1
|
Bilal M, Wu Y, Wang G, Liu G, Yar MS, Li D, Xie C, Yang R, Jiang D, Wang P. Insight into the effect of wheatgrass powder on steamed bread properties: Impacts on gluten polymerization and starch gelatinization behavior. Food Chem X 2025; 26:102306. [PMID: 40083851 PMCID: PMC11903949 DOI: 10.1016/j.fochx.2025.102306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/25/2025] [Accepted: 02/18/2025] [Indexed: 03/16/2025] Open
Abstract
This study investigates the use of wheatgrass powder (WGP) as a functional ingredient in steamed bread, focusing on its effects on the nutritional composition and key biological macromolecules, specifically gluten and starch. Wheatgrass harvested at 8 days demonstrated optimal bioactive content, enhancing steamed bread quality. The incorporation of WGP (2.5 % and 5 %) reduced loaf volume and increased firmness and chewiness while improving flavor and taste. WGP also suppressed starch gelatinization, decreased thermal stability, and altered gluten polymerization by reducing the polymerization of α- and γ-gliadin into glutenin. Scanning electron microscopy (SEM) analysis revealed that WGP disrupted the gluten-starch matrix, leading to a fragmented gluten network and reduced starch gelatinization, which contributed to the increased firmness and chewiness of steamed bread. These findings highlight the potential of WGP as a functional ingredient for wheat-based products and fill the gap by providing WGP insights into the optimization of dough properties and the underlying molecular interactions involving proteins and starch.
Collapse
Affiliation(s)
- Muhammad Bilal
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yiwei Wu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Guangzheng Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Guannan Liu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Muhammad Shahar Yar
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Dandan Li
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, PR China
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Chong Xie
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, PR China
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Runqiang Yang
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, PR China
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Dong Jiang
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, PR China
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Pei Wang
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, PR China
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
2
|
Berzosa A, Marín-Sánchez J, Álvarez I, Sánchez-Gimeno C, Raso J. Pulsed Electric Field Technology for the Extraction of Glutathione from Saccharomyces cerevisiae. Foods 2024; 13:1916. [PMID: 38928855 PMCID: PMC11203235 DOI: 10.3390/foods13121916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Glutathione is a potent antioxidant that has shown promise in enhancing the processing of various foods and drinks such as bread and wine. Saccharomyces cerevisiae stands as a primary microorganism for glutathione production. This study sought to assess the potential of pulsed electric fields (PEFs) in extracting glutathione from S. cerevisiae cells. Yeast cells were subjected to PEF treatment (12 kV/cm, 150 µs) followed by incubation at varying pH values (4.0, 6.0, and 8.0) and temperatures (4 °C and 25 °C). Glutathione and protein extraction were assessed at different incubation times. Within one hour of incubation, PEF-treated yeast cells released over 60% of their total glutathione content, irrespective of pH and temperature. Notably, the antioxidant activity of the resulting extract surpassed that obtained through complete mechanical cell destruction and hot water, which form the conventional industrial extraction method in the glutathione industry. These results suggest that PEF could offer a rapid and more selective procedure, improving the extraction of this bioactive compound.
Collapse
Affiliation(s)
| | | | | | | | - Javier Raso
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (A.B.); (J.M.-S.); (I.Á.); (C.S.-G.)
| |
Collapse
|
3
|
Xie J, Zhao Z, Gänzle MG. Contribution of γ-Glutamyl-Cysteine Ligases of Limosilactobacillus reuteri to the Formation of Kokumi-Active γ-Glutamyl Dipeptides in Sourdough Bread. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5935-5943. [PMID: 38469860 DOI: 10.1021/acs.jafc.3c09707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Kokumi-active γ-glutamyl dipeptides accumulate during sourdough fermentation. γ-Glutamylcysteine ligases (Gcls) of Limosilactobacillus reuteri synthesize γ-glutamyl dipeptides during growth in sourdough. This study aimed to evaluate the contribution of Gcls from strains of L. reuteri in the formation of kokumi-active γ-glutamyl dipeptides in sourdough bread. Among 12 acceptor amino acids, the three Gcls of L. reuteri were the most active to Cys. With the acceptor amino acids Ile, Leu, and Phe, Gcl1 was more active than Gcl2 and Gcl3. Accordingly, Gcl1 contributed to the γ-Glu-Ile synthesis in sourdough fermentation. Proofing and baking strongly influenced the concentration of γ-glutamyl dipeptides in bread. The addition of 10% sourdough increased the content of γ-Glu-Leu and γ-Glu-Phe but not of other γ-glutamyl dipeptides in bread. In conclusion, the accumulation of kokumi γ-glutamyl dipeptides in sourdoughs was attributed to the combined activity of cereal enzymes, γ-glutamyl-cysteine ligases, and other microbial enzymes.
