1
|
Liu M, Ke M, Lu H, Feng Z, Wang K, Wang D, Wang K, Bai Y, Yang S, Miao L, Chen Q, Sun M, Shan C, Hu J, Jiang L, Jin H, Hu J, Huang C, Wang R, Zhao W, Yu F. A novel cinnamic acid derivative for hepatocellular carcinoma therapy by degrading METTL16 protein. Bioorg Med Chem 2025; 124:118178. [PMID: 40186923 DOI: 10.1016/j.bmc.2025.118178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
The RNA methyltransferase methyltransferaselike protein 16 (METTL16) is upregulated in a large proportion of hepatocellular carcinoma (HCC), and its high expression is associated with poor clinical outcomes. METTL16 deletion inhibits HCC growth in vitro and in vivo. Referencing the structure of cinnamic acid, here we designed and synthesized a novel series of small molecular compounds, and found through bioactivity screening that compound 15a effectively reduced METTL16 level and modulated oncogenic PI3K/AKT pathway signaling. Compound 15a inhibited the proliferation and migration of HepG2 cells, and induced apoptosis in vitro. Furthermore, compound 15a significantly inhibited the growth of patient-derived HCC xenografts in nude mice with greater efficacy than the multi-kinase inhibitor lenvatinib. The promising efficacy and good biosafety profile of compound 15a enables us to further develop this compound for treating patients with HCC and possibly other cancers in clinic.
Collapse
Affiliation(s)
- Mingyang Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Muyan Ke
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Hongchen Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Ziyu Feng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Kaixuan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Danyang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Kun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yueping Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China; Qingdao Central Hospital, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, No. 369 Dengyun Road, Qingdao 266113, China
| | - Song Yang
- Qingdao Central Hospital, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, No. 369 Dengyun Road, Qingdao 266113, China
| | - Lu Miao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Qiang Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Mingming Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China.
| | - Jiancheng Hu
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore.
| | - Lingyu Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Hongzhen Jin
- Qingdao Central Hospital, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, No. 369 Dengyun Road, Qingdao 266113, China
| | - Jinfang Hu
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Tiancheng Drug Assessment Co., Ltd, Tianjin 300193, Chinaa.
| | - Changjiang Huang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Tiancheng Drug Assessment Co., Ltd, Tianjin 300193, Chinaa.
| | - Rui Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China.
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China; Qingdao Central Hospital, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, No. 369 Dengyun Road, Qingdao 266113, China; Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China.
| | - Fan Yu
- Qingdao Central Hospital, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, No. 369 Dengyun Road, Qingdao 266113, China.
| |
Collapse
|
2
|
Burhanoğlu T, Halbutoğulları ZS, Turhal G, Demiroglu-Zergeroglu A. Evaluation of the anticancer effects of hydroxycinnamic acid isomers on breast cancer stem cells. Med Oncol 2025; 42:73. [PMID: 39932626 PMCID: PMC11814044 DOI: 10.1007/s12032-025-02618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
Research on breast cancer stem cells (BCSCs) is crucial for improving our understanding of their roles in tumor resistance, metastasis, and relapse. This study investigated the anti-cancer effects of two isomers of hydroxycinnamic acids (HCA): para-coumaric acid (PCA) and ortho-coumaric acid (OCA) on breast cancer stem cells (BCSCs). The isolated and characterized stem cells contained CD44 + /CD24 surface markers, exhibited high levels of aldehyde dehydrogenase activity, and were able to form mammospheres. The evaluation of HCAs on stem cell proliferation, cell cycle, and apoptosis was conducted by comparing them with MCF-7, the luminal breast cancer cell line. The viability and immunoblot analyses demonstrated that HCA applications resulted in a dose-dependent decrease in the number of viable cells and inhibited phosphorylation of Extracellular regulated kinases 1/2 (ERK1/2). These findings were supported by the detection of suppressed colony formation and delayed wound-healing in HCA-exposed cells. E-cadherin expression increased in OCA-treated cells. Additionally, the arrest of G1/S phase progression and the downregulation of Cyclin D1 expression exhibited that OCA and PCA-induced cytostatic effects in BSCS cells. After treatment, the increased Annexin-V/7-AAD staining, along with elevated expression of caspase-3/7 and a decreased Bcl-2/Bax ratio, indicated apoptosis mediated by the activation of Janus kinase (JNK) and p38 Mitogen-activated kinase (p38 MAPK). In conclusion, both OCA and PCA exhibit anti-carcinogenic potential on BCSCs; However, OCA has a stronger effect and is becoming a promising candidate for further research.
Collapse
Affiliation(s)
- Tülin Burhanoğlu
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli, Turkey.
