1
|
Gupta RC, Doss RB. Toxicity Potential of Nutraceuticals. Methods Mol Biol 2025; 2834:197-230. [PMID: 39312167 DOI: 10.1007/978-1-0716-4003-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
During the past few decades and especially during and after the COVID-19 pandemic, the use of nutraceuticals has become increasingly popular in both humans and animals due to their easy access, cost-effectiveness, and tolerability with a wide margin of safety. While some nutraceuticals are safe, others have an inherent toxic potential. For a large number of nutraceuticals, no toxicity/safety data are available due to a lack of pharmacological/toxicological studies. The safety of some nutraceuticals can be compromised via contamination with toxic plants, metals, mycotoxins, pesticides, fertilizers, drugs of abuse, etc. Knowledge of pharmacokinetic/toxicokinetic studies and biomarkers of exposure, effect, and susceptibility appears to play a pivotal role in the safety and toxicity assessment of nutraceuticals. Interaction studies are essential to determine efficacy, safety, and toxicity when nutraceuticals and therapeutic drugs are used concomitantly or when polypharmacy is involved. This chapter describes various aspects of nutraceuticals, particularly their toxic potential, and the factors that influence their safety.
Collapse
Affiliation(s)
- Ramesh C Gupta
- Department of Toxicology, Murray State University, Breathitt Veterinary Center, Hopkinsville, KY, USA.
| | - Robin B Doss
- Department of Toxicology, Murray State University, Breathitt Veterinary Center, Hopkinsville, KY, USA
| |
Collapse
|
2
|
Wang YH. Naturally Occurring Polyhydroxylated Spirostanol Saponins, A Review of the Classification, Sources, Biosynthesis, Biological Activities, and Toxicity. Chem Biodivers 2025; 22:e202401720. [PMID: 39317680 DOI: 10.1002/cbdv.202401720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Polyhydroxylated spirostanol saponins, characterized by three or more hydroxy substitutions in the aglycone, have various interesting biological activities. In the present study, "steroids", "saponins", "polyhydroxylated", "spirostanol saponins", and "steroidal saponins" were used as search terms to screen the literature. Cited references were collected between 1950 and 2023 from the Web of Science, SciFinder, and China National Knowledge Internet (CNKI). A total of 407 polyhydroxylated spirostanol saponins were included in this review. These saponins were classified into three types, α, β, and γ. Polyhydroxylated spirostanol saponins have potential benefits, primarily anti-inflammatory, antimicrobial, cytotoxic, and cAMP phosphodiesterase inhibitory activities. These compounds were found in 11 plant families and 36 genera. The top three families containing the most saponins were Asparagaceae, Melanthiaceae, and Amaryllidaceae, and the top five genera were Trillium, Helleborus, Allium, Dracaena, and Paris. The top five plants were Trillium tschonoskii Maxim., Ypsilandra thibetica Franch., Paris polyphylla var. yunnanensis (Franch.)Hand.-Mazz., Helleborus thibetanus Franch., and Helleborus foetidus L. On the basis of their diverse biological activities, these saponins and related plant resources are worthy of further development and utilization.
Collapse
Affiliation(s)
- Yue-Hu Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| |
Collapse
|
3
|
Zhao Z, Hu C, Li L, Zhang J, Zhang L. Main chemical constituents and mechanism of anti-tumor action of Solanum nigrum L. Cancer Med 2024; 13:e7314. [PMID: 39155844 PMCID: PMC11331249 DOI: 10.1002/cam4.7314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 08/20/2024] Open
Abstract
OBJECTIVE Solanum nigrum L. (SNL) is a natural drugwith diverse bioactive components and multi-targeted anti-tumor effects, gaining increasing attention in clinical application. METHOD AND RESULTS This paper reviews the studies on SNL by searching academic databases (Google Scholar, PubMed, Science Direct,and Web of Science, among others), analyzing its chemical compositions (alkaloids, saponins, polysaccharides, and polyphenols, among others), andbriefly describes the anti-tumor mechanisms of the main components. DISCUSSION This paper discusses the shortcomings of the current research on SNL and proposes corresponding solutions, providing theoretical support for further research on its biological functions and clinical efficacy.
Collapse
Affiliation(s)
- Zhen‐duo Zhao
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Cheng Hu
- Experiment Center for Science and TechnologyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ling Li
- Institute of Vascular Anomalies, Shanghai TCM‐Integrated Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jia‐qi Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Li‐chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
4
|
Elattar MM, Hammoda HM, Ghareeb DA, Abdulmalek SA, Abdelrahim FA, Seif IAK, Dawood HM, Darwish RS. Insights into bioactive constituents of onion (Allium cepa L.) waste: a comparative metabolomics study enhanced by chemometric tools. BMC Complement Med Ther 2024; 24:271. [PMID: 39010091 PMCID: PMC11250982 DOI: 10.1186/s12906-024-04559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Onion waste was reported to be a valuable source of bioactive constituents with potential health-promoting benefits. This sparked a surge of interest among scientists for its valorization. This study aims to investigate the chemical profiles of peel and root extracts of four onion cultivars (red, copper-yellow, golden yellow and white onions) and evaluate their erectogenic and anti-inflammatory potentials. METHODS UPLC-QqQ-MS/MS analysis and chemometric tools were utilized to determine the chemical profiles of onion peel and root extracts. The erectogenic potential of the extracts was evaluated using the PDE-5 inhibitory assay, while their anti-inflammatory activity was determined by identifying their downregulating effect on the gene expression of IL-6, IL-1β, IFN-γ, and TNF-α in LPS-stimulated WBCs. RESULTS A total of 103 metabolites of diverse chemical classes were identified, with the most abundant being flavonoids. The organ's influence on the chemical profiles of the samples outweighed the influence of the cultivar, as evidenced by the close clustering of samples from the same organ compared to the distinct separation of root and peel samples from the same cultivar. Furthermore, the tested extracts demonstrated promising PDE-5 and anti-inflammatory potentials and effectively suppressed the upregulation of pro-inflammatory markers in LPS-stimulated WBCs. The anti-inflammatory activities exerted by peel samples surpassed those of root samples, highlighting the importance of selecting the appropriate organ to maximize activity. The main metabolites correlated with PDE-5 inhibition were cyanidin 3-O-(malonyl-acetyl)-glucoside and quercetin dimer hexoside, while those correlated with IL-1β inhibition were γ-glutamyl-methionine sulfoxide, γ-glutamyl glutamine, sativanone, and stearic acid. Taxifolin, 3'-hydroxymelanettin, and oleic acid were highly correlated with IL-6 downregulation, while quercetin 4'-O-glucoside, isorhamnetin 4'-O-glucoside, and p-coumaroyl glycolic acid showed the highest correlation to IFN-γ and TNF-α inhibition. CONCLUSION This study provides a fresh perspective on onion waste as a valuable source of bioactive constituents that could serve as the cornerstone for developing new, effective anti-PDE-5 and anti-inflammatory drug candidates.