Collapse
Affiliation(s)
- Jin Xie
- Dept. of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
| | - Ziyi Zhao
- Dept. of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
| | - Michael G Gänzle
- Dept. of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
- College of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, Hubei, People's Republic of China
| |
Collapse
|
4
|
Gänzle MG, Qiao N, Bechtner J. The quest for the perfect loaf of sourdough bread continues: Novel developments for selection of sourdough starter cultures. Int J Food Microbiol 2023; 407:110421. [PMID: 37806010 DOI: 10.1016/j.ijfoodmicro.2023.110421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/17/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Sourdough fermentation, one of the oldest unit operations in food production, is currently experiencing a revival in bread production at the household, artisanal, and the industrial level. The expanding use of sourdough fermentation in bread production and the adaptation of fermentation to large scale industrial bread production also necessitate the development of novel starter cultures. Developments in the last years also have expanded the tools that are used to assess the metabolic potential of specific strains, species or genera of the Lactobacillaceae and have identified multiple ecological and metabolic traits as clade-specific. This review aims to provide an overview on the clade-specific metabolic potential of members of the Lactobacillaceae for use in sourdough baking, and the impact of these clade-specific traits on bread quality. Emphasis is placed on carbohydrate metabolism, including the conversion of sucrose and starch to soluble polysaccharides, conversion of amino acids, and the metabolism of organic acids. The current state of knowledge to compose multi-strain starter cultures (synthetic microbial communities) that are suitable for back-slopping will also be discussed. Taken together, the communication outlines the current tools for selection of microbes for use in sourdough baking.
Collapse
Affiliation(s)
- Michael G Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada.
| | - Nanzhen Qiao
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Julia Bechtner
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| |
Collapse
|
5
|
Peng B, Li J, Shan C, Cai W, Zhang Q, Zhao X, Li S, Wen J, Jiang L, Yang X, Tang F. Exploring metabolic dynamics during the fermentation of sea buckthorn beverage: comparative analysis of volatile aroma compounds and non-volatile metabolites using GC-MS and UHPLC-MS. Front Nutr 2023; 10:1268633. [PMID: 37743927 PMCID: PMC10512423 DOI: 10.3389/fnut.2023.1268633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Sea buckthorn has a high nutritional value, but its sour taste and foul odor make it unpalatable for consumers. In this study, we analyzed the metabolite changes occurring during the yeast-assisted fermentation of sea buckthorn juice using the HeadSpace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) and Ultra-High Performance Liquid Chromatography-Mass Spectrometry (UHPLC-MS) techniques. A total of 86 volatile aroma compounds were identified during the fermentation process. The content of total volatiles in sea buckthorn juice increased by 3469.16 μg/L after 18 h of fermentation, with 22 compounds showing elevated levels. Notably, the total content of esters with fruity, floral, and sweet aromas increased by 1957.09 μg/L. We identified 379 non-volatile metabolites and observed significant increases in the relative abundance of key active ingredients during fermentation: glycerophosphorylcholine (increased by 1.54), glutathione (increased by 1.49), L-glutamic acid (increased by 2.46), and vanillin (increased by 0.19). KEGG pathway analysis revealed that amino acid metabolism and lipid metabolism were the primary metabolic pathways involved during fermentation by Saccharomyces cerevisiae. Fermentation has been shown to improve the flavor of sea buckthorn juice and increase the relative content of bioactive compounds. This study provides novel insights into the metabolic dynamics of sea buckthorn juice following yeast fermentation through metabolomics analysis. These findings could serve as a theoretical foundation for further studies on the factors influencing differences in yeast fermentation.