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey.
| | - Zehra Seda Halbutoğulları
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Gulseren Turhal
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Asuman Demiroglu-Zergeroglu
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
3
|
Karakuş S, Başçıl E, Tok F, Erdoğan Ö, Çevik Ö, Başoğlu F. Synthesis, biological evaluation and molecular docking studies of novel 1,3,4-thiadiazoles as potential anticancer agents and human carbonic anhydrase inhibitors. Mol Divers 2024; 28:3801-3815. [PMID: 38123787 DOI: 10.1007/s11030-023-10778-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Thiosemicarbazide and also 1,3,4-thiadiazole derivatives have been garnering substantial attention from researchers worldwide due to their expansive range of biological activities, encompassing antimicrobial, anti-inflammatory, and anticancer properties. Herein, we embarked on a comprehensive investigation in this study, introducing a novel series of thiosemicarbazides (3a-3i) and their corresponding 1,3,4-thiadiazole (4a-4i) derivatives. The compounds were meticulously designed, synthesized, and subjected to meticulous characterization using various spectroscopic methods such as FT-IR, 1H-NMR, 13C-NMR, and elemental analysis. Afterward, their potential anti-proliferative effectiveness was assessed using MTT assay against two cancer cell lines (U87 and HeLa) and normal fibroblast cells (L929). Among the compounds, 4d showed the highest cytotoxic activity against U87 and 4i against HeLa. Compound 3b exhibited selective cytotoxic activity against both cancer cells. Among the molecules with selective activity against the U87 cell line; 3a, 3b, 4d and 4e were further evaluated by caspase-3 activity levels, Bax and Bcl-2 protein expression, and total oxidant status assay. Besides, carbonic anhydrase IX activity studies were also performed in order to understand the underlying mechanism of action. The results indicated that compound 4e showed higher efficacy than standard acetazolamide (IC50 = 0.58 ± 0.02 µM) with an IC50 value of 0.03 ± 0.01 µM. Furthermore, molecular docking studies were carried out using carbonic anhydrase IX crystals to determine the compound's interactions with the enzyme's active sites. This comprehensive investigation sheds light on the intricate interplay between molecular structure and biological activity, providing valuable insights into the therapeutic potential of these compounds.
Collapse
Affiliation(s)
- Sevgi Karakuş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, 34854, Istanbul, Türkiye
| | - Elif Başçıl
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, 34854, Istanbul, Türkiye
| | - Fatih Tok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, 34854, Istanbul, Türkiye.
| | - Ömer Erdoğan
- Department of Medical Biochemistry, Faculty of Medicine, Gaziantep Islam Science and Technology University, 27010, Gaziantep, Türkiye
| | - Özge Çevik
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, 09010, Aydın, Türkiye
| | - Faika Başoğlu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, European University of Lefke, Northern Cyprus TR-10, Mersin, Türkiye.
| |
Collapse
|
4
|
Móricz ÁM, Baglyas M, Darcsi A, Balla J, Morlock GE. New Antioxidant Caffeate Esters of Fatty Alcohols Identified in Robinia pseudoacacia. Molecules 2024; 29:5673. [PMID: 39683834 DOI: 10.3390/molecules29235673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The stem bark of black locust (Robinia pseudoacacia L.) was extracted, and nine antioxidant compounds (R1-R9) were detected by high-performance thin-layer chromatography combined with the radical scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH•) assay, multi-detection, and heated electrospray high-resolution mass spectrometry. For structure elucidation, the methanolic crude extract was fractionated by solid-phase extraction, and the compounds were isolated by reversed-phase high-performance liquid chromatography with diode array detection. The structures of isolated compounds were elucidated by nuclear magnetic resonance and attenuated total reflectance Fourier-transform infrared spectroscopy as well as gas chromatography-mass spectrometry to determine the double bond position. 3-O-Caffeoyl oleanolic acid (R1), oleyl (R2), octadecyl (R3), gadoleyl (R4), eicosanyl (R5), (Z)-9-docosenyl (R6), docosyl (R7), tetracosyl (R8), and hexacosanyl (R9) caffeates were identified. While R1 has been reported in R. pseudoacacia stem bark, the known R3, R5, R7, R8, and R9 are described for the first time in this species, and the R2, R4, and R6 are new natural compounds. All nine caffeates demonstrated antioxidant activity. The antioxidant effects of the isolated compounds R1-R8 were quantified by a microplate DPPH• assay, with values ranging from 0.29 to 1.20 mol of caffeic acid equivalents per mole of isolate.
Collapse
Affiliation(s)
- Ágnes M Móricz
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Fehérvári út 132-144, 1116 Budapest, Hungary
| | - Márton Baglyas
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Fehérvári út 132-144, 1116 Budapest, Hungary
- Doctoral School, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary
| | - András Darcsi
- Pharmaceutical Chemistry and Technology Department, National Center for Public Health and Pharmacy, Szabolcs utca 33, 1135 Budapest, Hungary
| | - József Balla
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - Gertrud E Morlock
- Institute of Nutritional Science, Chair of Food Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
5
|
Fási L, Gonda T, Tóth N, Vass M, Gyovai A, Nagy V, Ocsovszki I, Zupkó I, Kúsz N, Nové M, Spengler G, Berkecz R, Wang HC, Chang FR, Hunyadi A. Preparation of Dearomatized p-Coumaric Acid Derivatives as DNA Damage Response Inhibitors with Potent In Vitro Antitumor Effect. ChemMedChem 2024; 19:e202300675. [PMID: 38923384 DOI: 10.1002/cmdc.202300675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Our research group previously identified graviquinone (1) as a promising antitumor metabolite that is formed in situ when the antioxidant methyl caffeate scavenges free radicals. Furthermore, it exerted a DNA damaging effect on cancer cells and a DNA protective effect on normal keratinocytes. To expand and explore chemical space around qraviquinone, in the current work we synthesized 9 new alkyl-substituted derivatives and tested their in vitro antitumor potential. All new compounds bypassed ABCB1-mediated multidrug resistance and showed highly different cell line specificity compared with 1. All compounds were more potent in MDA-MB-231 than on MCF-7 cells. The n-butyl-substituted derivatives 2 and 8 modulated the cell cycle and inhibited the ATR-mediated phosphorylation of checkpoint kinase-1 in MCF-7 cells. As a significant expansion of our previous findings, our results highlight the potential antitumor value of alkyl-substituted graviquinone derivatives.