Collapse
Affiliation(s)
- Mariam M Elattar
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Hala M Hammoda
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA- city), New Borg El Arab, Alexandria, Egypt
- Research Projects Unit, Pharos University, Alexandria, Egypt
| | - Shaymaa A Abdulmalek
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Fatma A Abdelrahim
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Inas A K Seif
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
5
|
Zhang Q, Liu D, Cui Y, Xu T, Lu T, Liu X, Liu K, Wang Q, Li A, Zhao P, Cheng Z. Bioactivities and chemical profiling comparison and metabolomic variations of polyphenolics and steroidal glycoalkaloids in different parts of Solanum nigrum L. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:350-368. [PMID: 37849391 DOI: 10.1002/pca.3294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Solanum nigrum L. is a traditional medicinal herb and edible plant. Many studies provide evidence that S. nigrum L. is a nutritious vegetable. Polyphenols and steroidal glycoalkaloids are the main components. OBJECTIVES This study aimed to systemically evaluate the phytochemical profile, quantification, and bioactivities of polyphenolics and glycoalkaloids in different parts of S. nigrum L. RESULTS Total polyphenols (TPC) and total glycoalkaloids (TGK) were determined using the Folin-Ciocalteu and acid dye colorimetric methods, respectively. A total of 55 polyphenolic constituents (including 22 phenolic acids and 33 flavonoids) and 24 steroidal glycoalkaloids were identified from different parts using ultrahigh-performance liquid chromatography Q-exactive high-resolution mass spectrometry (UHPLC-QE-HRMS), of which 40 polyphenols (including 15 phenolic acids and 25 flavonoids) and one steroidal glycoalkaloid were characterised for the first time in S. nigrum L. Moreover, typical polyphenols and glycoalkaloids were determined using HPLC-UV and HPLC-evaporative light-scattering detector (ELSD), respectively. In addition, the TPC and TGK and their typical constituents were compared in different anatomical parts. Finally, the antioxidant capacities of polyphenolic extracts from different parts of S. nigrum L. were evaluated by ·OH, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric-reducing antioxidant power (FRAP) assay in vitro. In addition, the antitumour effects of TGK from different parts of S. nigrum L. on the proliferation of PC-3 cells were investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Polyphenolic and glycoalkaloid extracts from different parts of S. nigrum L. showed different antioxidant and cytotoxic capacities in vitro. CONCLUSION This is the first study to systematically differentiate between polyphenolic and glycoalkaloid profiles from different parts of S. nigrum L.
Collapse
Affiliation(s)
- Qi Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Dongmei Liu
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yanru Cui
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Tongxin Xu
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Tiantian Lu
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Xiaoli Liu
- Zibo Center for Disease Control and Prevention, Zibo, China
| | - Kun Liu
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Quande Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Aiqian Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Pengfei Zhao
- Department of Clinical Pharmacy, Weifang People's Hospital, Weifang, China
| | - Zhongzhe Cheng
- School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
6
|
Emmanuela N, Muhammad DR, Iriawati, Wijaya CH, Ratnadewi YMD, Takemori H, Ana ID, Yuniati R, Handayani W, Wungu TDK, Tabata Y, Barlian A. Isolation of plant-derived exosome-like nanoparticles (PDENs) from Solanum nigrum L. berries and Their Effect on interleukin-6 expression as a potential anti-inflammatory agent. PLoS One 2024; 19:e0296259. [PMID: 38175845 PMCID: PMC10766179 DOI: 10.1371/journal.pone.0296259] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/09/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammation is a temporary response of the immune system that can be treated using common anti-inflammatory drugs. However, prolonged use of these drugs increases the risk of adverse side effects. Accordingly, there is an increasing need for alternative treatments for inflammation with fewer side effects. Exosomes are extracellular vesicles secreted by most eukaryotic cells and have been studied as a candidate for cell-free therapy for inflammatory diseases due to their immunomodulatory and anti-inflammatory properties. In recent years, the focus of exosome research has shifted from animal cell-derived exosomes to plant-derived exosome-like nanoparticles (PDENs). Plant-derived exosome-like nanoparticles (PDENs) are easier to obtain, have minimal safety concerns, and can be produced in higher quantities and lower cost than exosomes derived from animal cells. In this study, the isolation and analysis of the anti-inflammatory potential of PDENs from black nightshade berries (Solanum nigrum L.) were carried out. The results of isolation and characterization showed that PDENs had a spherical morphology, measuring around 107 nm with zeta potential of -0.6 mV, and had a protein concentration of 275.38 μg/mL. PDENs were also shown to be internalized by RAW264.7 macrophage cell line after 2 hours of incubation and had no cytotoxicity effect up to the concentration of 2.5 μg/mL. Furthermore, exposure to several doses of PDENs to the LPS-stimulated RAW264.7 cell significantly decreased the expression of pro-inflammatory cytokine gene IL-6, as well as the expression of IL-6 protein up to 97,28%. GC-MS analysis showed the presence of neral, a monoterpene compound with known anti-inflammatory properties, which may contribute to the anti-inflammatory activity of PDENs isolated from Solanum nigrum L. berries. Taken together, the present study was the first to isolate and characterize PDENs from Solanum nigrum L. berries. The results of this study also demonstrated the anti-inflammatory activity of PDEN by suppressing the production of IL-6 in LPS-stimulated RAW264.7 cells.
Collapse
Affiliation(s)
- Natasya Emmanuela
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | | | - Iriawati
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | | | | | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Ika Dewi Ana
- Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ratna Yuniati
- Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | - Windri Handayani
- Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | | | - Yasuhiko Tabata
- Department of Regeneration Science and Engineering Institute for Life and Medical Science (LiMe), Kyoto University, Kyoto, Japan
| | - Anggraini Barlian
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
- Research Center of Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
7
|
Li SW, Zhao YH, Gao WK, Zhang LH, Yu HY, Wu HH. Steroidal constituents from Solanum nigrum. Fitoterapia 2023; 169:105603. [PMID: 37421992 DOI: 10.1016/j.fitote.2023.105603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Three previously undescribed steroidal constituents including two sterols (1-2) and one pregnane-type steroidal glycoside (6), along with nineteen known ones (3-5, 7-22), were isolated from the 80% alcohol extraction of Solanum nigrum L. Their structures and the absolute configurations were established by analysis of the extensive spectroscopic data (1H/13 NMR, 1H1H COSY, HSQC, HMBC, and NOESY), and/or by comparisons of the experimental electronic circular dichroism (ECD) spectra with those calculated ones by TDDFT method. Further, a MTT assay was applied to demonstrate that compounds 1-4, 6-12, 18, and 22 exhibited significant cytotoxic activities against SW480 cells, and compounds 1-4, 6-14, and 16-22 showed significant cytotoxic activities against Hep3B cells.
Collapse
Affiliation(s)
- Shi-Wei Li
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China
| | - Yu-Heng Zhao
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China
| | - Wen-Ke Gao
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China
| | - Li-Hua Zhang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China
| | - Hai-Yang Yu
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China
| | - Hong-Hua Wu
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China.
| |
Collapse
|
8
|
Ye M, Lin X, Wang Q, Yang B, Wang C. Neuroprotective Iridoids and Lignans from Valeriana amurensis. Molecules 2023; 28:5793. [PMID: 37570763 PMCID: PMC10421132 DOI: 10.3390/molecules28155793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Valeriana amurensis (V. amurensis) is widely distributed in Northeast China. In addition to medicines, it has also been used to prepare food, wine, tobacco, cosmetics, perfume, and functional foods. Other studies have investigated the neuroprotective effects of V. amurensis extract. As the therapeutic basis, the active constituents should be further evaluated. In this paper, six new compounds (1-6) were isolated, including five iridoids (Xiecaoiridoidside A-E) and one bisepoxylignan (Xiecaolignanside A), as well as six known compounds (7-12). The neuroprotective effects of 1-12 were also investigated with amyloid β protein 1-42 (Aβ1-42)-induced injury to rat pheochromocytoma (PC12) cells. As a result, iridoids 1 and 2 and lignans 6, 8, and 9 could markedly maintain the cells' viability by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) and lactate dehydrogenase (LDH) release assay.
