1
|
Cui Y, Xiao Y, Wang Z, Ji P, Zhang C, Li Y, Fang J, Yu X. Microbial community structure and functional traits involved in the adaptation of culturable bacteria within the gut of amphipods from the deepest ocean. Microbiol Spectr 2025; 13:e0072324. [PMID: 39655934 PMCID: PMC11705852 DOI: 10.1128/spectrum.00723-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025] Open
Abstract
The Hadal Zone is acknowledged for its extreme environmental conditions, especially high hydrostatic pressures. The dominant scavengers in the Hadal Zone, Hadal amphipods, fulfill vital roles in the Hadal food web and ecological niches. However, research on the gut microbiota of amphipods related to ecological functions and environmental adaptation is still limited. Here, we used 16S rRNA sequencing technology and a culture-dependent method to analyze the composition of the gut microbiota in Amphipoda living in the Mariana Trench. A total of 16 bacterial genera were identified. Among them, Firmicutes and Proteobacteria were the predominant phyla. The adaptability of gut probiotics to the environment was investigated. Pediococcus pentosaceus XY62 was picked up as the representative strain to elucidate the ecological functions of gut microbes in amphipods. The ProBio database and the K-B agar diffusion method indicated that P. pentosaceus XY62 exhibited the highest probiotic activity compared with all other isolated strains. Specific metabolic pathways and transporter systems that contribute to a range of environmental adaptation strategies have been revealed by genomic analysis of P. pentosaceus XY62. The environmental response genes and a specialized KDP transport system allow it to adapt to the challenging conditions of the Hadal Zone. In addition, the presence of antibacterial compounds and antibiotic resistance genes, as well as the ability to form a biofilm, facilitated the successful colonization of P. pentosaceus XY62 in the gut environment. IMPORTANCE Amphipods are widely distributed in the Hadal trenches, and the study of their gut microbes has garnered considerable scientific interest. Our research breaks away from traditional omics approaches, innovatively combining sequencing technologies with culture-dependent methods to analyze the gut microbiome structure of amphipods from the Mariana Trench. This not only complements the current omics-dominated field but also paves the way for future resource development of extreme microbes. Furthermore, by conducting genomic analyses and functional validations on a representative strain, we have uncovered its probiotic effects and strategies for adapting to extreme environments. This provides new insights into the theoretical study of the ecological functions of deep-sea bacteria. Overall, our findings offer a fresh perspective on the microbial community structure and environmental adaptation strategies of gut microorganisms in the Hadal Zone.
Collapse
Affiliation(s)
- Yukun Cui
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Yu Xiao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Zhuo Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Paiyao Ji
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Changhao Zhang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Yongqi Li
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Xi Yu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Lemos MLP, do Monte DFM, Leite EL, Egito AS, Olbrich KM, Oliveira CJB. Genomic insights of Lactiplantibacillus plantarum CNPC024: a potential probiotic strain producing immune-boosting tryptophan-derived metabolites. Braz J Microbiol 2024; 55:3141-3146. [PMID: 39222220 PMCID: PMC11711414 DOI: 10.1007/s42770-024-01480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Probiogenomics can provide important insights bout probiotic candidate bacteria. This study aimed to perform an in-depth genomic characterization of the probiotic candidate Lactiplantibacillus plantarum CNPC024 to investigate its probiosis mechanisms, identify metabolic pathways that might benefit the host, and improve the safety assessment for this strain to be effectively used as a probiotic. After whole-genome sequencing in Illumina MiSeq platform, the de novo genome assembly resulted in a 3.2 Mb draft genome. According to the Average Nucleotide Identity (ANI) analysis with 46 randomly validated probiotic LAB belonging to the Lactobacillaceae family, the strain showed a 99% nucleotide identity with other L. plantarum probiotic species. We identified a set of determinants conferring tolerance to bile salts and low pH conditions, as well as temperature, oxidative and osmotic stressors via the glutathione-glutaredoxin system (Grxs). As a β‑galactosidase‑producing strain, it has the potential to be used in fermented dairy products for lactose-intolerant individuals. There were no significant hits for transferable antibiotic-resistance genes. We also identified gene clusters associated with production of bacteriocins (plantaricins E, F and K). Lastly, we detected metabolic pathways associated with the production of tryptophan-derived metabolites that could potentially modulate the host's immune responses.