Collapse
Affiliation(s)
- Laura Fási
- Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
- Graduate Institute of Natural Products, Kaohsiung Medical University, Shih-Chuan 1st Rd. 100, Kaohsiung, 807, Taiwan R.O.C
| | - Tímea Gonda
- Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
| | - Noémi Tóth
- Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
| | - Máté Vass
- Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
| | - András Gyovai
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
| | - Viktória Nagy
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
| | - Imre Ocsovszki
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm sq. 9, H-6720, Szeged, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
| | - Norbert Kúsz
- Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
| | - Márta Nové
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis str. 6, H-6725, Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis str. 6, H-6725, Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, University of Szeged, Somogyi str. 4, H-6720, Szeged, Hungary
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Shih-Chuan 1st Rd. 100, Kaohsiung, 807, Taiwan R.O.C
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Shih-Chuan 1st Rd. 100, Kaohsiung, 807, Taiwan R.O.C
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
- HUN-REN-SZTE Biologically Active Natural Products Research Group, Eötvös str. 6, H-6720, Szeged, Hungary
- Interdisciplinary Centre for Natural Products, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
| |
Collapse
|
6
|
Vieira Melo AK, da Nóbrega Alves D, Queiroga Gomes da Costa PC, Pereira Lopes S, Pergentino de Sousa D, Queiroga Sarmento Guerra F, Vieira Sobral M, Gomes Moura AP, Scotti L, Dias de Castro R. Antifungal Activity, Mode of Action, and Cytotoxicity of 4-Chlorobenzyl p-Coumarate: A Promising New Molecule. Chem Biodivers 2024; 21:e202400330. [PMID: 38701178 DOI: 10.1002/cbdv.202400330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Fungal infections represent a serious health problem worldwide. The study evaluated the antifungal activity of 4-chlorobenzyl p-coumarate, an unprecedented semi-synthetic molecule. Docking molecular and assay experiments were conducted to determine the Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC), mode of action, effect on growth, fungal death kinetics, drug association, effects on biofilm, micromorphology, and against human keratinocytes. The investigation included 16 strains of Candida spp, including C. albicans, C. krusei, C. glabrata, C. tropicalis, C. dubliniensis, C. lusitaniae, C. utilis, C. rugosa, C. guilhermondi, and C. parapsilosis. Docking analysis predicted affinity between the molecule and all tested targets. MIC and MFC values ranged from 3.9 μg/mL (13.54 μM) to 62.5 μg/mL (217.01 μM), indicating a probable effect on the plasma membrane. The molecule inhibited growth from the first hour of testing. Association with nystatin proved to be indifferent. All concentrations of the molecule reduced fungal biofilm. The compound altered fungal micromorphology. The tested compound exhibited an IC50 of 7.90±0.40 μg/mL (27.45±1.42 μM) for keratinocytes. 4-chlorobenzyl p-coumarate showed strong fungicidal effects, likely through its action on the plasma membrane and alteration of fungal micromorphology, and mildly cytotoxic to human keratinocytes.
Collapse
Affiliation(s)
- Ana Karoline Vieira Melo
- Department of Clinical and Social Dentistry, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Danielle da Nóbrega Alves
- Department of Clinical and Social Dentistry, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil, Lauro Wanderley University Hospital, 58050-585, João Pessoa, PB, Brazil
| | | | - Susiany Pereira Lopes
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Felipe Queiroga Sarmento Guerra
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Marianna Vieira Sobral
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Ana Paula Gomes Moura
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Ricardo Dias de Castro
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| |
Collapse
|
7
|
Cho J, Jung H, Kang DY, Sp N, Shin W, Lee J, Park BG, Kang YA, Jang KJ, Bae SW. The Skin-Whitening and Antioxidant Effects of Protocatechuic Acid (PCA) Derivatives in Melanoma and Fibroblast Cell Lines. Curr Issues Mol Biol 2023; 45:2157-2169. [PMID: 36975508 PMCID: PMC10047566 DOI: 10.3390/cimb45030138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The skin is the most voluminous organ of the human body and is exposed to the outer environment. Such exposed skin suffers from the effects of various intrinsic and extrinsic aging factors. Skin aging is characterized by features such as wrinkling, loss of elasticity, and skin pigmentation. Skin pigmentation occurs in skin aging and is caused by hyper-melanogenesis and oxidative stress. Protocatechuic acid (PCA) is a natural secondary metabolite from a plant-based source widely used as a cosmetic ingredient. We chemically designed and synthesized PCA derivatives conjugated with alkyl esters to develop effective chemicals that have skin-whitening and antioxidant effects and enhance the pharmacological activities of PCA. We identified that melanin biosynthesis in B16 melanoma cells treated with alpha-melanocyte-stimulating hormone (α-MSH) is decreased by PCA derivatives. We also found that PCA derivatives effectively have antioxidant effects in HS68 fibroblast cells. In this study, we suggest that our PCA derivatives are potent ingredients for developing cosmetics with skin-whitening and antioxidant effects.