Collapse
Affiliation(s)
- Bo Peng
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Jingjing Li
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Chunhui Shan
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Wenchao Cai
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Qin Zhang
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Xinxin Zhao
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Shi Li
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Jing Wen
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Lin Jiang
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Xinquan Yang
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
| | - Fengxian Tang
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
6
|
D’Amico V, Gänzle M, Call L, Zwirzitz B, Grausgruber H, D’Amico S, Brouns F. Does sourdough bread provide clinically relevant health benefits? Front Nutr 2023; 10:1230043. [PMID: 37545587 PMCID: PMC10399781 DOI: 10.3389/fnut.2023.1230043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
During the last decade, scientific interest in and consumer attention to sourdough fermentation in bread making has increased. On the one hand, this technology may favorably impact product quality, including flavor and shelf-life of bakery products; on the other hand, some cereal components, especially in wheat and rye, which are known to cause adverse reactions in a small subset of the population, can be partially modified or degraded. The latter potentially reduces their harmful effects, but depends strongly on the composition of sourdough microbiota, processing conditions and the resulting acidification. Tolerability, nutritional composition, potential health effects and consumer acceptance of sourdough bread are often suggested to be superior compared to yeast-leavened bread. However, the advantages of sourdough fermentation claimed in many publications rely mostly on data from chemical and in vitro analyzes, which raises questions about the actual impact on human nutrition. This review focuses on grain components, which may cause adverse effects in humans and the effect of sourdough microbiota on their structure, quantity and biological properties. Furthermore, presumed benefits of secondary metabolites and reduction of contaminants are discussed. The benefits claimed deriving from in vitro and in vivo experiments will be evaluated across a broader spectrum in terms of clinically relevant effects on human health. Accordingly, this critical review aims to contribute to a better understanding of the extent to which sourdough bread may result in measurable health benefits in humans.
Collapse
Affiliation(s)
- Vera D’Amico
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Lisa Call
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Benjamin Zwirzitz
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Heinrich Grausgruber
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Stefano D’Amico
- Institute for Animal Nutrition and Feed, AGES–Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Fred Brouns
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
7
|
Wang G, Qu X, Li D, Yang R, Gu Z, Jiang D, Wang P. Enhancing the technofunctionality of γ-aminobutyric acid enriched germinated wheat by modification of arabinoxylan, gluten proteins and liquid lamella of dough. Food Chem 2023; 404:134523. [PMID: 36228476 DOI: 10.1016/j.foodchem.2022.134523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/17/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
To enhance the technofunctionality of germinated wheat enriched with γ-aminobutyric acid, xylanase (Xyn) and glucose oxidase (Gox) were incorporated with emphasis on modifying the key components. Combination of Xyn and Gox enhanced steamed bread quality with optimum loaf volume and textural property. Continuous and dense gluten network was facilitated and improved viscoelasticity of dough. Water solubility of arabinoxylan (AX) enhanced with Xyn and the molecular weight was more homogeneous distributed throughout bread making process with Xyn and Gox. Polymerization behavior of α-/γ-gliadin and glutenin was suppressed in steamed bread, while incorporation of AX to insoluble proteins was enhanced by enzymes. In addition, the promoted formation of high molecular weight glycoprotein in the liquid lamella of dough enhanced the thermal stability of foams and contribute to superior quality of steamed bread. Results demonstrated that germinated wheat could be exploited as a functional ingredient with desirable technofunctionality by modification of the components.
Collapse
Affiliation(s)
- Guangzheng Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xu Qu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
8
|
Zhang L, Liang L, Qiao K, Pu D, Sun B, Zhou X, Zhang Y. Decoding the Effect of Age on the Taste Perception of Chicken Breast Soup Based on LC-QTOF-MS/MS Combined with a Chemometric Approach. Foods 2023; 12:foods12030674. [PMID: 36766202 PMCID: PMC9914887 DOI: 10.3390/foods12030674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
A nontargeted fingerprinting approach combined with the chemometrics method and sensory analysis was used to assess the differences in taste-chemical compositions of chicken breast soup with different ages and their sensory qualities. The sensory evaluation results showed that the overall taste as well as the sourness, saltiness, and umami scores of the soup were increased with the age of chicken. Fifty-nine compounds were identified from four soup samples by liquid chromatography-tandem quadrupole time-of-flight mass spectrometry (LC-QTOF-MS/MS), and their total content was the highest in the 90 wk soup samples. Six upregulated compounds (carnosine, hypoxanthine, inosine, inosine 5'-monophosphate (5'-IMP), adenosine 5'-monophosphate (5'-AMP), and lactic acid) were identified as potential contributors to the taste characteristics of the 90 wk soup samples by orthogonal projections to latent structures-discriminant analysis (OPLS-DA). Additional experiments showed that 5'-AMP particularly contributed to the sourness of the soup, while carnosine contributed to the saltiness and umami of the soup.
