production of iminodiacetic acid. Int J Biol Macromol 2018; 116:563-571. [PMID: 29753012 DOI: 10.1016/j.ijbiomac.2018.05.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/09/2023]
Abstract
Iminodiacetic acid (IDA) is widely used as an intermediate in the manufacturing of chelating agents, glyphosate herbicides and surfactants. To improve activity and tolerance to the substrate for IDA production, Acidovorax facilis nitrilase was selected for further modification by the gene site saturation mutagenesis method. After screened by a two-step screening method, the best mutant (Mut-F168V/T201N/S192F/M191T/F192S) was selected. Compared to the wild-type nitrilase, Mut-F168V/T201N/S192F/M191T/F192S showed 136% improvement in specific activity. Co2+ stimulated nitrilase activity, whereas Cu2+, Zn2+ and Tween 80 showed a strong inhibitory effect. The Vmax and kcat of Mut-F168V/T201N/S192F/M191T/F192S were enhanced 1.23 and 1.23-fold, while the Km was decreased 1.53-fold. The yield of Mut-F168V/T201N/S192F/M191T/F192S with 453.2 mM of IDA reached 71.9% in 5 h when 630 mM iminodiacetonitrile was used as substrate. This study indicated that mutant nitrilase obtained in this study is promising in applications for the upscale production of IDAN.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ming-Ming Lu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xin-Hong Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Department of Biological and Environmental Engineering, Hefei University, Hefei 230601, China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian-Miao Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuan-Shan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
39
|
Biosynthesis of miglitol intermediate 6-( N-hydroxyethyl)-amino-6-deoxy-α-l-sorbofuranose by an improved d-sorbitol dehydrogenase from Gluconobacter oxydans. 3 Biotech 2018; 8:231. [PMID: 29719773 DOI: 10.1007/s13205-018-1251-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/23/2018] [Indexed: 01/03/2023] Open
Abstract
Adaptable exploitation of the catalytic potential of membrane-bound d-sorbitol dehydrogenase (mSLDH) from Gluconobacter oxydans is desperately needed in the industrial-scale production of miglitol. In the present study, a carbonyl group-dependent colorimetric quantification method was developed for the assay of miglitol key intermediate 6-(N-hydroxyethyl)-amino-6-deoxy-α-l-sorbofuranose (6NSL), and a high-throughput screening process of positive mutants was processed. Combined with several rounds of ultraviolet irradiation mutagenesis and screening procedure, a positive mutant strain G. oxydans ZJB16009 was obtained with significant increase in mSLDH catalytic activity by 1.5-fold, which exhibited an extremely accelerated uptake rate of d-sorbitol, and the fermentation time was significantly shortened from 22 to 11 h. In a 5-L biotransformation system, 60 g/L substrate N-2-hydroxyethyl glucamine (NHEG) was catalyzed by the resting cells of the mutant strain within 36 h and accumulated 53.6 g/L 6NSL, showing a 33.6% increase in the product yield. Therefore, it was indicated that the established high-throughput screening method could provide a highly efficient platform for the breading of G. oxydans strain for the industrial biosynthesis of miglitol intermediate 6NSL.
Collapse
|
40
|
Production and characterization of a novel acidophilic and thermostable xylanase from Thermoascus aurantiacu. Int J Biol Macromol 2018; 109:1270-1279. [DOI: 10.1016/j.ijbiomac.2017.11.130] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 01/24/2023]
|
41
|
Liu ZQ, Wu L, Zheng L, Wang WZ, Zhang XJ, Jin LQ, Zheng YG. Biosynthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate by carbonyl reductase from Rhodosporidium toruloides in mono and biphasic media. BIORESOURCE TECHNOLOGY 2018; 249:161-167. [PMID: 29040850 DOI: 10.1016/j.biortech.2017.09.204] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
tert-Butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate ((3R,5S)-CDHH) is the key intermediate for synthesis of atorvastatin and rosuvastatin. Carbonyl reductase exhibits excellent activity toward tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) to synthesize (3R,5S)-CDHH. In this study, a whole cell biosynthesis reaction system to produce (3R,5S)-CDHH was constructed in organic solvents. A solution of 10% (v/v) Tween-80 was introduced to the reaction system as a co-solvent, which greatly enhanced biotransformation process, giving 98.9% yield, >99% ee and 1.8-fold higher space time yield in 5 h bioconversion of 1 M (S)-CHOH, compared with 98.7% yield and >99% ee in 9 h bioconversion of a purely aqueous reaction system. Moreover, a water-octanol biphasic reaction system was built and 20% of octanol was added as reservoir of substrate resulting in 98% yield, >99% ee and 4.08 mmol L-1 h-1 g-1 (wet cell weight) space time yield. This study paved a way for the whole cell biosynthesis of (3R,5S)-CDHH in mono and biphasic media.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lin Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ling Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wen-Zhong Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiao-Jian Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
42
|
Shen JW, Qi JM, Zhang XJ, Liu ZQ, Zheng YG. Significantly increased catalytic activity of Candida antarctica lipase B for the resolution of cis-(±)-dimethyl 1-acetylpiperidine-2,3-dicarboxylate. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01340c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structure-based semi-rational engineering approach was applied to alter the binding pocket and substrate channel for enhancing the activity of CALB towards moxifloxacin chiral intermediate.