Collapse
Affiliation(s)
- Jaehoon Cho
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Hyeonbi Jung
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Republic of Korea
| | - Nipin Sp
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Wooshik Shin
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Junhak Lee
- R&D Center, ACTIVON Co., Ltd., Cheongju 28104, Republic of Korea
| | - Byung Gyu Park
- R&D Center, ACTIVON Co., Ltd., Cheongju 28104, Republic of Korea
| | - Yoon A Kang
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Republic of Korea
- Correspondence: (K.-J.J.); (S.W.B.)
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
- Correspondence: (K.-J.J.); (S.W.B.)
| |
Collapse
|
8
|
Lahlou RA, Samba N, Soeiro P, Alves G, Gonçalves AC, Silva LR, Silvestre S, Rodilla J, Ismael MI. Thymus hirtus Willd. ssp. algeriensis Boiss. and Reut: A Comprehensive Review on Phytochemistry, Bioactivities, and Health-Enhancing Effects. Foods 2022; 11:3195. [PMID: 37430944 PMCID: PMC9601415 DOI: 10.3390/foods11203195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Members of the Lamiaceae family are considered chief sources of bioactive therapeutic agents. They are important ornamental, medicinal, and aromatic plants, many of which are used in traditional and modern medicine and in the food, cosmetic, and pharmaceutical industries. In North Africa, on the Mediterranean side, there is the following particularly interesting Lamiaceous species: Thymus hirtus Willd. sp. Algeriensis Boiss. Et Reut. The populations of this endemic plant are distributed from the subhumid to the lower arid zone and are mainly employed as ethnomedicinal remedies in the following Maghreb countries: Algeria, Libya, Morocco, and Tunisia. In fact, they have been applied as antimicrobial agents, antispasmodics, astringents, expectorants, and preservatives for several food products. The species is commonly consumed as a tea or infusion and is used against hypercholesterolemia, diabetes, respiratory ailments, heart disease, and food poisoning. These medicinal uses are related to constituents with many biological characteristics, including antimicrobial, antioxidant, anticancer, anti-ulcer, anti-diabetic, insecticidal, and anti-inflammatory activities. This review aims to present an overview of the botanical characteristics and geographical distribution of Thymus algeriensis Boiss. Et Reut and its traditional uses. This manuscript also examines the phytochemical profile and its correlation with biological activities revealed by in vitro and in vivo studies.
Collapse
Affiliation(s)
- Radhia Aitfella Lahlou
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
- Biology Department, Faculty of Sciences, University of M’Hamed Bougara, Boumerdes 35000, Algeria
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Nsevolo Samba
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Pedro Soeiro
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Carolina Gonçalves
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação Para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Samuel Silvestre
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-517 Coimbra, Portugal
| | - Jesus Rodilla
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Maria Isabel Ismael
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
9
|
Inhibitory Potential of Chemical Constituents from Paeonia suffruticosa Against α-Glucosidase and α-Amylase. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Production of bioactive compounds from callus of Pueraria thomsonii Benth with promising cytotoxic and antibacterial activities. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
11
|
Lopes R, Costa M, Ferreira M, Gameiro P, Fernandes S, Catarino C, Santos-Silva A, Paiva-Martins F. Caffeic acid phenolipids in the protection of cell membranes from oxidative injuries. Interaction with the membrane phospholipid bilayer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183727. [PMID: 34400139 DOI: 10.1016/j.bbamem.2021.183727] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/21/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022]
Abstract
Caffeic acid (CA) has demonstrated a strong intracellular antioxidant ability by scavenging ROS, contributing to the maintenance of cell membrane structural integrity and to reduce oxidative injuries in other cell components. Nevertheless, caffeic acid has limited usage, due to its hydrophilic character. In this work, the introduction of alkyl chains in the caffeic acid molecule by esterification (methyl - C1, ethyl - C2, butyl - C4, hexyl - C6, octyl - C8 and hexadecyl - C16), significantly increased its lipophilicity. All caffeates tested showed a much higher protective activity than caffeic acid against red blood cells (RBCs) AAPH-induced oxidative stress; this protection was heavily dependent on the length of the alkyl chain of the esters, and on their concentration. At 2.5 and 5 μM, the more lipophilic compounds (C8 and C16) showed a remarkable antioxidant activity, inhibiting hemolysis; probably, their better location within the membrane leads to a better antioxidative protection; however, at 50 μM, the more hydrophilic compounds (C1-C4) showed a better activity against hemolysis than the more lipophilic ones (C8-C16). At this higher concentration, the better interaction of the more lipophilic compounds with the membrane seems to cause changes in RBC membrane fluidity, disturbing membrane integrity. Our data show that the antioxidant activity of these compounds could play an important role for the protection of different tissues and organs, by protecting cell membranes from oxidative injuries.