Collapse
Affiliation(s)
- Minhui Ye
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Guangzhou 510006, China
| | - Xiaoju Lin
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Guangzhou 510006, China
| | - Qiuhong Wang
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Guangzhou 510006, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, No. 24 HePing Road, Harbin 150040, China
| | - Changfu Wang
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
9
|
Deng J, Wang L, Jin Q, Zeng J, Xu J, He X, Wang Y. Anti-inflammatory steroids from the stems of Solanum nigrum L. PHYTOCHEMISTRY 2023; 210:113667. [PMID: 37011705 DOI: 10.1016/j.phytochem.2023.113667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Sixteen previously undescribed steroidal sapogenins along with two known ones were isolated from the stems of Solanum nigrum L. (Solanaceae). Their structures were identified using a combination of 1D and 2D NMR, HR-ESI-MS spectroscopy, the Mosher method, and X-ray diffraction analysis. Compounds 1-8 have an unusual F ring and 9-12 have a derived A ring, both of which are rare skeletons found in natural products. The biological evaluation showed that the isolated steroids exhibited inhibition of nitric oxide in the LPS-induced RAW 264.7 macrophages with IC50 values from 7.4 to 41.3 μM. Further studies revealed that compounds 6 and 10 exhibited anti-inflammatory activity by blocking the nuclear translocation of NF-κB, and down-regulating the expression of iNOS, COX-2, IL-1β, and IL-6 in a concentration-dependent manner. These results suggest that the stems of S. nigrum may serve as a source of anti-inflammatory agents for use in healthy or medicinal products.
Collapse
Affiliation(s)
- Junru Deng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qingyu Jin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China.
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Wang Y, Wang S, Xu J, Wang Y, Xiang L, He X. Total steroidal saponins from black nightshade (Solanum nigrum L.) overcome tumor multidrug resistance by inducing autophagy-mediated cell death in vivo and in vitro. Phytother Res 2023. [PMID: 36877123 DOI: 10.1002/ptr.7796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/18/2023] [Accepted: 02/11/2023] [Indexed: 03/07/2023]
Abstract
Multiple drug resistance (MDR) often occurs after prolonged chemotherapy, leading to refractory tumors and cancer recurrence. In this study, we demonstrated that the total steroidal saponins from Solanum nigrum L. (SN) had broad-spectrum cytotoxic activity against various human leukemia cancer cell lines, especially in adriamycin (ADR)-sensitive and resistant K562 cell lines. Moreover, SN could effectively inhibit the expression of ABC transporter in K562/ADR cells in vivo and in vitro. In vivo, by establishing K562/ADR xenograft tumor model, we demonstrated that SN might overcome drug resistance and inhibit the proliferation of tumors by regulating autophagy. In vitro, the increased LC3 puncta, the expression of LC3-II and Beclin-1, and the decreased expression of p62/SQSTM1 in SN-treated K562/ADR and K562 cells demonstrated autophagy induced by SN. Moreover, using the autophagy inhibitors or transfecting the ATG5 shRNA, we confirmed that autophagy induced by SN was a key factor in overcoming MDR thereby promoting cell death in K562/ADR cells. More importantly, SN-induced autophagy through the mTOR signaling pathway to overcome drug resistance and ultimately induced autophagy-mediated cell death in K562/ADR cells. Taken together, our findings suggest that SN has the potential to treat multidrug-resistant leukemia.
Collapse
Affiliation(s)
- Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Siyu Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Limin Xiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| |
Collapse
|
11
|
Wang S, Wang L, Xu J, Wang Y, Xiang L, He X. Synergistic Combination of the Total Steroidal Saponins from the Berries of Black Nightshade and Adriamycin to Overcome Leukemia Multidrug Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3315-3324. [PMID: 36752041 DOI: 10.1021/acs.jafc.2c07740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The berries of black nightshade (Solanum nigrum L.) are consumed as a favorite fruit in some regions and have been reported to possess a range of biological activities. Previous studies have found that the steroidal saponins from the berries of S. nigrum (SN) showed potential antileukemic activity, although the underlying mechanism remains to be revealed. This study investigated the effects and mechanisms of SN in combination with adriamycin to reverse leukemia multidrug resistance in vivo and in vitro. The results indicated that the combination of SN and adriamycin displayed enhanced suppression ability both in vitro and in vivo by the modulation of drug efflux proteins. Further study revealed that SN and adriamycin co-treatment induced cell apoptosis in K562/ADR cells through caspase pathways and autophagy through the PI3K/Akt/mTOR and MAPK signaling pathway. This study provides a new prospect of the berries of black nightshade in multidrug resistance therapy of cancer.
Collapse
Affiliation(s)
- Siyu Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Lutong Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Limin Xiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| |
Collapse
|
12
|
Solanum dulcamara L. Berries: A Convenient Model System to Study Redox Processes in Relation to Fruit Ripening. Antioxidants (Basel) 2023; 12:antiox12020346. [PMID: 36829905 PMCID: PMC9952312 DOI: 10.3390/antiox12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
The present study provides, for the first time, a physicochemical and biochemical characterization of the redox processes associated with the ripening of Solanum dulcamara L. (bittersweet) berries. Electron Paramagnetic Resonance Spectroscopy (EPRS) and Imaging (EPRI) measurements of reactive oxygen species (ROS) were performed in parallel with the tissue-specific metabolic profiling of major antioxidants and assessment of antioxidant enzymes activity. Fruit transition from the mature green (MG) to ripe red (RR) stage involved changes in the qualitative and quantitative content of antioxidants and the associated cellular oxidation and peroxidation processes. The skin of bittersweet berries, which was the major source of antioxidants, exhibited the highest antioxidant potential against DPPH radicals and nitroxyl spin probe 3CP. The efficient enzymatic antioxidant system played a critical protective role against the deleterious effects of progressive oxidative stress during ripening. Here, we present the EPRI methodology to assess the redox status of fruits and to discriminate between the redox states of different tissues. Interestingly, the intracellular reoxidation of cell-permeable nitroxide probe 3CP was observed for the first time in fruits or any other plant tissue, and its intensity is herein proposed as a reliable indicator of oxidative stress during ripening. The described noninvasive EPRI technique has the potential to have broader application in the study of redox processes associated with the development, senescence, and postharvest storage of fruits, as well as other circumstances in which oxidative stress is implicated.