Collapse
Affiliation(s)
- Jiang-Wei Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Jia-Mei Qi
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Xiao-Jian Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
43
|
Hu D, Tang C, Li C, Kan T, Shi X, Feng L, Wu M. Stereoselective Hydrolysis of Epoxides by reVrEH3, a Novel Vigna radiata Epoxide Hydrolase with High Enantioselectivity or High and Complementary Regioselectivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9861-9870. [PMID: 29058432 DOI: 10.1021/acs.jafc.7b03804] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To provide more options for the stereoselective hydrolysis of epoxides, an epoxide hydrolase (VrEH3) gene from Vigna radiata was cloned and expressed in Escherichia coli. Recombinant VrEH3 displayed the maximum activity at pH 7.0 and 45 °C and high stability at pH 4.5-7.5 and 55 °C. Notably, reVrEH3 exhibited high and complementary regioselectivity toward styrene oxides 1a-3a and high enantioselectivity (E = 48.7) toward o-cresyl glycidyl ether 9a. To elucidate these interesting phenomena, the interactions of the three-dimensional structure between VrEH3 and enantiomers of 1a and 9a were analyzed by molecular docking simulation. Using E. coli/vreh3 whole cells, gram-scale preparations of (R)-1b and (R)-9a were performed by enantioconvergent hydrolysis of 100 mM rac-1a and kinetic resolution of 200 mM rac-9a in the buffer-free water system at 25 °C. These afforded (R)-1b with >99% eep and 78.7% overall yield after recrystallization and (R)-9a with >99% ees, 38.7% overall yield, and 12.7 g/L/h space-time yield.
Collapse
Affiliation(s)
| | - Cunduo Tang
- Nanyang Provincial Engineering Laboratory of Insect Bio-reactor, Nanyang Normal University , Henan 473061, China
| | | | | | | | | | | |
Collapse
|
44
|
Niu K, Cheng XL, Qin HB, Liu JS, Zheng YG. Investigation of the key factors on 3-hydroxypropionic acid production with different recombinant strains. 3 Biotech 2017; 7:314. [PMID: 28955611 DOI: 10.1007/s13205-017-0966-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/07/2017] [Indexed: 12/26/2022] Open
Abstract
3-Hydroxypropionic acid (3-HP) is an important compound and precursor for a series of chemicals and polymeric materials. In this study, the 3-HP producing bacteria were constructed and studied for efficient synthesis of 3-HP. The results indicated that the instability of glycerol dehydratase (GDHt) affected the 3-HP production significantly, which was successfully solved by the expression of glycerol dehydratase reactivase (GdrB), with fivefold increase in 3-HP yield. Meanwhile, NAD+-regenerating enzymes GPD1 (glycerol-3-phosphate dehydrogenase) was expressed; however, the results showed 3-HP was significantly decreased from 56.73-4 mM, and malic acid was obviously increased. Analysis of the C flux distribution showed that the main reason for the results was the lack of NAD+. The addition of NAD+ further increased the 3-HP production to 23.87 mM, demonstrating that the "regeneration of NAD+" was the major factor for enhancing 3-HP production.
Collapse
Affiliation(s)
- Kun Niu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Xiu-Li Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Hai-Bin Qin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Ji-Song Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| |
Collapse
|
45
|
Improvement of extracellular lipase production by a newly isolated Yarrowia lipolytica mutant and its application in the biosynthesis of L-ascorbyl palmitate. Int J Biol Macromol 2017; 106:302-311. [PMID: 28827135 DOI: 10.1016/j.ijbiomac.2017.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/05/2023]
Abstract
Yarrowia lipolytica Wt-11 producing an extracellular lipase was isolated and identified. To improve the lipase production, Y. lipolytica Wt-11 was subjected to low-energy ion implantation mutation breeding, and a best mutant, Y. lipolytica Mut-96, was obtained after screening. Under the optimal cultivation conditions, the scaled-up production of lipases were performed, and the lipase activity of Y. lipolytica Mut-96 was enhanced nearly 5.5-fold compared with that of Y. lipolytica Wt-11. After fermentation, the lipases were purified, and the characteristics of the purified lipases were studied. The optimum temperatures and pHs for lipases from Wt-11and Mut-96 were 30°C and 8.0, respectively. The purified lipases were stable between pH 7.0 and 8.5 and unstable at temperatures above 40°C. The lipase activities were enhanced by Ca2+, Ba2+, Mn2+, Fe2+ and SDS. The synthesis of L-ascorbyl palmitate via esterification with L-ascorbic acid and palmitic acid by immobilized lipases from Wt-11 and Mut-96 in organic media was investigated, and the L-ascorbyl palmitate can be respectively produced at levels of 14.8 and 27.5g/L.
Collapse
|