Collapse
Affiliation(s)
- Rafaela Lopes
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, Porto, Portugal
| | - Marlene Costa
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, Porto, Portugal
| | - Mariana Ferreira
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, Porto, Portugal
| | - Paula Gameiro
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, Porto, Portugal
| | - Sara Fernandes
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, Porto, Portugal
| | - Cristina Catarino
- REQUIMTE/UCIBIO, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Alice Santos-Silva
- REQUIMTE/UCIBIO, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, Porto, Portugal.
| |
Collapse
|
12
|
Da Rosa RB, Borsoi G, Conter LU, Feistel C, Gottems AL, Reginatto FH, Grivicich I, De Barros Falcão Ferraz A. Bioguided isolation of a selective compound from Calea phyllolepis leaves against breast cancer cells. Basic Clin Pharmacol Toxicol 2021; 130:20-27. [PMID: 34605186 DOI: 10.1111/bcpt.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022]
Abstract
Plants of the Calea genus have been reported to contain lipophilic compounds, such as sesquiterpene lactones, with cytotoxic effect against different cancer cell lines. The aim of this manuscript was to investigate the chemical profile and cytotoxic activity of different fractions from Calea phylolepis leaves on different human cancer cell lines. The fractions were prepared using solvent extraction of increasing polarity, yielding hexane, ethyl acetate and methanolic fractions. All fractions were chemically analysed by thin layer chromatography (TLC), and their cytotoxic activity against HT-29 (colon adenocarcinoma), MCF-7 (breast cancer), U-251MG (malignant glioblastoma) and L929 (mouse fibroblast) cell lines was investigated. Among these, the hexane and ethyl acetate fractions showed higher cytotoxic effects, while the methanolic fraction did not show any cytotoxic effects. The major bioactive compound from the hexane fraction (12.15%) was isolated using chromatographic methods and was identified by nuclear magnetic resonance spectroscopy (NMR) and gas chromatography-mass spectrometry (GC-MS) analysis as 6-epi-β-verbesinol coumarate. This compound showed activity against breast cancer cells (IC50 = 5.8 ± 1.0 μg/ml), similar to etoposide. Furthermore, 6-epi-β-verbesinol coumarate showed low cytotoxicity to normal fibroblast cells, suggesting a high selectivity index (SI = 7.39) against breast cancer cells.
Collapse
Affiliation(s)
- Rodrigo Bitencourt Da Rosa
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaude), Universidade Luterana do Brasil, Canoas, Brazil
| | - Guilherme Borsoi
- Programa de Iniciação Científica e Tecnológica, Universidade Luterana do Brasil, Canoas, Brazil
| | - Lucas Umpierre Conter
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaude), Universidade Luterana do Brasil, Canoas, Brazil
| | - Cleverson Feistel
- Programa de Iniciação Científica e Tecnológica, Universidade Luterana do Brasil, Canoas, Brazil
| | | | - Flávio Henrique Reginatto
- Programa de Pós-graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ivana Grivicich
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaude), Universidade Luterana do Brasil, Canoas, Brazil
| | - Alexandre De Barros Falcão Ferraz
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaude), Universidade Luterana do Brasil, Canoas, Brazil
| |
Collapse
|
13
|
Aquino FLTD, Silva JPD, Ferro JNDS, Lagente V, Barreto E. trans-Cinnamic acid, but not p-coumaric acid or methyl cinnamate, induces fibroblast migration through PKA- and p38-MAPK signalling pathways. J Tissue Viability 2021; 30:363-371. [PMID: 34052086 DOI: 10.1016/j.jtv.2021.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/17/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
AIM Hydroxycinnamic acids their derivatives have various pharmacological properties. The hydroxycinnamic acid derivatives, methyl cinnamate, trans-cinnamic, and p-coumaric acids have been the object of study in the treatment of skin wounds. However, it is unclear whether these derivatives exert a direct beneficial effect on fibroblast function. In this study, we evaluated the effects of methyl cinnamate, trans-cinnamic, and p-coumaric acids on fibroblast migration in vitro. MATERIALS AND METHODS NIH 3T3 and L929 fibroblast cell lines were exposed to each drug at several concentrations and the effect on cell viability, cell cycle, and extracellular matrix production were assessed by MTT assay, flow cytometry, and immunofluorescence staining, respectively. The effect on cell migration was examined using scratch assay. RESULTS The results showed that hydroxycinnamic acid derivatives not affect cell viability, but increase fibroblast migration in the in vitro scratch-wound healing assay. They also induced an increase in S and G2/M phases accompanied by a decrease in the G0/G1 phase of the cell cycle. The cell proliferation inhibitor mitomycin C abolished the effect induced by p-coumaric acid and methyl cinnamate, indicating that only the trans-cinnamic acid stimulated migration. A transwell migration assay confirmed that trans-cinnamic acid-treated fibroblasts exhibited increased migration compared with untreated cells. trans-Cinnamic acid-induced fibroblast migration was decreased by PKA inhibitor and p38-MAPK inhibitor but not by JNK inhibitor. Additionally, trans-cinnamic acid-treated fibroblasts showed an increase in the production of laminin and collagen type I. CONCLUSION Our study showed that trans-cinnamic acid improves fibroblast migration and modulates extracellular matrix synthesis, indicating its potential for accelerating the healing process.