Collapse
Affiliation(s)
- Lili Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Kaina Qiao
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Pu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xuewei Zhou
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: ; Tel.: +86-10-68985382
| |
Collapse
|
9
|
Probiotics in the Sourdough Bread Fermentation: Current Status. FERMENTATION 2023. [DOI: 10.3390/fermentation9020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sourdough fermentation is an ancient technique to ferment cereal flour that improves bread quality, bringing nutritional and health benefits. The fermented dough has a complex microbiome composed mainly of lactic acid bacteria and yeasts. During fermentation, the production of metabolites and chemical reactions occur, giving the product unique characteristics and a high sensory quality. Mastery of fermentation allows adjustment of gluten levels, delaying starch digestibility, and increasing the bio-accessibility of vitamins and minerals. This review focuses on the main steps of sourdough fermentation, the microorganisms involved, and advances in bread production with functional properties. The impact of probiotics on human health, the metabolites produced, and the main microbial enzymes used in the bakery industry are also discussed.
Collapse
|
10
|
Warburton A, Silcock P, Eyres GT. Impact of sourdough culture on the volatile compounds in wholemeal sourdough bread. Food Res Int 2022; 161:111885. [DOI: 10.1016/j.foodres.2022.111885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
|
11
|
Effect of co-fermentation system with isolated new yeasts on soymilk: microbiological, physicochemical, rheological, aromatic, and sensory characterizations. Braz J Microbiol 2022; 53:1549-1564. [DOI: 10.1007/s42770-022-00773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/16/2022] [Indexed: 11/02/2022] Open
|
12
|
Takakura Y, Arai S, Kanaori K, Suzuki H. Development of Enzymatic Synthesis of γ-Glutamylcarnosine and Its Effects on Taste. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:592-597. [PMID: 34981936 DOI: 10.1021/acs.jafc.1c06965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
γ-Glutamyl peptides have amide bonds between the γ-carboxy group of glutamic acid and the amino group of amino acids or peptides. Some of these γ-glutamyl peptides are known as kokumi substances. Kokumi substances enhance the taste, mouthfulness, thickness, and continuity of the dish. γ-Glutamylcarnosine (γ-l-glutamyl-β-alanyl-l-histidine) is a γ-glutamyl peptide, and this peptide has been suggested as a kokumi substance; however, its effects on taste have not been evaluated directly. As γ-glutamylcarnosine is not available commercially, the conditions for its enzymatic synthesis using a γ-glutamyltranspeptidation reaction of γ-glutamyltranspeptidase of Escherichia coli was optimized. The synthesized peptide was purified with a Dowex 1 × 8 column, and its structure was identified by mass spectrometry and NMR spectroscopy. This is the first report of the enzymatic synthesis of γ-glutamylcarnosine. Using this purified preparation, its effects on the sense of taste were investigated. However, the effects of γ-glutamylcarnosine on the sense of taste were not detected except for increased bitterness.
Collapse
|
13
|
Won S, Curtis J, Gänzle M. LC-MS/MS quantitation of α-amylase/trypsin inhibitor CM3 and glutathione during wheat sourdough breadmaking. J Appl Microbiol 2021; 133:120-129. [PMID: 34724302 DOI: 10.1111/jam.15346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
AIMS This study aimed to quantify α-amylase/trypsin inhibitor (ATI) CM3 and glutathione (GSH) during wheat sourdough breadmaking. METHODS AND RESULTS Breads were made with two wheat cultivars and fermented with Fructilactobacillus sanfranciscensis, F. sanfranciscensis ΔgshR or Latilactobacillus sakei; chemically acidified and straight doughs served as controls. Samples were analysed after mixing, after proofing and after baking. GSH and CM3 were quantified by multi-reaction-monitoring-based methods on an LC-QTRAP mass spectrometer. Undigested ATI extracts were further examined by SDS-PAGE. CONCLUSIONS GSH abundance was similar after mixing and after proofing but increased after baking (p < 0.001), regardless of fermentation. In breads baked with cv. Brennan, the samples fermented with lactobacilli had higher GSH abundance (p < 0.001) than in the controls. CM3 relative abundance remained similar after mixing and after proofing but decreased after baking (p < 0.001) across all treatments. This trend was supported by the SDS-PAGE analysis in which ATI band intensities decreased after baking (p < 0.001) in all experimental conditions. The overall effect of baking exerted a greater effect on the abundances of GSH and CM3 than fermentation conditions. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report to quantify ATI over the course of breadmaking by LC-MS/MS in sourdough and straight dough processes.