Collapse
Affiliation(s)
- Mateus L P Lemos
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, 58397-000, Brazil
| | - Daniel F M do Monte
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, 58397-000, Brazil
| | - Elma L Leite
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, 58397-000, Brazil
| | - Antônio S Egito
- Embrapa Goats and Sheep, Northeast Regional Center, R. Osvaldo Cruz 1143, Campina Grande, PB, 58428-09, Brazil
| | - Karina M Olbrich
- Embrapa Food Agroindustry, Av. das Américas, nº 29.501, Guaratiba, Rio de Janeiro, RJ, 23020-470, Brazil
| | - Celso J B Oliveira
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, 58397-000, Brazil.
| |
Collapse
|
3
|
Wang J, Liu Y, Xiu C, Wang X, Liu Y, Hu Y, Yang J, Lei Y. Network Pharmacology-Based Strategy to Explore the Effect and Mechanism of Zhizhu Granule Improving Glucose-Lipid Metabolism in Rats with Metabolic Syndrome. Diabetes Metab Syndr Obes 2024; 17:3833-3846. [PMID: 39440025 PMCID: PMC11495215 DOI: 10.2147/dmso.s477410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Objective To explore the mechanism of the traditional Chinese medicine (TCM), Zhizhu granule (ZZG), in treating metabolic syndrome (MS) based on network pharmacology and pharmacodynamic experiment. Materials and Methods Network pharmacology combined with a pharmacodynamic experiment was used to elucidate the therapeutic mechanism of ZZG in MS. Serum samples were collected from rats with MS, induced by a high-sugar-fat-salt diet (HSFSD) combined with streptozotocin (STZ), to measure the levels of biochemical markers. The glucose (GLU), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), and diastolic blood pressure (DBP) were detected. The liver tissue of rats was used for histological examination and Western blot analysis. Results Network pharmacology analysis generated 69 drug-disease common targets and 10 hub genes closely related to ZZG against MS. KEGG pathway analysis revealed that the PI3K/AKT signaling pathway was the most potential pathway, which took part in the therapeutic mechanisms. In the animal experiments section, the therapeutic effect of ZZG on MS and the therapeutic pathway of ZZG on MS were verified. ZZG could significantly decrease the body weight, TC, TG, LDL-C and GLU levels in MS rats (all p<0.01), alleviate hepatocyte steatosis and decrease liver lipid droplet deposition. Western blot analysis indicated that compared with the model group, the expression levels of PI3K, AKT, and IRS-1 protein were significantly increased (all p<0.05), and the FOXO-1 was significantly decreased (all p<0.05) in the ZZG group. Conclusion ZZG can improve glucose-lipid metabolism disorder in rats with metabolic syndrome. The reported results provide experimental evidence for ZZG in the treatment of MS.
Collapse
Affiliation(s)
- Jiali Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, People’s Republic of China
| | - Yiqing Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Chengkui Xiu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xue Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yinan Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yanhong Hu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jing Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yan Lei
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Luo X, Hounmanou YMG, Ndayisenga F, Yu Z. Spontaneous fermentation mitigates the frequency of genes encoding antimicrobial resistance spreading from the phyllosphere reservoir to the diet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172712. [PMID: 38677439 DOI: 10.1016/j.scitotenv.2024.172712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
The phyllosphere microbiome of vegetable products constitutes an important reservoir for multidrug resistant bacteria and Antibiotic Resistance Genes (ARG). Vegetable products including fermented products such as Paocai therefore may serve as a shuttle for extrinsic microorganisms with ARGs into the gut of consumers. Here we study the effect of fermentation on Paocai ARG dissemination by metagenomic analysis. Microbial abundance and diversity of the Paocai microbiome were diminished during fermentation, which correlated with the reduction of abundance in ARGs. Specifically, as fermentation progressed, Enterobacterales overtook Pseudomonadales as the predominant ARG carriers, and Lactobacillales and Enterobacteriales became the determinants of Paocai resistome variation. Moreover, the dual effect of microbes and metal resistance genes (MRGs) was the major contributor driving Paocai resistome dynamics. We recovered several metagenome-assembled genomes (MAGs) carrying acquired ARGs in the phyllosphere microbiome. ARGs of potential clinical and epidemiological relevance such as tet M and emrB-qacA, were mainly hosted by non-dominant bacterial genera. Overall, our study provides evidence that changes in microbial community composition by fermentation aid in constraining ARG dispersal from raw ingredients to the human microbiome but does not eliminate them.