Collapse
Affiliation(s)
| | | | | | - Vincent Lagente
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Université de Rennes, INSERM, INRA, F-35000, Rennes, France
| | - Emiliano Barreto
- Laboratory of Cell Biology, Federal University of Alagoas, 57072-900, Maceió, Brazil.
| |
Collapse
|
14
|
Grajales-Hernández DA, Armendáriz-Ruiz MA, Gallego FL, Mateos-Díaz JC. Approaches for the enzymatic synthesis of alkyl hydroxycinnamates and applications thereof. Appl Microbiol Biotechnol 2021; 105:3901-3917. [PMID: 33928423 DOI: 10.1007/s00253-021-11285-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/21/2021] [Accepted: 04/07/2021] [Indexed: 01/05/2023]
Abstract
Alkyl hydroxycinnamates (AHs) is a group of molecules of biotechnological interest due to their cosmetic, food, and pharmaceutical applications. Among their most interesting uses are as UV protectants, skin depigmentation agents, and antioxidant ingredients which are often claimed for their antitumoral potential. Nowadays, many sustainable enzymatic approaches using low-cost starting materials are available and interesting immobilization techniques are helping to increase the reuse of the biocatalysts, allowing the intensification of the processes and increasing AHs accessibility. Here a convenient summary of AHs most interesting biological activities and possible applications is presented. A deeper analysis of the art state to obtain AHs, focusing on most employed enzymatic synthesis approaches, their sustainability, acyl donors relevance, and most interesting enzyme immobilization strategies is provided.Key points• Most interesting alkyl hydroxycinnamates applications are summarized.• Enzymatic approaches to obtain alkyl hydroxycinnamates are critically discussed.• Outlook of enzyme immobilization strategies to attain alkyl hydroxycinnamates.
Collapse
Affiliation(s)
- Daniel A Grajales-Hernández
- Department of Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero 1227, El Bajio del Arenal, 45019, Zapopan, Jal., Mexico
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CICbiomaGUNE), Basque Research and Technology Alliance (BRTA), Paséo Miramón, 182, 20014, Donostia-San Sebastián, Spain
| | - Mariana A Armendáriz-Ruiz
- Department of Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero 1227, El Bajio del Arenal, 45019, Zapopan, Jal., Mexico
| | - Fernando López Gallego
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CICbiomaGUNE), Basque Research and Technology Alliance (BRTA), Paséo Miramón, 182, 20014, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain
| | - Juan Carlos Mateos-Díaz
- Department of Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero 1227, El Bajio del Arenal, 45019, Zapopan, Jal., Mexico.
| |
Collapse
|
15
|
Pardo-Mora DP, Murillo OJ, Rey-Buitrago M, Losada-Barragán M, Uribe JFC, Santiago KB, Conti BJ, Cardoso EDO, Conte FL, Gutiérrez RM, García OT, Sforcin JM. Apoptosis-related gene expression induced by Colombian propolis samples in canine osteosarcoma cell line. Vet World 2021; 14:964-971. [PMID: 34083947 PMCID: PMC8167511 DOI: 10.14202/vetworld.2021.964-971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Background and Aim Osteosarcoma (OSA) is the most common bone tumor in canines and humans. This study aimed to assess the cytotoxic and apoptotic effects of Colombian propolis samples on a canine OSA cell line (OSCA-8) by evaluating the expression of BCL-2, BAX, CASPASE 9, CASPASE 8, and TNFR1 genes involved in the apoptosis pathway. Materials and Methods After treating the cells with five Colombian propolis samples (Usm, Met, Fus, Sil, and Caj), we evaluated cell viability and lactate dehydrogenase (LDH) release. Early and late apoptosis was determined by flow cytometry using annexin V/propidium iodide. Furthermore, the effects of three selected samples on gene expression were analyzed by real-time polymerase chain reaction. Results The Colombian propolis samples reduced OSCA-8 cell viability and increased LDH release. All samples induced apoptosis significantly and upregulated BCL-2 and CASPASE 8 expression. Usm and Sil increased BAX expression, Met and Sil induced CASPASE 9 expression, and Usm increased TNFR1. Conclusion Colombian propolis samples exhibited cytotoxic and apoptotic effects on canine OSA cells, and CASPASE 8 upregulation indicated apoptosis induction by the extrinsic pathway.