Collapse
|
14
|
Pourmohammadi K, Abedi E. Enzymatic modifications of gluten protein: Oxidative enzymes. Food Chem 2021; 356:129679. [PMID: 33827045 DOI: 10.1016/j.foodchem.2021.129679] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Oxidative enzymes treat weak flours in order to restore the gluten network of damaged wheat flour and reduce the economic and technological losses. The present review concentrates on oxidative exogenous enzymes (transglutaminase, laccase, glucose oxidase, hexose oxidase) and oxidative endogenous enzymes (tyrosinase, peroxidase, catalase, sulfhydryl oxidase, lipoxygenase, lipase, protein disulfide isomerase, NAD(P)H-dependent dehydrogenase, thioredoxin reductase and glutathione reductase) and their effects on the rheological, functional, and conformational features of gluten and its subunits. Overall, transglutaminase is used in wheat-based foods through introducing isopeptide bonds (ε-γ glutamyl-lysine). Glucose oxidase, hexose oxidase, peroxidase, sulfhydryl oxidase, lipase, and lipoxygenase form disulfide and nondisulfide bonds through producing hydrogen peroxide. Laccase, tyrosinase, and protein disulfide isomerase form cross-links between tyrosine and cysteine residues by generating radicals. Thioredoxin reductase and glutathione reductase create new inter disulfide bonds. The effect of oxidative enzymes on the formation of covalent cross-linkages were substantially more than non-covalent bonds in gluten structure.
Collapse
Affiliation(s)
- Kiana Pourmohammadi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran.
| | - Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran.
| |
Collapse
|
15
|
Dong Y, Karboune S. A review of bread qualities and current strategies for bread bioprotection: Flavor, sensory, rheological, and textural attributes. Compr Rev Food Sci Food Saf 2021; 20:1937-1981. [DOI: 10.1111/1541-4337.12717] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022]
Affiliation(s)
- YiNing Dong
- Department of Food Science and Agricultural Chemistry, Macdonald Campus McGill University Québec Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus McGill University Québec Canada
| |
Collapse
|
16
|
Recent research advances of lactic acid bacteria in sourdough: origin, diversity, and function. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Characterization of two extracellular arabinanases in Lactobacillus crispatus. Appl Microbiol Biotechnol 2020; 104:10091-10103. [DOI: 10.1007/s00253-020-10979-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/11/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022]
|
18
|
Xu D, Zhang H, Xi J, Jin Y, Chen Y, Guo L, Jin Z, Xu X. Improving bread aroma using low-temperature sourdough fermentation. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100704] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Xu D, Hu Y, Wu F, Jin Y, Xu X, Gänzle MG. Comparison of the Functionality of Exopolysaccharides Produced by Sourdough Lactic Acid Bacteria in Bread and Steamed Bread. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8907-8914. [PMID: 32806122 DOI: 10.1021/acs.jafc.0c02703] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exopolysaccharides (EPSs) produced by lactic acid bacteria improve the quality of bread; however, their functionality in steamed bread is unknown. This study aimed to compare the impact of EPS produced during sourdough fermentation on the quality of bread and steamed bread. Sourdoughs were fermented with EPS-producing Fructilactobacillus sanfranciscensis, Weissella cibaria, and Leuconostoc mesenteroides; Latilactobacillus sakei LS8 and chemically acidified sourdough were prepared as controls. EPS production generally enhanced the specific volume, improved the texture, and reduced the staling rate of bread. The effect of EPS on steamed bread quality was more pronounced when compared to its effect on bread quality. Remarkably, the beneficial effects of F. sanfranciscensis bread quality were largely independent of EPS formation and may relate to gluten modifications rather than EPS production. In conclusion, the direct comparison of sourdough and EPS functionality in steaming and baking provides novel insights for the optimization of commercial (steamed) bread production.
Collapse
Affiliation(s)
- Dan Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P.R. China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
| | - Ying Hu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
| | - Fengfeng Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P.R. China
| | - Yamei Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P.R. China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P.R. China
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
- College of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, P.R. China
| |
Collapse
|
20
|
Li Q, Loponen J, Gänzle MG. Characterization of the Extracellular Fructanase FruA in Lactobacillus crispatus and Its Contribution to Fructan Hydrolysis in Breadmaking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8637-8647. [PMID: 32687341 DOI: 10.1021/acs.jafc.0c02313] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) trigger symptoms of irritable bowel syndrome (IBS). Fructan degradation during bread making reduces FODMAPs in bread while maintaining the content of dietary fiber. This study explored the presence of the fructanases FruA in lactobacilli and characterized its use in bread making. FruA was exclusively present in vertebrate-adapted lactobacilli. In Lactobacillus crispatus DSM29598, FruA was located in cell wall fractions and includes a SLAP domain. FruA hydrolyzed levan or inulin; expression of fruA was not subject to catabolite repression. Fructans in bread were reduced by less than 50% in a straight dough process; conventional sourdough fermentation reduced fructans in bread by 65-70%. Sourdough fermentation with L. crispatus reduced fructans in bread by more than 90%. In conclusion, reduction of FODMAP by sourdough fermentation may improve tolerance in many IBS patients. Fermentation with FruA-expressing L. crispatus DSM29598 produces a low FODMAP bread.