Collapse
Affiliation(s)
- Xiao Luo
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100085, China
| | - Yaovi Mahuton Gildas Hounmanou
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbojlen 4, 1870 Frederiksberg, Denmark
| | - Fabrice Ndayisenga
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100085, China
| | - Zhisheng Yu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100085, China.
| |
Collapse
|
5
|
Cui R, Zhang C, Pan ZH, Hu TG, Wu H. Probiotic-fermented edible herbs as functional foods: A review of current status, challenges, and strategies. Compr Rev Food Sci Food Saf 2024; 23:e13305. [PMID: 38379388 DOI: 10.1111/1541-4337.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Recently, consumers have become increasingly interested in natural, health-promoting, and chronic disease-preventing medicine and food homology (MFH). There has been accumulating evidence that many herbal medicines, including MFH, are biologically active due to their biotransformation through the intestinal microbiota. The emphasis of scientific investigation has moved from the functionally active role of MFH to the more subtle role of biotransformation of the active ingredients in probiotic-fermented MFH and their health benefits. This review provides an overview of the current status of research on probiotic-fermented MFH. Probiotics degrade toxins and anti-nutritional factors in MFH, improve the flavor of MFH, and increase its bioactive components through their transformative effects. Moreover, MFH can provide a material base for the growth of probiotics and promote the production of their metabolites. In addition, the health benefits of probiotic-fermented MFH in recent years, including antimicrobial, antioxidant, anti-inflammatory, anti-neurodegenerative, skin-protective, and gut microbiome-modulating effects, are summarized, and the health risks associated with them are also described. Finally, the future development of probiotic-fermented MFH is prospected in combination with modern development technologies, such as high-throughput screening technology, synthetic biology technology, and database construction technology. Overall, probiotic-fermented MFH has the potential to be used in functional food for preventing and improving people's health. In the future, personalized functional foods can be expected based on synthetic biology technology and a database on the functional role of probiotic-fermented MFH.
Collapse
Affiliation(s)
- Rui Cui
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Cong Zhang
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Zhen-Hui Pan
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
6
|
Wu S, Feng T, Tang W, Qi C, Gao J, He X, Wang J, Zhou H, Fang Z. metaProbiotics: a tool for mining probiotic from metagenomic binning data based on a language model. Brief Bioinform 2024; 25:bbae085. [PMID: 38487846 PMCID: PMC10940841 DOI: 10.1093/bib/bbae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024] Open
Abstract
Beneficial bacteria remain largely unexplored. Lacking systematic methods, understanding probiotic community traits becomes challenging, leading to various conclusions about their probiotic effects among different publications. We developed language model-based metaProbiotics to rapidly detect probiotic bins from metagenomes, demonstrating superior performance in simulated benchmark datasets. Testing on gut metagenomes from probiotic-treated individuals, it revealed the probioticity of intervention strains-derived bins and other probiotic-associated bins beyond the training data, such as a plasmid-like bin. Analyses of these bins revealed various probiotic mechanisms and bai operon as probiotic Ruminococcaceae's potential marker. In different health-disease cohorts, these bins were more common in healthy individuals, signifying their probiotic role, but relevant health predictions based on the abundance profiles of these bins faced cross-disease challenges. To better understand the heterogeneous nature of probiotics, we used metaProbiotics to construct a comprehensive probiotic genome set from global gut metagenomic data. Module analysis of this set shows that diseased individuals often lack certain probiotic gene modules, with significant variation of the missing modules across different diseases. Additionally, different gene modules on the same probiotic have heterogeneous effects on various diseases. We thus believe that gene function integrity of the probiotic community is more crucial in maintaining gut homeostasis than merely increasing specific gene abundance, and adding probiotics indiscriminately might not boost health. We expect that the innovative language model-based metaProbiotics tool will promote novel probiotic discovery using large-scale metagenomic data and facilitate systematic research on bacterial probiotic effects. The metaProbiotics program can be freely downloaded at https://github.com/zhenchengfang/metaProbiotics.