Collapse
|
13
|
Liu D, Kikuchi T, Li W. Characterization and Comparison of Steroidal Glycosides from Polygonatum Species by High-Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020705. [PMID: 36677763 PMCID: PMC9862721 DOI: 10.3390/molecules28020705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Polygonatum species have been used as traditional medicines and functional foods in Asia and Europe since ancient times. In this study, a fast and simple method based on liquid chromatography coupled with electrospray ionization mass spectrometry (LC-ESI-MS) was developed to systematically analyze and identify the steroidal glycosides in four major Polygonatum species distributed in Japan, including P. odoratum, P. falcatum, P. macranthum, and P. sibiricum. As a result, 31 steroidal glycosides were tentatively identified, including 18 known and 13 previously unreported glycosides. Their structures were identified by the interpretation of chromatographic behavior and ESI-MS fragmentation patterns. The identification of 31 steroidal glycosides was indicative of a common biogenetic pathway in Polygonatum species. Our study disclosed the chemical profiling of steroidal glycosides in the plants of Polygonatum species, which will benefit better phytochemotaxonomical and phytochemical understanding and quality control for their medicinal usage.
Collapse
Affiliation(s)
| | | | - Wei Li
- Correspondence: (T.K.); (W.L.)
| |
Collapse
|
14
|
Liu T, Shao Q, Wang W, Ma Y, Liu T, Jin X, Fang J, Huang G, Chen Z. Integrating network pharmacology and experimental validation to decipher the mechanism of the Chinese herbal prescription JieZe-1 in protecting against HSV-2 infection. PHARMACEUTICAL BIOLOGY 2022; 60:451-466. [PMID: 35180012 PMCID: PMC8865133 DOI: 10.1080/13880209.2022.2038209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT The Chinese herbal prescription JieZe-1 (JZ-1) is effective against HSV-2 (Herpes simplex virus type 2) infection. However, its mechanism remains unclear. OBJECTIVE To explore the mechanism of JZ-1 in protecting against HSV-2 infection. MATERIALS AND METHODS Using the methods of network pharmacology, the hub components and targets were screened and functionally enriched. We established a genital herpes (GH) mouse model and observe the disease characteristics. Then, the GH mice in different groups (10 per/group) were treated with 20 μL JZ-1 gel (2.5, 1.5, and 0.5 g/mL), acyclovir gel (0.03 g/mL), or plain carbomer gel twice a day. The symptom score, vulvar histomorphology, and virus load were measured. The critical proteins of caspase-1-dependent pyroptosis were analysed by microscopy, co-immunoprecipitation, western blotting, and ELISA. Molecular docking was also performed. RESULTS Network pharmacology analysis identified 388 JZ-1 targets related to HSV-2 infection, with 36 hub targets and 21 hub components screened. The TCID50 of HSV-2 was 1 × 10-7/0.1 mL. JZ-1 gel (2.5 g/mL) can effectively reduce the symptom score (81.23%), viral load (98.42%) and histopathological changes, and significantly inhibit the proteins expression of caspase-1-dependent pyroptosis in GH mice (p< 0.05). The molecular docking test showed a good binding potency between 11 components and caspase-1 or interleukin (IL)-1β. DISCUSSION AND CONCLUSIONS The present study demonstrated that JZ-1 protected mice from HSV-2 infection and inhibit the caspase-1-dependent pyroptosis in GH mice. It is of significance for the second development of JZ-1 and the exploration of new drugs.
Collapse
Affiliation(s)
- Tong Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjia Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonggui Ma
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianli Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ximing Jin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianguo Fang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangying Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Qu X, Xie J, Zhang Y, Wang Z. Solamargine Alleviates Proliferation and Metastasis of Cervical Cancer Cells by Blocking the CXCL3-Mediated Erk Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7634754. [PMID: 36345403 PMCID: PMC9637034 DOI: 10.1155/2022/7634754] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/05/2022] [Accepted: 07/23/2022] [Indexed: 07/30/2023]
Abstract
Solamargine has unique antitumor efficacy in a variety of cancers. The study is to explore the role of solamargine in cervical cancer. HeLa and SiHa cells were exposed to solamargine treatment at divergent concentrations (0, 5, 10, and 20 μM). The antitumor role of solamargine in cervical cancer cells was determined by cell counting kit 8 (CCK-8), colony formation, scratch test, transwell assay, and western blot. The expression of mRNAs regulating the extracellular regulated protein kinases (Erk) pathway in solamargine-treated cells was detected by qRT-PCR. Rescue experiments were conducted to explore the effect of C-X-C motif chemokine ligand 3 (CXCL3). Following that, we inhibited Erk1/2 by PD98059 to investigate the interplay between CXCL3 and Erk pathway in solamargine-treated cells by measuring migration, invasion, and related matrix metalloproteinase (MMP) expressions. Solamargine inhibited the viability, proliferation, migration, and invasion of cervical cancer cells in a dose-dependent manner. The expression of p-Erk1/2 was downregulated by solamargine. CXCL3 overexpression abrogated the antitumor effect of solamargine on cervical cancer cells. The inhibition of the Erk signaling pathway restored the inhibiting role of solamargine which interfered with CXCL3 overexpression, in invasion, migration, and expressions of MMP-2 and MMP-9 in cervical cancer cells. Moreover, solamargine inhibited the growth of tumor in vivo xenograft model. Solamargine alleviated proliferation and metastasis of cervical cancer cells by blocking the CXCL3-mediated Erk signaling pathway.
Collapse
Affiliation(s)
- Xiangdong Qu
- Department of Gynecology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jirong Xie
- Department of Obstetrics and Gynecology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Youyang Zhang
- Department of Obstetrics and Gynecology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Zhimin Wang
- Department of Integrated Traditional Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
16
|
Chen X, Dai X, Liu Y, Yang Y, Yuan L, He X, Gong G. Solanum nigrum Linn.: An Insight into Current Research on Traditional Uses, Phytochemistry, and Pharmacology. Front Pharmacol 2022; 13:918071. [PMID: 36052142 PMCID: PMC9424827 DOI: 10.3389/fphar.2022.918071] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Solanum nigrum Linn., is a common edible medicinal herb of the Solanaceae family which is native to Southeast Asia and is now widely distributed in temperate to tropical regions of Europe, Asia, and America. Traditionally, it has been used to treat various cancers, acute nephritis, urethritis, leucorrhea, sore throat, toothache, dermatitis, eczema, carbuncles, and furuncles. Up to now, 188 chemical constituents have been identified from S. nigrum. Among them, steroidal saponins, alkaloids, phenols, and polysaccharides are the major bioactive constituents. Investigations of pharmacological activities of S. nigrum revealed that this edible medicinal herb exhibits a wide range of therapeutic potential, including antitumor, anti-inflammatory, antioxidant, antibacterial, and neuroprotective activities both in vivo and in vitro. This article presents a comprehensive and systematic overview of the botanical, traditional uses, phytochemical compositions, pharmacological properties, clinical trials, and toxicity of S. nigrum to provide the latest information for further exploitation and applications of S. nigrum in functional foods and medicines.