Collapse
Affiliation(s)
- Dolly Patricia Pardo-Mora
- Department of Animal Health, Facultad de Medicina Veterinaria, Universidad Antonio Nariño, Bogotá, Colombia
| | - Oscar Julián Murillo
- Department of Morphology, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Mauricio Rey-Buitrago
- Department of Animal Health, Facultad de Medicina Veterinaria, Universidad Antonio Nariño, Bogotá, Colombia.,Department of Morphology, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Mónica Losada-Barragán
- Department of Animal Health, Facultad de Medicina Veterinaria, Universidad Antonio Nariño, Bogotá, Colombia
| | - Jaime Fabian Cruz Uribe
- Department of Animal Health, Facultad de Medicina Veterinaria, Universidad Antonio Nariño, Bogotá, Colombia
| | - Karina Basso Santiago
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Institute of Biosciences, Campus Botucatu, Brazil
| | - Bruno José Conti
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Institute of Biosciences, Campus Botucatu, Brazil
| | - Eliza de Oliveira Cardoso
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Institute of Biosciences, Campus Botucatu, Brazil
| | - Fernanda Lopes Conte
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Institute of Biosciences, Campus Botucatu, Brazil
| | - Rafael María Gutiérrez
- Department of Animal Health, Facultad de Medicina Veterinaria, Universidad Antonio Nariño, Bogotá, Colombia
| | - Orlando Torres García
- Department of Animal Health, Facultad de Medicina Veterinaria, Universidad Antonio Nariño, Bogotá, Colombia
| | - José Maurício Sforcin
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Institute of Biosciences, Campus Botucatu, Brazil
| |
Collapse
|
16
|
Gholampour M, Seradj H, Pirhadi S, Khoshneviszadeh M. Novel 2-amino-1,4-naphthoquinone hybrids: Design, synthesis, cytotoxicity evaluation and in silico studies. Bioorg Med Chem 2020; 28:115718. [PMID: 33065435 DOI: 10.1016/j.bmc.2020.115718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/04/2020] [Accepted: 08/16/2020] [Indexed: 12/24/2022]
Abstract
In the present work, a novel series of 2-amino-1,4-naphthoquinones bearing oxyphenyl moiety (5a-5m) were designed and synthesized via a two-step route and evaluated for their in vitro cytotoxic activity against three different cancer cell lines (MCF-7, HL-60 and U937) and normal human cell line (HEK-293) by MTT assay. Compounds 5b (4-nitro-benzyl-) and 5k (4-bromo-benzyl-) were identified to possess the highest cytotoxic activity against MCF-7 cancerous cells (IC50 values of 27.76 and 27.86 μM, respectively). At the same time, none of the compounds exert significant toxicity against HEK-293 normal human kidney cells. Cell cycle analysis showed that the selected derivatives increased the population of MCF-7 cells in the S phase at 25 and 50 μM concentrations. Annexin V-FITC/PI staining assay also confirmed that compounds 5b and 5k induced apoptosis in the cell death pathway. Molecular docking and molecular dynamics studies were also performed to evaluate the probable interactions between the hybrids and human ATP binding domain of topo IIα protein. Our findings may provide new insight for further development of novel naphthoquinone-containing compounds.
Collapse
Affiliation(s)
- Maryam Gholampour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Seradj
- Department of Pharmacognosy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Hadavand Mirzaei H, Jassbi AR, Pirhadi S, Firuzi O. Study of the mechanism of action, molecular docking, and dynamics of anticancer terpenoids from Salvia lachnocalyx. J Recept Signal Transduct Res 2020; 40:24-33. [PMID: 31913736 DOI: 10.1080/10799893.2019.1710847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Among specialized metabolites, terpenoids are well-known for their cytotoxic activity. Several of them have been isolated from sage plants and assayed for their potential therapeutic use against cancer. In this study, we report the effects of three potent anticancer terpenoids previously isolated from Salvia lachnocalyx, including geranyl farnesol (1), sahandinone (2), and 4-dehydrosalvilimbinol (3) on cancer cell cycle alterations and reactive oxygen species (ROS) production. Interactions of compounds 1-3 with topoisomerase I were also investigated by using molecular docking and dynamics simulation. Accumulation of cells in sub-G1 phase of the cell cycle indicated that all tested compounds induce apoptosis in MOLT-4 cancer cells. Measurement of ROS production demonstrated that this mechanism is not involved in the induction of apoptosis. We suggest topoisomerase I inhibition as the mechanism of cytotoxic activity of compounds 1-3 based on docking and molecular dynamics (MD) calculations. These natural terpenoids could be considered as good candidates for further development as anticancer agents.