Collapse
Affiliation(s)
- Shufang Wu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Feng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Waijiao Tang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cancan Qi
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Gao
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaolong He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaxuan Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhencheng Fang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Liu YY, Hsu CY, Yang YC, Huang CH, Chen CC. ProbioMinServer: an integrated platform for assessing the safety and functional properties of potential probiotic strains. BIOINFORMATICS ADVANCES 2023; 3:vbad153. [PMID: 37928343 PMCID: PMC10625473 DOI: 10.1093/bioadv/vbad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Motivation ProbioMinServer is a platform designed to help researchers access information on probiotics regarding a wide variety of characteristics, such as safety (e.g. antimicrobial resistance, virulence, pathogenic, plasmid, and prophage genes) and functionality (e.g. functional classes, carbohydrate-active enzyme, and metabolite gene cluster profile). Because probiotics are functional foods, their safety and functionality are a crucial part of health care. Genomics has become a crucial methodology for investigating the safety and functionality of probiotics in food and feed. This shift is primarily attributed to the growing affordability of next-generation sequencing technologies. However, no integrated platform is available for simultaneously evaluating probiotic strain safety, investigating probiotic functionality, and identifying known phylogenetically related strains. Results Thus, we constructed a new platform, ProbioMinServer, which incorporates these functions. ProbioMinServer accepts whole-genome sequence files in the FASTA format. If the query genome belongs to the 25 common probiotic species collected in our database, the server performs a database search and analyzes the core-genome multilocus sequence typing. Front-end applications were implemented in JavaScript with a bootstrap framework, and back-end programs were implemented using PHP, Perl, and Python. ProbioMinServer can help researchers quickly and easily retrieve information on the safety and functionality of various probiotics. Availability and implementation The platform is available at https://probiomindb.imst.nsysu.edu.tw.
Collapse
Affiliation(s)
- Yen-Yi Liu
- Department of Biology, National Changhua University of Education, Changhua 500207, Taiwan
| | - Chu-Yi Hsu
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Ya-Chu Yang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300193, Taiwan
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| |
Collapse
|
8
|
Chan PL, Lauw S, Ma KL, Kei N, Ma KL, Wong YO, Lam HY, Ting YY, Yau TK, Nong W, Huang D, Xie Y, Cheung PCK, Kwan HS. ProBioQuest: a database and semantic analysis engine for literature, clinical trials and patents related to probiotics. Database (Oxford) 2022; 2022:6645125. [PMID: 35849028 PMCID: PMC9290863 DOI: 10.1093/database/baac059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
The use of probiotics to improve health via the modulation of gut microbiota has gained wide attention. The growing volume of investigations of probiotic microorganisms and commercialized probiotic products has created the need for a database to organize the health-promoting functions driven by probiotics reported in academic articles, clinical trials and patents. We constructed ProBioQuest to collect up-to-date literature related to probiotics from PubMed.gov, ClinicalTrials.gov and PatentsView. More than 2.8 million articles have been collected. Automated information technology-assisted procedures enabled us to collect the data continuously, providing the most up-to-date information. Statistical functions and semantic analyses are provided on the website as an advanced search engine, which contributes to the semantic tool of this database for information search and analyses. The semantic analytical output provides categorized search results and functions to enhance further analysis. A keyword bank is included which can display multiple tables of contents. Users can select keywords from different displayed categories to achieve easily filtered searches. Additional information on the searched items can be browsed via the link-out function. ProBioQuest is not only useful to scientists and health professionals but also to dietary supplement manufacturers and the general public. In this paper, the method we used to build this database-web system is described. Applications of ProBioQuest for several literature-based analyses of probiotics are included as examples of the various uses of this search engine. ProBioQuest can be accessed free of charge at http://kwanlab.bio.cuhk.edu.hk/PBQ/.