Collapse
Affiliation(s)
- Xufei Chen
- Department of Anesthesiology, The General Hospital of the Western Theater Command, Chengdu, China
| | - Xufen Dai
- Shaanxi Institute for Food and Drug Control, Xi’an, China
| | - Yinghai Liu
- Department of Anesthesiology, The General Hospital of the Western Theater Command, Chengdu, China
| | - Yan Yang
- Department of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Libang Yuan
- Department of Anesthesiology, The General Hospital of the Western Theater Command, Chengdu, China
| | - Xirui He
- Department of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
- *Correspondence: Xirui He, ; Gu Gong,
| | - Gu Gong
- Department of Anesthesiology, The General Hospital of the Western Theater Command, Chengdu, China
- *Correspondence: Xirui He, ; Gu Gong,
| |
Collapse
|
17
|
Bai M, Zhang Q, Hou ZL, Li C, Zhou WY, Yao GD, Huang XX, Song SJ. Chemical constituents from Solanum nigrum and their neuroprotective activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:703-712. [PMID: 34585635 DOI: 10.1080/10286020.2021.1978987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Ten compounds (1-10) including four new compounds (1-4) and six known compounds (5-10) were isolated from Solanum nigrum. Their structures were elucidated on the basis of spectroscopic data, gauge-including atomic orbital (GIAO) calculation of NMR data, DP4+ probability analysis and comparison of their experimental and calculated electronic circular dichroism (ECD) spectral data. All the isolated compounds were tested for their neuroprotective activities against H2O2-induced damage in SH-SY5Y cells. Among them, compounds 1, 5 and 7 displayed moderate neuroprotective effects.
Collapse
Affiliation(s)
- Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qian Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zi-Lin Hou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chuan Li
- General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Wei-Yu Zhou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
18
|
Lin HJ, Mahendran R, Huang HY, Chiu PL, Chang YM, Day CH, Chen RJ, Padma VV, Liang-Yo Y, Kuo WW, Huang CY. Aqueous extract of Solanum nigrum attenuates Angiotensin-II induced cardiac hypertrophy and improves cardiac function by repressing protein kinase C-ζ to restore HSF2 deSUMOlyation and Mel-18-IGF-IIR signaling suppression. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114728. [PMID: 34634367 DOI: 10.1016/j.jep.2021.114728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum nigrum, commonly known as Makoi or black shade has been traditionally used in Asian countries and other regions of world to treat liver disorders, diarrhoea, inflammatory conditions, chronic skin ailments (psoriasis and ringworm), fever, hydrophobia, painful periods, eye diseases, etc. It has been observed that S. nigrum contains substances, like steroidal saponins, total alkaloid, steroid alkaloid, and glycoprotein, which show anti-tumor activity. However; there is no scientific evidence of the efficacy of S. nigrum in the treatment of cardiac hypertrophy. AIM To investigate the ability of S. nigrum to attenuate Angiotensin II - induced cardiac hypertrophy and improve cardiac function through the suppression of protein kinase PKC-ζ and Mel-18-IGF-IIR signaling leading to the restoration of HSF2 desumolyation. MATERIALS AND METHODS Cardiomyoblast cells (H9c2) were challenged with 100 nM Angiotensin-II (AngII) for 24 h and were then treated with different concentration of S.nigrum or Calphostin C for 24 h. The hypertrophic effect in cardiomyoblast cells were determined by immunofluorescence staining and the modulations in hypertrophic protein marker along with Protein Kinase C-ζ, MEL18, HSF2, and Insulin like growth factor II (IGFIIR), markers were analyzed by western blotting. In vivo experiments were performed using 12 week old male Wistar Kyoto rats (WKY) and Spontaneously hypertensive rats (SHR) separated into five groups. [1]Control WKY, [2] WKY -100 mg/kg of S.nigrum treatment, [3] SHR, [4] SHR-100 mg/kg of S.nigrum treatment, [5] SHR-300 mg/kg of S.nigrum treatment. S. nigrum was administered intraperitoneally for 8 week time interval. RESULTS Western blotting results indicate that S. nigrum significantly attenuates AngII induced cardiac hypertrophy. Furthermore, actin staining confirmed the ability of S. nigrum to ameliorate AngII induced cardiac hypertrophy. Moreover, S. nigrum administration suppressed the hypertrophic signaling mediators like Protein Kinase C-ζ, Mel-18, and IGFIIR in a dose-dependent manner and HSF2 activation (restore deSUMOlyation) that leads to downregulation of IGF-IIR expression. Additionally in vivo experiments demonstrate the reduced heart sizes of S. nigrum treated SHRs rats when compared to control WKY rats. CONCLUSION Collectively, the data reveals the cardioprotective effect of S. nigrum inhibiting PKC-ζ with alleviated IGF IIR level in the heart that profoundly remits cardiac hypertrophy for hypertension-induced heart failure.
Collapse
Affiliation(s)
- Hung-Jen Lin
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ramasamy Mahendran
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Hsiang-Yen Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, 40402, Taiwan, ROC
| | - Ping-Ling Chiu
- Ept Douliu Chinese Medical Clinic, Douliu, Taiwan; 1PT Biotechnology Co., Ltd., Taichung, Taiwan
| | - Yung-Ming Chang
- 1PT Biotechnology Co., Ltd., Taichung, Taiwan; The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Cecilia Hsuan Day
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Yang Liang-Yo
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan; Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichuang, 406, Taiwan; Ph.D. Program for Biotechnology Industry, China Medical University, Taichuang, 406, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichuang, 406, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan.
| |
Collapse
|
19
|
Wang Y, Xu J, Wang Y, Xiang L, He X. S-20, a steroidal saponin from the berries of black nightshade, exerts anti-multidrug resistance activity in K562/ADR cells through autophagic cell death and ERK activation. Food Funct 2022; 13:2200-2215. [PMID: 35119449 DOI: 10.1039/d1fo03191k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) is a major cause of chemotherapy failure. Adriamycin (ADR) has been widely used to treat cancer, however, as a substrate of the adenosine triphosphate binding cassette (ABC) transporter, it is easy to develop drug resistance during the treatment. Here, we demonstrated that steroidal saponin S-20 isolated from the berries of black nightshade has comparable cytotoxicity in ADR-sensitive and resistant K562 cell lines. Autophagy is generally considered to be a protective mechanism to mediate MDR during treatment. However, we found that S-20-induced cell death in K562/ADR is associated with autophagy. We further explored the underlying mechanisms and found that S-20 induces caspase-dependent apoptosis in ADR-sensitive and resistant K562 cell lines. Most importantly, S-20-induced autophagy activates the ERK pathway and then inhibits the expression of drug resistance protein, which is the main reason to overcome K562/ADR resistance, rather than apoptosis. Taken together, our findings emphasize that S-20 exerts anti-multidrug resistance activity in K562/ADR cells through autophagic cell death and ERK activation, which may be considered as an effective strategy.