Collapse
Affiliation(s)
- Hossein Hadavand Mirzaei
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
The Modulating Effect of p-Coumaric Acid on The Surface Charge Density of Human Glioblastoma Cell Membranes. Int J Mol Sci 2019; 20:ijms20215286. [PMID: 31653017 PMCID: PMC6862159 DOI: 10.3390/ijms20215286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/17/2023] Open
Abstract
p-Coumaric acid (p-CoA), a phenolic acid belonging to the hydroxycinnamic acids family, is a compound with tentative anticancer potential. Microelectrophoretic mobility measurements conducted at various pH values of electrolyte solution were applied to study p-CoA effects on electrical properties of human glioblastoma cell membranes. The obtained results demonstrated that after the p-CoA treatment, the surface charge density of cancer cells changed in alkaline pH solutions, while no noticeable changes were observed in cell membranes incubated with p-CoA compared to control at acidic pH solutions. A four-equilibrium model was used to describe the phenomena occurring on the cell membrane surface. The total surface concentrations of both acidic and basic functional groups and their association constants with solution ions were calculated and used to define theoretical curves of membrane surface charge density versus pH. The resulting theoretical curves and the experimental data were compared to verify the reliability and validity of the adopted model. The deviation of both kinds of data obtained at a higher pH may be caused by disregarding interactions between the functional groups of cancer cells. Processes occurring in the cell membranes after their incubation with p-CoA can lead to disorders of existing equilibria, which result in changes in values of the parameters describing these equilibria.
Collapse
|
19
|
Click chemistry-assisted synthesis of novel aminonaphthoquinone-1,2,3-triazole hybrids and investigation of their cytotoxicity and cancer cell cycle alterations. Bioorg Chem 2019; 88:102967. [DOI: 10.1016/j.bioorg.2019.102967] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/29/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
|
20
|
Translational role of natural coumarins and their derivatives as anticancer agents. Future Med Chem 2019; 11:1057-1082. [PMID: 31140865 DOI: 10.4155/fmc-2018-0375] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Natural coumarins and their derivatives isolated from various plants or microorganisms have inherent antioxidant, antibacterial, antifungal, antiviral and anticancer properties among many biological activities. Some of these coumarins and their derivatives lead to self-programmed cancer cell death (apoptosis) via different mechanisms, which will be discussed. The link between bacterial and viral infections to cancer compels us to highlight fascinating reports from coumarin isolation from microorganisms; comment on the recent bioavailability studies of natural or derived coumarins; and discuss our perspectives with respect to bioisosterism in coumarins, p-glycoprotein inhibition and covalent modification, and bioprobes. Overall, this review hopes to stimulate and offer in particular medicinal chemists and the reader in general an outlook on natural coumarins and their derivatives with potential for cancer therapy.
Collapse
|
21
|
Mora DPP, Santiago KB, Conti BJ, de Oliveira Cardoso E, Conte FL, Oliveira LPG, de Assis Golim M, Uribe JFC, Gutiérrez RM, Buitrago MR, Popova M, Trusheva B, Bankova V, García OT, Sforcin JM. The chemical composition and events related to the cytotoxic effects of propolis on osteosarcoma cells: A comparative assessment of Colombian samples. Phytother Res 2018; 33:591-601. [DOI: 10.1002/ptr.6246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | - Karina Basso Santiago
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| | - Bruno José Conti
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| | | | - Fernanda Lopes Conte
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| | | | | | | | | | | | - Milena Popova
- Bulgarian Academy of Sciences; Institute of Organic Chemistry with Centre of Phytochemistry; Sofia Bulgaria
| | - Boryana Trusheva
- Bulgarian Academy of Sciences; Institute of Organic Chemistry with Centre of Phytochemistry; Sofia Bulgaria
| | - Vassya Bankova
- Bulgarian Academy of Sciences; Institute of Organic Chemistry with Centre of Phytochemistry; Sofia Bulgaria
| | | | - José Maurício Sforcin
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| |
Collapse
|
22
|
Ahmadi R, Hemmateenejad B, Safavi A, Shojaeifard Z, Mohabbati M, Firuzi O. Assessment of cytotoxicity of choline chloride-based natural deep eutectic solvents against human HEK-293 cells: A QSAR analysis. CHEMOSPHERE 2018; 209:831-838. [PMID: 30114731 DOI: 10.1016/j.chemosphere.2018.06.103] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Deep eutectic solvents (DESs) are a new generation of solvents. To consider them as green solvents, investigation of their toxicity is essential. In this work, the cytotoxicity of a number of natural deep eutectic solvents (NADESs) against HEK-293 human embryonic kidney cells was evaluated by MTT assay. The NADESs were prepared with choline chloride (ChCl) as hydrogen-bond acceptor (HBA) and different sugar alcohols as hydrogen-bond donor (HBD) constituents. They showed IC50 values in the range of 3.52-75.46 mM. These results were used to evaluate the effect of structural parameters on the cytotoxicity of the studied NADESs by using quantitative structure activity relationship (QSAR) analysis. A three-parameter linear model was obtained between - log(IC50) as a dependent variable and structural descriptors as independent variables. Rotatable bond number (RBN), mean atomic van der Waals volume (Mv) and the interaction of second power carbon numbers with the molar ratio of HBA to HBD in each NADES (C2 Ratio), were three major parameters. The statistical model covered about 76.4% and 69.8% variance of data in training and leave-one-out cross-validation, respectively. This work, as the first study on the QSAR analysis of DESs, can provide a good perspective for designing greener novel DESs.
Collapse
Affiliation(s)
- Raheleh Ahmadi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran
| | - Bahram Hemmateenejad
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Afsaneh Safavi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran.
| | - Zahra Shojaeifard
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran
| | - Maryam Mohabbati
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|