Collapse
Affiliation(s)
- Qing Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | | | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
21
|
Sourdough Fermentation Degrades Wheat Alpha-Amylase/Trypsin Inhibitor (ATI) and Reduces Pro-Inflammatory Activity. Foods 2020; 9:foods9070943. [PMID: 32708800 PMCID: PMC7404469 DOI: 10.3390/foods9070943] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
The ingestion of gluten-containing foods can cause wheat-related disorders in up to 15% of wheat consuming populations. Besides the role of gluten, α-amylase/trypsin inhibitors (ATI) have recently been identified as inducers of an innate immune response via toll-like receptor 4 in celiac disease and non-celiac wheat sensitivity. ATI are involved in plant self-defense against insects and possibly in grain development. Notably, they are largely resistant to gastrointestinal proteases and heat, and their inflammatory activity affects not only the intestine, but also peripheral organs. The aim of this study was to understand the changes of ATI throughout the sourdough and yeast-fermented bread-making processes. ATI tetramers were isolated, fluorescein-labelled, and added to a mini-dough bread-making system. When the pH decreased below 4.0 in sourdough fermentation, the ATI tetramers were degraded due to the activation of aspartic proteases, whilst in yeast fermentation, ATI tetramers remained intact. The amylase inhibitory activity after sourdough fermentation decreased significantly, while the concentration of free thiol groups increased. The glutathione reductase activity of Fructilactobacillus sanfranciscensis did not contribute to the reduction of ATI tetramers. Compared to the unfermented wheat, sourdough fermentation was able to decrease the release of pro-inflammatory cytokines monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor alpha (TNF-α) in quantitative ATI extracts added to the human monocytic cell line THP-1. The current data suggest that sourdough fermentation can degrade ATI structure and bioactivity, and point to strategies to improve product development for wheat sensitivity patients.
Collapse
|
22
|
Woods DF, Kozak IM, O'Gara F. Microbiome and Functional Analysis of a Traditional Food Process: Isolation of a Novel Species ( Vibrio hibernica) With Industrial Potential. Front Microbiol 2020; 11:647. [PMID: 32373093 PMCID: PMC7179675 DOI: 10.3389/fmicb.2020.00647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/20/2020] [Indexed: 11/29/2022] Open
Abstract
Traditional food preservation processes are vital for the food industry. They not only preserve a high-quality protein and nutrient source but can also provide important value-added organoleptic properties. The Wiltshire process is a traditional food curing method applied to meat, and special recognition is given to the maintenance of a live rich microflora within the curing brine. We have previously analyzed a curing brine from this traditional meat process and characterized a unique microbial core signature. The characteristic microbial community is actively maintained and includes the genera, Marinilactibacillus, Carnobacterium, Leuconostoc, and Vibrio. The bacteria present are vital for Wiltshire curing compliance. However, the exact function of this microflora is largely unknown. A microbiome profiling of three curing brines was conducted and investigated for functional traits by the robust bioinformatic tool, Tax4Fun. The key objective was to uncover putative metabolic functions associated with the live brine and to identify changes over time. The functional bioinformatic analysis revealed metabolic enrichments over time, with many of the pathways identified as being involved in organoleptic development. The core bacteria present in the brine are Lactic Acid Bacteria (LAB), with the exception of the Vibrio genus. LAB are known for their positive contribution to food processing, however, little work has been conducted on the use of Vibrio species for beneficial processes. The Vibrio genome was sequenced by Illumina MiSeq technologies and annotated in RAST. A phylogenetic reconstruction was completed using both the 16S rRNA gene and housekeeping genes, gapA, ftsZ, mreB, topA, gyrB, pyrH, recA, and rpoA. The isolated Vibrio species was defined as a unique novel species, named Vibrio hibernica strain B1.19. Metabolic profiling revealed that the bacterium has a unique substrate scope in comparison to other closely related Vibrio species tested. The possible function and industrial potential of the strain was investigated using carbohydrate metabolizing profiling under food processing relevant conditions. Vibrio hibernica is capable of metabolizing a unique carbohydrate profile at low temperatures. This characteristic provides new application options for use in the industrial food sector, as well as highlighting the key role of this bacterium in the Wiltshire curing process.