Collapse
Affiliation(s)
- Po Lam Chan
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
- HSK GeneTech Limited, Hong Kong Science Park , Shatin, New Territories, Hong Kong
- Food Research Centre, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Susana Lauw
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Ka Lee Ma
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Nelson Kei
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Ka Leong Ma
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
- HSK GeneTech Limited, Hong Kong Science Park , Shatin, New Territories, Hong Kong
| | - Yiu On Wong
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
- HSK GeneTech Limited, Hong Kong Science Park , Shatin, New Territories, Hong Kong
| | - Ho Yan Lam
- HSK GeneTech Limited, Hong Kong Science Park , Shatin, New Territories, Hong Kong
| | - Yee Yung Ting
- Food Research Centre, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Tsz Kwan Yau
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Wenyan Nong
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Dandan Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin 300070, China
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Centre for Medical Epigenetics, School of Basic Medical Sciences, National Clinical Research Centre for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University , Tianjin 300070, China
| | - Yichun Xie
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Peter Chi Keung Cheung
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
- Food Research Centre, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
- HSK GeneTech Limited, Hong Kong Science Park , Shatin, New Territories, Hong Kong
- Food Research Centre, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| |
Collapse
|
9
|
Sun Y, Li H, Zheng L, Li J, Hong Y, Liang P, Kwok LY, Zuo Y, Zhang W, Zhang H. iProbiotics: a machine learning platform for rapid identification of probiotic properties from whole-genome primary sequences. Brief Bioinform 2021; 23:6444315. [PMID: 34849572 DOI: 10.1093/bib/bbab477] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Lactic acid bacteria consortia are commonly present in food, and some of these bacteria possess probiotic properties. However, discovery and experimental validation of probiotics require extensive time and effort. Therefore, it is of great interest to develop effective screening methods for identifying probiotics. Advances in sequencing technology have generated massive genomic data, enabling us to create a machine learning-based platform for such purpose in this work. This study first selected a comprehensive probiotics genome dataset from the probiotic database (PROBIO) and literature surveys. Then, k-mer (from 2 to 8) compositional analysis was performed, revealing diverse oligonucleotide composition in strain genomes and apparently more probiotic (P-) features in probiotic genomes than non-probiotic genomes. To reduce noise and improve computational efficiency, 87 376 k-mers were refined by an incremental feature selection (IFS) method, and the model achieved the maximum accuracy level at 184 core features, with a high prediction accuracy (97.77%) and area under the curve (98.00%). Functional genomic analysis using annotations from gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Rapid Annotation using Subsystem Technology (RAST) databases, as well as analysis of genes associated with host gastrointestinal survival/settlement, carbohydrate utilization, drug resistance and virulence factors, revealed that the distribution of P-features was biased toward genes/pathways related to probiotic function. Our results suggest that the role of probiotics is not determined by a single gene, but by a combination of k-mer genomic components, providing new insights into the identification and underlying mechanisms of probiotics. This work created a novel and free online bioinformatic tool, iProbiotics, which would facilitate rapid screening for probiotics.
Collapse
Affiliation(s)
- Yu Sun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University, Hohhot 010070, China
| | - Haicheng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lei Zheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jinzhao Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yan Hong
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University, Hohhot 010070, China
| | - Pengfei Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
10
|
Razafindralambo H, Correani V, Fiorucci S, Mattei B. Variability in Probiotic Formulations Revealed by Proteomics and Physico-chemistry Approach in Relation to the Gut Permeability. Probiotics Antimicrob Proteins 2021; 12:1193-1202. [PMID: 31482402 DOI: 10.1007/s12602-019-09590-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Variability in the efficacy, safety, and quality of probiotic formulations depends on many factors, including process conditions used by manufacturers. Developing reliable analytical tools is therefore essential to quickly monitor manufacturing differences in probiotic samples for their quality assessment. Here, multi-strain probiotics from two production sites and countries were investigated by proteomics and physico-chemistry approaches in relation to the protective effect on gut barrier. Proteomic analyses showed differences in protein abundances, identities, and origins of two series of VSL#3 samples from different sites. Even though both formulations were qualitatively similar in thermal and colloidal profiles, significant differences were quantitatively observed in terms of maximum decomposition temperature Tmax (p < 0.05) and phase transition temperature Tm (p < 0.01). Such variability in physical and biochemical features impacts on probiotic functionalities and translates into a differential modulation of gut permeability in mice. Physico-chemical scans provide coherent data with proteomics and represent a new tool for time and cost effective quality control of probiotic-based products.