Collapse
Affiliation(s)
- Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| | - Limin Xiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| |
Collapse
|
20
|
Popova I, Sell B, Pillai SS, Kuhl J, Dandurand LM. High-Performance Liquid Chromatography-Mass Spectrometry Analysis of Glycoalkaloids from Underexploited Solanum Species and Their Acetylcholinesterase Inhibition Activity. PLANTS (BASEL, SWITZERLAND) 2022; 11:269. [PMID: 35161249 PMCID: PMC8839269 DOI: 10.3390/plants11030269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 01/18/2023]
Abstract
Solanum glycoalkaloids are gaining increased scientific attention due to their bioactive potential in the defense of plants against pests and pathogens. The comprehensive glycoalkaloid profiling from the leaves, stems, and roots of seven underexploited Solanum species (S. caripense, S. melanocerasum, S. muricatum, S. nigrum, S. quitoense, S. retroflexum, and S. sisymbriifolium) was conducted using high-performance liquid chromatography-time-of-flight mass spectrometry. A total of 51 glycoalkaloids were shared among the studied Solanum species, with concentrations ranging from 7 to 5.63 × 105 ng g-1. Based on the glycoalkaloid composition, plants were separated into two clusters, Cluster 1 (S. melanocerasum, S. nigrum, and S. retroflexum) and Cluster 2 (S. caripense, S. muricatum, S. quitoense, and S. sisymbriifolium). The inhibition activity of glycoalkaloid extracts on acetylcholinesterase showed a half-maximal inhibitory concentration (IC50), ranging from 0.4 (S. nigrum stems) to 344.9 µg mL-1 (S. sisymbriifolium leaves), that was not directly correlated to the total glycoalkaloid contents. This suggests that the composition of glycoalkaloids in the plant extract, rather than the total concentration, is a driver of biological activity. The study provides a framework for the bioprospecting of underexploited Solanum species for exploring bioactive glycoalkaloids and other compounds with potential pesticidal activities for the development of green bioformulation. This is the first comprehensive report on the glycoalkaloid profiles of S. retroflexum.
Collapse
Affiliation(s)
- Inna Popova
- Department of Soil & Water Systems, University of Idaho, 875 Perimeter Drive MS 2340, Moscow, ID 83844-2340, USA;
| | - Belinda Sell
- Department of Soil & Water Systems, University of Idaho, 875 Perimeter Drive MS 2340, Moscow, ID 83844-2340, USA;
| | - Syamkumar Sivasankara Pillai
- Department of Entomology, Plant Pathology & Nematology, University of Idaho, 875 Perimeter Drive MS 2340, Moscow, ID 83844-2329, USA; (S.S.P.); (L.-M.D.)
| | - Joseph Kuhl
- Department of Plant Sciences, University of Idaho, 875 Perimeter Drive MS 2333, Moscow, ID 83844-2340, USA;
| | - Louise-Marie Dandurand
- Department of Entomology, Plant Pathology & Nematology, University of Idaho, 875 Perimeter Drive MS 2340, Moscow, ID 83844-2329, USA; (S.S.P.); (L.-M.D.)
| |
Collapse
|
21
|
Chauhan N, Porte S, Joshi V, Shah K. Plants' steroidal saponins - A review on its pharmacology properties and analytical techniques. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.353503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Bilawal A, Ishfaq M, Gantumur MA, Qayum A, Shi R, Fazilani SA, Anwar A, Jiang Z, Hou J. A review of the bioactive ingredients of berries and their applications in curing diseases. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Structure, Bioactivity and Analytical Methods for the Determination of Yucca Saponins. Molecules 2021; 26:molecules26175251. [PMID: 34500685 PMCID: PMC8433717 DOI: 10.3390/molecules26175251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/23/2023] Open
Abstract
Yucca is one of the main sources of steroidal saponins, hence different extracts are commercialized for use as surfactant additives by beverage, animal feed, cosmetics or agricultural products. For a deeper understanding of the potential of the saponins that can be found in this genus, an exhaustive review of the structural characteristics, bioactivities and analytical methods that can be used with these compounds has been carried out, since there are no recent reviews on the matter. Thus, a total of 108 saponins from eight species of the genus Yucca have been described. Out of these, the bioactivity of 68 saponins derived from the isolation of Yucca or other genera has been evaluated. Regarding the evaluation and quality control of the saponins from this genus LC-MS technique is the most often used. Nevertheless, the development of methods for their routine analysis in commercial preparations are needed. Moreover, most of the studies found in the literature have been carried out on Y. schidigera extract, since is the most often used for commercial purposes. Only eight of the 50 species that belong to this genus have been studied, which clearly indicates that the identification of saponins present in Yucca genus is still an unresolved question.
Collapse
|
24
|
Marahatha R, Gyawali K, Sharma K, Gyawali N, Tandan P, Adhikari A, Timilsina G, Bhattarai S, Lamichhane G, Acharya A, Pathak I, Devkota HP, Parajuli N. Pharmacologic activities of phytosteroids in inflammatory diseases: Mechanism of action and therapeutic potentials. Phytother Res 2021; 35:5103-5124. [PMID: 33957012 DOI: 10.1002/ptr.7138] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022]
Abstract
Natural products and their derivatives are known to be useful for treating numerous diseases since ancient times. Because of their high therapeutic potentials, the use of different medicinal plants is possible to treat varied inflammation-mediated chronic diseases. Among natural products, phytosteroids have emerged as promising compounds mostly because they have diverse pharmacological activities. Currently, available medications exert numerous systemic toxicities, including hypertension, immune suppression, osteoporosis, and metabolic abnormalities. Thus, further research on phytosteroids to subside these complications is of significant importance. In this study, the information on phytosteroids, their types, and actions against inflammation, and allergic complications was collected by a systematic survey of literature on several scientific search engines. The literature review suggested that phytosteroids exhibit antiinflammatory action via different modes through transrepression or selective COX-2 enzymes. Also, in silico ADMET analysis was carried out on available phytosteroids to uncover their pharmacokinetic properties. Our analysis has shown that eight compounds: withaferin A, stigmasterol, β-sitosterol, guggulsterone, diosgenin, sarsasapogenin, physalin A, and dioscin, -isolated from medicinal plants show similar pharmacokinetic properties as compared to dexamethasone, commercially available glucocorticoid. These phytosteroids could be useful for the treatment of inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, asthma, and cardiovascular diseases. Thus, systematic research is required to explore potent phytosteroids with lesser side effects, which might substitute the current medications.