Collapse
Affiliation(s)
- David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Iwona M Kozak
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland.,Human Microbiome Programme, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Telethon Kids Institute, Perth Children's Hospital, Perth, WA, Australia
| |
Collapse
|
23
|
Xu D, Zhang Y, Tang K, Hu Y, Xu X, Gänzle MG. Effect of Mixed Cultures of Yeast and Lactobacilli on the Quality of Wheat Sourdough Bread. Front Microbiol 2019; 10:2113. [PMID: 31552010 PMCID: PMC6746982 DOI: 10.3389/fmicb.2019.02113] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/27/2019] [Indexed: 11/20/2022] Open
Abstract
In this study, mixed starter cultures of yeast and lactobacilli were used for type I sourdough bread making to evaluate their ability to improve bread quality and increase the amount of flavor volatiles. Kazachstania humilis, Saccharomyces cerevisiae, Wickerhamomyces anomalus, and Lactobacillus sanfranciscensis DSM20451T and Lactobacillus sakei LS8 were used in different combinations to ferment wheat sourdough. S. cerevisiae produced the highest amount of CO2 among all strains and thus enhanced bread volume and crumb texture. S. cerevisiae also increased the free thiol level in bread dough, and this study confirms that thiol accumulation was not strongly related to the content of the glutenin macropolymer (GMP) or bread volume. The role of thiol exchange reactions on bread quality differs between long fermentation sourdough and straight dough with baker's yeast only. The influence of different starter cultures on wheat sourdough bread volatiles was established by using head space solid-phase microextraction and gas chromatography/mass spectrometry analysis (SPME-GC/MS). The sourdough breads fermented with a combination of lactobacilli and yeast had a more complex profile of volatiles, particularly with respect to esters.
Collapse
Affiliation(s)
- Dan Xu
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Yao Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kaixing Tang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Ying Hu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Xueming Xu
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- College of Bioengineering and Food Science, Hubei University of Technology, Wuhan, China
| |
Collapse
|
24
|
Gänzle MG, Zheng J. Lifestyles of sourdough lactobacilli – Do they matter for microbial ecology and bread quality? Int J Food Microbiol 2019; 302:15-23. [DOI: 10.1016/j.ijfoodmicro.2018.08.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/09/2018] [Accepted: 08/18/2018] [Indexed: 12/11/2022]
|
25
|
Identification of lactic acid bacteria and yeasts, and characterization of food components of sourdoughs used in Japanese bakeries. J Biosci Bioeng 2019; 127:575-581. [DOI: 10.1016/j.jbiosc.2018.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/26/2018] [Accepted: 10/13/2018] [Indexed: 11/18/2022]
|
26
|
Massone M, Calvio C, Rabuffetti M, Speranza G, Morelli CF. Effect of the inserted active-site-covering lid loop on the catalytic activity of a mutant B. subtilis γ-glutamyltransferase (GGT). RSC Adv 2019; 9:34699-34709. [PMID: 35530678 PMCID: PMC9073855 DOI: 10.1039/c9ra05941e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/11/2019] [Indexed: 11/24/2022] Open
Abstract
γ-Glutamylpeptides are compounds derived from the acylation of an amino acid or a short peptide by the γ-carboxyl carbon of the side chain of glutamic acid. Due to their altered chemico-physical and organoleptic properties, they may be interesting substitutes or precursors of parent compounds used in pharmaceutical, dietetic and cosmetic formulations. Some of them are naturally occurring flavor enhancers or are endowed with biological activities. Enzymatic approaches to the synthesis of γ-glutamyl derivatives based on the use of γ-glutamyltransferases (GGTs, EC 2.3.2.2) have been proposed, which should be able to alleviate the problems connected with the troublesome and low-yielding extraction from natural sources or the non-economical chemical synthesis, which requires protection/deprotection steps. With the aim of overcoming the current limitations in the use of GGTs as biocatalysts, a mutant GGT was investigated. The mutant GGT was obtained by inserting the active-site-covering lid loop of the E. coli GGT onto the structure of B. subtilis GGT. With respect to the wild-type enzyme, the mutant showed a more demanding substrate specificity and a low hydrolase activity. These results represent an attempt to correlate the structural features of a GGT to its different activities. However, the ability of the mutant enzyme to catalyze the subsequent addition of several γ-glutamyl units, inherited by the parent B. subtilis GGT, still represents a limitation to its full application as a biocatalyst for preparative purposes. A mutant γ-glutamyltransferase with improve transpeptidase activity was obtained by inserting the active site-covering lid loop on an enzyme naturally lacking it.![]()
Collapse
Affiliation(s)
- Michela Massone
- Department of Chemistry