Collapse
Affiliation(s)
- H Razafindralambo
- Department of Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie 2B-BAT 140 TERRA, B-5030, Gembloux, Belgium.
| | - V Correani
- Department of Biology and Biotechnology, "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - S Fiorucci
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - B Mattei
- Department of Biology and Biotechnology, "C. Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Han X, Lei X, Yang X, Shen J, Zheng L, Jin C, Cao Y, Yao J. A Metagenomic Insight Into the Hindgut Microbiota and Their Metabolites for Dairy Goats Fed Different Rumen Degradable Starch. Front Microbiol 2021; 12:651631. [PMID: 34163442 PMCID: PMC8216219 DOI: 10.3389/fmicb.2021.651631] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
High starch diets have been proven to increase the risk of hindgut acidosis in high-yielding dairy animals. As an effective measurement of dietary carbohydrate for ruminants, studies on rumen degradable starch (RDS) and the effects on the gut microbiota diversity of carbohydrate-active enzymes (CAZymes), and Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology functional categories are helpful to understand the mechanisms between gut microbiota and carbohydrate metabolism in dairy goats. A total of 18 lactating goats (45.8 ± 1.54 kg) were randomly divided equally into three dietary treatments with low dietary RDS concentrations of 20.52% (LRDS), medium RDS of 22.15% (MRDS), and high RDS of 24.88% (HRDS) on a DM basis for 5 weeks. Compared with the LRDS and MRDS groups, HRDS increased acetate molar proportion in the cecum. For the HRDS group, the abundance of family Ruminococcaceae and genus Ruminococcaceae UCG-010 were significantly increased in the cecum. For the LRDS group, the butyrate molar proportion and the abundance of butyrate producer family Bacteroidale_S24-7, family Lachnospiraceae, and genus Bacteroidale_S24-7_group were significantly increased in the cecum. Based on the BugBase phenotypic prediction, the microbial oxidative stress tolerant and decreased potentially pathogenic in the LRDS group were increased in the cecum compared with the HRDS group. A metagenomic study on cecal bacteria revealed that dietary RDS level could affect carbohydrate metabolism by increasing the glycoside hydrolase 95 (GH95) family and cellulase enzyme (EC 3.2.1.4) in the HRDS group; increasing the GH13_20 family and isoamylase enzyme (EC 3.2.1.68) in the LRDS group. PROBIO probiotics database showed the relative gene abundance of cecal probiotics significantly decreased in the HRDS group. Furthermore, goats fed the HRDS diet had a lower protein expression of Muc2, and greater expression RNA of interleukin-1β and secretory immunoglobulin A in cecal mucosa than did goats fed the LRDS diet. Combined with the information from previous results from rumen, dietary RDS level altered the degradation position of carbohydrates in the gastrointestinal (GI) tract and increased the relative abundance of gene encoded enzymes degrading cellulose in the HRDS group in the cecum of dairy goats. This study revealed that the HRDS diet could bring disturbances to the microbial communities network containing taxa of the Lachnospiraceae and Ruminococcaceae and damage the mucus layer and inflammation in the cecum of dairy goats.