Collapse
Affiliation(s)
- Rishab Marahatha
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Kabita Gyawali
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Kabita Sharma
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Narayan Gyawali
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Parbati Tandan
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Ashma Adhikari
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Grishma Timilsina
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Salyan Bhattarai
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Canada
| | - Ganesh Lamichhane
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Ashis Acharya
- Central Department of Geology, Tribhuvan University, Kirtipur, Nepal
| | - Ishwor Pathak
- Department of Chemistry, Amrit Campus, Tribhuvan University, Thamel, Nepal
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| |
Collapse
|
25
|
Patel B, Sharma S, Nair N, Majeed J, Goyal RK, Dhobi M. Therapeutic opportunities of edible antiviral plants for COVID-19. Mol Cell Biochem 2021; 476:2345-2364. [PMID: 33587232 PMCID: PMC7882868 DOI: 10.1007/s11010-021-04084-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/25/2021] [Indexed: 01/05/2023]
Abstract
The pandemic of Serious Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) that produces corona virus disease (COVID-19) has challenged the entire mankind by rapidly spreading globally in 210 countries affecting over 25 million people and about 1 million deaths worldwide. It continues to spread, afflicting the health system globally. So far there is no remedy for the ailment and the available antiviral regimens have been unsatisfactory for the clinical outcomes and the mode of treatment has been mainly supportive for the prevention of COVID-19-induced morbidity and mortality. From the time immortal the traditional plant-based ethno-medicines have provided the leads for the treatment of infectious diseases. Phytopharmaceuticals have provided potential and less toxic antiviral drugs as compared to conventional modern therapeutics which are associated with severe toxicities. The ethnopharmacological knowledge about plants has provided food supplements and nutraceuticals as a promise for prevention and treatment of the current pandemic. In this review article, we have attempted to comprehend the information about the edible medicinal plant materials with potential antiviral activity specifically against RNA virus which additionally possess property to improve immunity along with external and internal respiration and exhibit anti-inflammatory properties for the prevention and treatment of the disease. This will open an arena for the development of novel nutraceutical herbal formulations as an alternative therapy that can be used for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Bhoomika Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Supriya Sharma
- Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Nisha Nair
- Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Jaseela Majeed
- Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Ramesh K Goyal
- Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Mahaveer Dhobi
- Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| |
Collapse
|
26
|
Yang M, Wang Y, Patel G, Xue Q, Singor Njateng GS, Cai S, Cheng G, Kai G. In vitro and in vivo anti-inflammatory effects of different extracts from Epigynum auritum through down-regulation of NF-κB and MAPK signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113105. [PMID: 32590114 DOI: 10.1016/j.jep.2020.113105] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epigynum auritum has been historically used as a "dai" or traditional medicine for the treatment of inflammation, swelling and severe pain during injury; these may reduce risk of disease and lead to healthier aging. Apart from this, Epigynum auritum extract was also used in arhritis treatment which is also a type of inflammation. Previous phytochemical studies of E. auritum revealed that steroids are main characteristic components with a number of biological activities (especially immunosuppressive and anti-inflammatory activity) Nevertheless, the underlying mechanism of the E. auritum on inflammatory diseases is still unresolved. AIM OF THE STUDY This study aimed to comparatively investigate the anti-inflammatory potential of different fractions from the extract of E. auritum (EAE), with their possible active ingredients to reveal the underlying mechanism. MATERIALS AND METHODS The EAE was fractionated by column chromatography with macroporous resin D101 which yielded six fractions. The potential anti-inflammatory properties of different fractions of EAE were evaluated in in vitro and in vivo model. The lipopolysaccharide (LPS)-induced RAW264.7 macrophages cells were used for in vitro studies however two typical acute inflammation murine models (xylene-induced ear edema and carrageenan-induced paw edema) were used for anti-inflammatory studies. The important molecular mechanisms related to inflammation were also analyzed by ELISA, western blotting and immunofluorescence. UHPLC-MS/MS was used to analyze the chemical composition of 100% EAE fraction. RESULTS Different EAE fractions (especially the Fr. 100% of MeOH:H2O) significantly reduced the productions of NO, ROS, TNF-α, and IL-6 by LPS-induced RAW264.7 macrophages and increased the expression of IL-10. The expression levels of iNOS and COX-2 enzymes were significantly down-regulated by 100% EAE fraction. Furthermore, 100% EAE fraction inhibited the phosphorylation of the ERK1/2, JNK, and p38 MAPK, and reduced the nuclear translocation of NF-κB which prevents its activation by blocking the phosphorylation and degradation of inhibitor protein of IκBα. In addition two inflammatory animal models; xylene-induced ear edema and carrageenan-stimulated paw edema were also developed with significantly ameliorated inflammatory cytokines. The treatment of these inflammatory models with 100% EAE fraction (Fr. 100%) suppressed the expressions of elevated inflammatory cytokines. Besides the UHPLC-HRMS/MS analysis was also carried out in which the androstane analogues were found to be as a main chemical components. CONCLUSION Different fractions (especially Fr. 100%) exert inhibitory effect on inflammation by regulating the release of inflammatory mediators through the NF-κB and MAPK signaling pathways. The androstane and its derivatives might be performing an important role in the observed anti-inflammatory activity. Therefore, Fr. 100% of EAE could be applied as a potential drug candidate for the prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Meilian Yang
- The Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yudan Wang
- The Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China; Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming, 650500, People's Republic of China
| | - Gopal Patel
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, People's Republic of China
| | - Guy Sedar Singor Njateng
- Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Shengbao Cai
- The Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Guiguang Cheng
- The Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Guoyin Kai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.
| |
Collapse
|
27
|
Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine – A review. Carbohydr Polym 2020; 241:116345. [DOI: 10.1016/j.carbpol.2020.116345] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022]
|
28
|
Yang Z, Song Q, Cao Z, Yu G, Liu Z, Tan Z, Deng Y. Design, synthesis and evaluation of flurbiprofen-clioquinol hybrids as multitarget-directed ligands against Alzheimer’s disease. Bioorg Med Chem 2020; 28:115374. [DOI: 10.1016/j.bmc.2020.115374] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
|
29
|
Anti-proliferative and anti-neuroinflammatory eudesmanolides from Wedelia (Sphagneticola trilobata (L.) Pruski). Fitoterapia 2020; 142:104452. [DOI: 10.1016/j.fitote.2019.104452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 11/21/2022]
|
30
|
Li Q, Wang Y, Mai Y, Li H, Wang Z, Xu J, He X. Health Benefits of the Flavonoids from Onion: Constituents and Their Pronounced Antioxidant and Anti-neuroinflammatory Capacities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:799-807. [PMID: 31893634 DOI: 10.1021/acs.jafc.9b07418] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Onion is the most widely cultivated vegetable around the world. In this study, the isolation, concentration, quantification, and bioactivity evaluation of the phenolics in onion peels were investigated. Thirty-four phenolics, including 17 flavonoids and 17 nonflavonoid phenolics, were purified and identified. Among them, there were 2 new unusual epoxyflavanones and a new phenolic constituent, as well as 13 unreported constituents from the genus Allium. The total flavonoids were concentrated, and finally obtained 90.25% of flavonoid content extract. Fifteen main flavonoids were quantified using an ultra-performance liquid chromatography-photodiode array (UPLC-PDA), and quercetin (36.94%) and quercetin 4'-O-β-d-glucopyranoside (15.81%) were the richest contents of flavonoids. The antioxidant and anti-neuroinflammatory capacities were evaluated, and the bioactive results indicated that the flavonoids in onion exhibited pronounced activities. The study suggested that the flavonoids in onion peels could be used in functional food.