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Cinzia Calvio
- Department of Biology and Biotechnology
- Università degli Studi di Pavia
- 27100 Pavia
- Italy
| | - Marco Rabuffetti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Giovanna Speranza
- Department of Chemistry
- Università degli Studi di Milano
- 20133 Milano
- Italy
- Istituto di Scienze e Tecnologie Molecolari (INSTM)
| | - Carlo F. Morelli
- Department of Chemistry
- Università degli Studi di Milano
- 20133 Milano
- Italy
| |
Collapse
|
27
|
Xu D, Tang K, Hu Y, Xu X, Gänzle MG. Effect of Glutathione Dehydrogenase of Lactobacillus sanfranciscensis on Gluten Properties and Bread Volume in Type I Wheat Sourdough Bread. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9770-9776. [PMID: 30175916 DOI: 10.1021/acs.jafc.8b03298] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Disulfide exchange reactions in wheat dough impact the polymerization of gluten and the volume of bread. In wheat sourdoughs fermented with Lactobacillus sanfranciscensis, glutathione reductase activity accumulates thiols. This study investigated the role of glutathione reductase and NADH oxidase of L. sanfranciscensis on disulfide exchange reactions, peroxide levels, and gluten polymerization in type I wheat sourdoughs. Fermentation with L. sanfranciscensis DSM20451 Δ gshR lacking glutathione reductase activity reduced the thiol levels in dough when compared to the wild type strain L. sanfranciscensis DSM20451. Fermentation with any strain reduced peroxides in wheat doughs when compared to a chemically acidified control. The impact of baker's yeast on thiol and peroxide levels was greater than the impact of lactobacilli. The depolymerization of gluten proteins was dependent on the free thiol content and dough acidification. Bread produced with the glutathione reductase deficient mutant strain had the highest specific volume compared with all the other groups.
Collapse
Affiliation(s)
- Dan Xu
- Department of Agricultural, Food and Nutritional Science , University of Alberta , Edmonton T6G 2P5 , Canada
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition , Jiangnan University , Wuxi 330047 , P. R. China
| | - Kaixing Tang
- Department of Agricultural, Food and Nutritional Science , University of Alberta , Edmonton T6G 2P5 , Canada
| | - Ying Hu
- Department of Agricultural, Food and Nutritional Science , University of Alberta , Edmonton T6G 2P5 , Canada
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition , Jiangnan University , Wuxi 330047 , P. R. China
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science , University of Alberta , Edmonton T6G 2P5 , Canada
- College of Bioengineering and Food Science , Hubei University of Technology , Wuhan 430068 , P. R. China
| |
Collapse
|
28
|
Exploiting synergies of sourdough and antifungal organic acids to delay fungal spoilage of bread. Int J Food Microbiol 2018; 302:8-14. [PMID: 30220438 DOI: 10.1016/j.ijfoodmicro.2018.09.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/02/2018] [Accepted: 09/08/2018] [Indexed: 11/22/2022]
Abstract
Fungal spoilage of bread remains an unsolved issue in bread making. This work aims to identify alternative strategies to conventional preservatives in order to prevent or delay fungal spoilage of bread. The minimum inhibitory concentration (MIC) of bacterial metabolites and chemical preservatives was evaluated in vitro, and compared to their in situ activity in baking trials. Calcium propionate, sorbic acid, 3-phenyllactic acid, ricinoleic acid, and acetic acid were tested both individually and in combination at their MIC values against Aspergillus niger and Penicillium roqueforti. The combination of acetic acid with propionate and sorbate displayed additive effects against the two fungi. For these reasons, we introduced sourdough fermentation with specific strains of lactobacilli, using wheat or flaxseed, in order to generate acetate in bread. A combination of Lactobacillus hammesii and propionate reduced propionate concentration required for shelf life extension of wheat bread 7-fold. Flaxseed sourdough bread fermented with L. hammesii, excluding any preservative, showed a shelf life 2 days longer than the control bread. The organic acid quantification indicated a higher production of acetic acid (33.8 ± 4.4 mM) when compared to other sourdough breads. Addition of 4% of sucrose to sourdough fermentation with L. brevis increased the mould free shelf-life of bread challenged with A. niger by 6 days. The combination of L. hammesii sourdough and the addition of ricinoleic acid (0.15% or 0.08%) prolonged the mould free shelf-life by 7-8 days for breads produced with wheat sourdoughs. In conclusion, the in vitro MIC of bacterial metabolites and preservatives matched the in situ antifungal effect. Of the different bacterial metabolites evaluated, acetic acid had the most prominent and consistent antifungal activity. The use of sourdough fermentation with selected strains able to produce acetic acid allowed reducing the use of chemical preservatives.
Collapse
|