Collapse
Affiliation(s)
- Xiaoying Han
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinjian Lei
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xuexin Yang
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jing Shen
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lixin Zheng
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chunjia Jin
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yangchun Cao
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junhu Yao
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
12
|
Cunningham M, Azcarate-Peril MA, Barnard A, Benoit V, Grimaldi R, Guyonnet D, Holscher HD, Hunter K, Manurung S, Obis D, Petrova MI, Steinert RE, Swanson KS, van Sinderen D, Vulevic J, Gibson GR. Shaping the Future of Probiotics and Prebiotics. Trends Microbiol 2021; 29:667-685. [PMID: 33551269 DOI: 10.1016/j.tim.2021.01.003] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Recent and ongoing developments in microbiome science are enabling new frontiers of research for probiotics and prebiotics. Novel types, mechanisms, and applications currently under study have the potential to change scientific understanding as well as nutritional and healthcare applications of these interventions. The expansion of related fields of microbiome-targeted interventions, and an evolving landscape for implementation across regulatory, policy, prescriber, and consumer spheres, portends an era of significant change. In this review we examine recent, emerging, and anticipated trends in probiotic and prebiotic science, and create a vision for broad areas of developing influence in the field.
Collapse
Affiliation(s)
- Marla Cunningham
- Department of Science and Innovation, Metagenics, PO Box 675, Virginia BC, QLD, 4014, Australia.
| | - M Andrea Azcarate-Peril
- UNC Departments of Medicine and Nutrition, Microbiome Core Facility, University of North Carolina, Chapel Hill, NC, USA
| | | | - Valerie Benoit
- Bell Institute of Health and Nutrition, General Mills, Minneapolis, MN, USA
| | | | - Denis Guyonnet
- Diana Nova, Symrise Nutrition, Clichy-la-Garenne, France
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition and Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Kirsty Hunter
- Department of Sport Science, Nottingham Trent University, UK
| | - Sarmauli Manurung
- Emerging Sciences Research, Reckitt Benckiser, Nijmegen, The Netherlands
| | - David Obis
- Danone Nutricia Research, Palaiseau Cedex, France
| | | | - Robert E Steinert
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd, Basel, Switzerland; Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zürich, Switzerland
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Douwe van Sinderen
- Microbiology BioSciences Institute, University College Cork, Cork, Ireland
| | - Jelena Vulevic
- veMico Ltd, Reading, UK; Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Glenn R Gibson
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| |
Collapse
|
13
|
Zeng X, Yang X, Fan J, Tan Y, Ju L, Shen W, Wang Y, Wang X, Chen W, Ju D, Chen YZ. MASI: microbiota-active substance interactions database. Nucleic Acids Res 2021; 49:D776-D782. [PMID: 33125077 PMCID: PMC7779062 DOI: 10.1093/nar/gkaa924] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Xenobiotic and host active substances interact with gut microbiota to influence human health and therapeutics. Dietary, pharmaceutical, herbal and environmental substances are modified by microbiota with altered bioavailabilities, bioactivities and toxic effects. Xenobiotics also affect microbiota with health implications. Knowledge of these microbiota and active substance interactions is important for understanding microbiota-regulated functions and therapeutics. Established microbiota databases provide useful information about the microbiota-disease associations, diet and drug interventions, and microbiota modulation of drugs. However, there is insufficient information on the active substances modified by microbiota and the abundance of gut bacteria in humans. Only ∼7% drugs are covered by the established databases. To complement these databases, we developed MASI, Microbiota—Active Substance Interactions database, for providing the information about the microbiota alteration of various substances, substance alteration of microbiota, and the abundance of gut bacteria in humans. These include 1,051 pharmaceutical, 103 dietary, 119 herbal, 46 probiotic, 142 environmental substances interacting with 806 microbiota species linked to 56 diseases and 784 microbiota–disease associations. MASI covers 11 215 bacteria-pharmaceutical, 914 bacteria-herbal, 309 bacteria-dietary, 753 bacteria-environmental substance interactions and the abundance profiles of 259 bacteria species in 3465 patients and 5334 healthy individuals. MASI is freely accessible at http://www.aiddlab.com/MASI.