Collapse
Affiliation(s)
- Qiulin Li
- School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Yihai Wang
- School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou 510006 , China
- Guangdong Engineering Research Center for Lead Compounds & Drug Discovery , Guangzhou 510006 , China
| | - Yongxin Mai
- School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Haiyan Li
- School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Zhe Wang
- School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Jingwen Xu
- School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou 510006 , China
- Guangdong Engineering Research Center for Lead Compounds & Drug Discovery , Guangzhou 510006 , China
| | - Xiangjiu He
- School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou 510006 , China
- Guangdong Engineering Research Center for Lead Compounds & Drug Discovery , Guangzhou 510006 , China
| |
Collapse
|
31
|
Xiao L, Huang Y, Wang Y, Xu J, He X. Anti-neuroinflammatory benzofurans and lignans from Praxelis clematidea. Fitoterapia 2020; 140:104440. [DOI: 10.1016/j.fitote.2019.104440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 11/25/2022]
|
32
|
Steroidal alkaloid glycosides and phenolics from the immature fruits of Solanum nigrum. Fitoterapia 2019; 137:104268. [DOI: 10.1016/j.fitote.2019.104268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 11/17/2022]
|
33
|
Zhang S, Huang Y, Li Y, Wang Y, He X. Anti-neuroinflammatory and antioxidant phenylpropanoids from Chinese olive. Food Chem 2019; 286:421-427. [DOI: 10.1016/j.foodchem.2019.02.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/30/2018] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
|
34
|
|
35
|
Tai BH, Van Doan V, Yen PH, Nhiem NX, Cuc NT, Trang DT, Hang DTT, Dung DT, Yen DTH, Quang TH, Dang NH, Mai NT, Van Minh C, Van Kiem P. Two New Steroidal Alkaloid Saponins from the Whole Plants of Solanum nigrum. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Two new steroidal alkaloid saponins, solanigrosides Q and R (1 and 2), together with four known compounds khasianine (3), solamargine (4), solasonine (5), and soladulcoside A (6) were isolated from the whole plants of Solanum nigrum. The structures of new compounds (1 and 2) were determined by interpretation of HR-ESI-MS, 1D and 2D NMR spectra, and chemical transformation. Compound 4 exhibited potent cytotoxic activity against MDA-MB-231, A549, Hep3B, PC3 human cancer cell lines with IC50 values of 1.86 ± 0.45, 2.24 ± 0.15, 0.78 ± 0.11, 5.13 ± 1.34 μM, respectively.
Collapse
Affiliation(s)
- Bui Huu Tai
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Vu Van Doan
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Pham Hai Yen
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Xuan Nhiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Thi Cuc
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Do Thi Trang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Dan Thi Thuy Hang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Duong Thi Dung
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Duong Thi Hai Yen
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Tran Hong Quang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Hai Dang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Thi Mai
- University of Transport and Communications, 3 Cau Giay, Dong Da, Hanoi, Viet Nam
| | - Chau Van Minh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Phan Van Kiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
36
|
Lei Y, Huang Y, Wang Y, He X. Potential anti-neuroinflammatory triterpenoids isolated from Chinese acorns (Quercus serrata var. brevipetiolata). J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
37
|
Zhao L, Wang L, Di SN, Xu Q, Ren QC, Chen SZ, Huang N, Jia D, Shen XF. Steroidal alkaloid solanine A from Solanum nigrum Linn. exhibits anti-inflammatory activity in lipopolysaccharide/interferon γ-activated murine macrophages and animal models of inflammation. Biomed Pharmacother 2018; 105:606-615. [PMID: 29890469 DOI: 10.1016/j.biopha.2018.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
Solanine A is a novel steroidal alkaloid isolated from Solanum nigrum Linn., a medicinal and edible plant which is widely used for treating various inflammatory diseases. In this study, we found that solanine A markedly suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide/interferon-γ (LPS/IFNγ)-stimulated RAW264.7 cells, and attenuated xylene, carrageenan and agar-induced inflammation in mice. The mRNA levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and -1β (IL-1β), as well as C-X-C motif chemokine ligand-9 (CXCL9), were significantly decreased by solanine A. Furthermore, solanine A also suppressed LPS/IFNγ-induced protein expression of iNOS and COX2. Mechanistically, solanine A inhibited the nuclear translocation of nuclear factor-κB (NF-κB) through the prevention of NF-κB p65 and inhibitory κB-α (IκBα) phosphorylation and IκBα degradation, and it also suppressed activation of extracellular regulated protein kinases (ERK), signal transducers and activators of transcription-1 (STAT1) and serine/threonine protein kinase Akt in LPS/IFNγ-stimulated RAW264.7 macrophages and agar-induced granuloma model in mice. Taken together, solanine A exhibits a potent anti-inflammatory activity in LPS/IFNγ- activated macrophages and animal models of inflammation through inhibition of NF-κB, ERK1/2, Akt and STAT1 signaling pathways, suggesting that solanine A may be a valuable leading compound in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Suo-Ni Di
- Institute of Traditional Chinese Medicine, The 451st Hospital of People's Liberation Army, Xi'an, China
| | - Qian Xu
- Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qing-Cuo Ren
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shan-Ze Chen
- Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ning Huang
- Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiao-Fei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
38
|
Xiang L, Wang Y, Yi X, He X. Anti-inflammatory steroidal glycosides from the berries of Solanum nigrum L. (European black nightshade). PHYTOCHEMISTRY 2018; 148:87-96. [PMID: 29421515 DOI: 10.1016/j.phytochem.2018.01.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 06/08/2023]
Abstract
Seven previously undescribed steroidal glycosides, along with three known congeners were isolated from the unripe berries of Solanum nigrum L. (Solanaceae). Their structures were elucidated on basis of 1D and 2D NMR, HR-ESI-MS spectroscopic data and GC analysis after acid hydrolysis. The potential inhibitory effects on nitric oxide (NO) production induced by lipopolysaccharide in RAW 264.7 cell line and the anti-proliferative activities against five cancer cell lines (HL-60, U-937, Jurkat, K562 and HepG2) were evaluated. Seven compounds exhibited inhibition activities on NO production with IC50 values ranging from 11.33 to 49.35 μM. Structure-activity relationships of the isolated compounds were also discussed.
Collapse
Affiliation(s)
- Limin Xiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Xiaomin Yi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China.
| |
Collapse
|
39
|
Abstract
By the turn of the twenty-first century, the use of nutraceuticals became increasingly popular in both humans and animals due to their easy access, cost-effectiveness, and tolerability with a wide margin of safety. While some nutraceuticals are safe, others have a toxic potential. For a large number of nutraceuticals, no toxicity/safety data are available due to a lack of pharmacological/toxicological studies. The safety of some nutraceuticals can be compromised via contamination with toxic plants, metals, mycotoxins, pesticides, fertilizers, drugs of abuse, etc. Knowledge of pharmacokinetic/toxicokinetic studies appears to play a pivotal role in safety and toxicity assessment of nutraceuticals. Interaction studies are essential to determine efficacy, safety, and toxicity when nutraceuticals and therapeutic drugs are used concomitantly. This chapter describes various aspects of nutraceuticals, particularly their toxic potential, and the factors influencing their safety.
Collapse
|
40
|
Lei R, Yan Z, Hu F, Zhu S, Xiong Y, Fan X. Rapid identification of quarantine invasive Solanum elaeagnifoliumby real-time, isothermal recombinase polymerase amplification assay. RSC Adv 2017. [DOI: 10.1039/c7ra10781a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An easy-to-implement strategy to identifySolanum elaeagnifoliumby utilizing recombinase polymerase amplification (RPA) technology was developed.
Collapse
Affiliation(s)
- Rong Lei
- Chinese Academy of Inspection and Quarantine
- Beijing
- China
| | - Zhengyue Yan
- Fang Cheng Gang Entry-Exit Inspection and Quarantine Bureau
- China
| | - Fan Hu
- Chinese Academy of Inspection and Quarantine
- Beijing
- China
| | - Shuifang Zhu
- Chinese Academy of Inspection and Quarantine
- Beijing
- China
| | - Yufen Xiong
- Chinese Academy of Inspection and Quarantine
- Beijing
- China
| | - Xiaohong Fan
- Chinese Academy of Inspection and Quarantine
- Beijing
- China
| |
Collapse
|