Collapse
Affiliation(s)
- Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, P. R. China
| | - Xue Yang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, P. R. China
| | - Jiajun Fan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, P. R. China
| | - Ying Tan
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua University Shenzhen Graduate School, Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics, Shenzhen Kivita Innovative Drug Discovery Institute, Guangdong, P. R. China
| | - Lingyi Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, P. R. China
| | - Wanxiang Shen
- Bioinformatics and Drug Design group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Yali Wang
- Bioinformatics and Drug Design group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Xinghao Wang
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua University Shenzhen Graduate School, Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics, Shenzhen Kivita Innovative Drug Discovery Institute, Guangdong, P. R. China
| | - Weiping Chen
- Key Lab of Agricultural Products Processing and Quality Control of Nanchang City, Jiangxi Agricultural University, Nanchang, 330045, P. R. China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, P. R. China
| | - Yu Zong Chen
- Bioinformatics and Drug Design group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
14
|
Shamekhi S, Lotfi H, Abdolalizadeh J, Bonabi E, Zarghami N. An overview of yeast probiotics as cancer biotherapeutics: possible clinical application in colorectal cancer. Clin Transl Oncol 2020; 22:1227-1239. [PMID: 31919760 DOI: 10.1007/s12094-019-02270-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023]
Abstract
The previous reports have established a strong link between diet, lifestyle, and gut microbiota population with the onset of the colorectal cancer (CRC). Administration of probiotics has become a particular interest in prevention and treatment of CRC. As potential dietary complements, probiotics might be able to lower the risk of CRC and manage the safety of traditional cancer therapies such as surgery, radiation therapy, and chemotherapy. This review investigates the promising effects of probiotics as biotherapeutics, with due attention to possible clinical application of yeast probiotics in prevention and treatment of CRC. In addition, various underlying anti-cancer mechanisms are covered here based on scientific evidence and findings from numerous experimental studies. Application of probiotics as biotherapeutics in CRC, however, needs to be approved by human clinical trials. It is of prime concern, to find potential probiotic strains, effective doses for administrations and regimes, and molecular mechanisms involved in prevention and treatment.
Collapse
Affiliation(s)
- S Shamekhi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - J Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - E Bonabi
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - N Zarghami
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Wang QJ, Shen YE, Wang X, Fu S, Zhang X, Zhang YN, Wang RT. Concomitant memantine and Lactobacillus plantarum treatment attenuates cognitive impairments in APP/PS1 mice. Aging (Albany NY) 2020; 12:628-649. [PMID: 31907339 PMCID: PMC6977692 DOI: 10.18632/aging.102645] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
Trimethylamine-N-oxide (TMAO) is a gut microbial metabolite that promotes Alzheimer's disease (AD) progression. Given that probiotics can alleviate AD symptoms by inhibiting the synthesis of TMAO, here we investigated the correlation between TMAO and cognitive deterioration by measuring TMAO levels in the plasma of choline-treated APP/PS1 mice (an AD mouse model) with and without probiotic treatments. We found that declines in L. plantarum in the gut were associated with cognitive impairment. Moreover, 12-weeks of treatment with memantine plus L. plantarum ameliorated cognitive deterioration, decreased Αβ levels in the hippocampus, and protected neuronal integrity and plasticity. These effects were accompanied by reductions in TMAO synthesis and neuroinflammation. These experiments demonstrate that L. plantarum augments the beneficial therapeutic effects of memantine treatment in APP/PS1 mice by remodeling the intestinal microbiota, inhibiting the synthesis of TMAO, and reducing clusterin levels. Our results thus highlight intestinal microbiota as a potential therapeutic target to decrease the risk of AD.
Collapse
Affiliation(s)
- Qiu-Jun Wang
- General Practice Department, The Second Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Yue-E Shen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xin Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, China
| | - Shuang Fu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, China
| | - Xin Zhang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, China
| | - Yi-Na Zhang
- Department of Geriatrics, The Second Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Rui-Tao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
16
|
Zhao W, Liu Y, Latta M, Ma W, Wu Z, Chen P. Probiotics database: a potential source of fermented foods. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1579737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenbin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Yuheng Liu
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Maria Latta
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Wantong Ma
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Zhengrong Wu
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| |
Collapse
|