1
|
Meng K, Tu X, Sun F, Hou L, Shao Z, Wang J. Carbohydrate polymer-based nanoparticles in curcumin delivery for cancer therapy. Int J Biol Macromol 2025; 304:140441. [PMID: 39884595 DOI: 10.1016/j.ijbiomac.2025.140441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/31/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The application of natural products for cancer treatment has a long history. The safety and multifunctionality of naturally occurring substances have made them appropriate for cancer treatment and management. Curcumin affects multiple molecular pathways and is advantageous for treating both hematological and solid tumors. Nonetheless, the effectiveness of curcumin in vivo and in clinical studies has faced challenges due to its poor pharmacokinetic profile. Consequently, nanoparticles have been developed for the administration of curcumin in cancer treatment. The nanoparticles can enhance the distribution of curcumin in tissues and increase its therapeutic effectiveness. Furthermore, nanoparticles expand the uptake of curcumin in cancer cells, leading to increased cytotoxicity. Carbohydrate polymer-based nanoparticles provide a promising solution for the delivery of curcumin in cancer treatment by addressing its low solubility, limited bioavailability, and quick degradation. These biodegradable and biocompatible carriers, originating from polymers such as chitosan, hyaluronic acid, and alginate, protect curcumin, improving its stability and allowing for controlled release. Targeting ligands for functionalization provides selective and specific distribution to the tumor cells, enhancing therapeutic effectiveness and reducing off-target impacts. Their capacity to encapsulate curcumin with other agents allows for synergistic therapies, enhancing anticancer results even more. The adjustable characteristics of carbohydrate nanoparticles, along with their minimal toxicity, develop a revolutionary, functional and safe platform.
Collapse
Affiliation(s)
- Kexin Meng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, Zhejiang 310014, China
| | - Xinzhuo Tu
- Department of Pathology, Air Force Medical Center, PLA, Beijing, China
| | - Feixia Sun
- Nursing Department, Shandong First Medical University Affiliated Occupational Disease Hospital (Shandong Provincial Occupational Disease Hospital), Jinan, China
| | - Lingmi Hou
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu 610041, Sichuan, China.
| | - Zhouxiang Shao
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Jinxiang Wang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| |
Collapse
|
2
|
Han J, Shen Y, Cao R, Wang W, Duan J, Duan J, Bao C. Active herbal ingredients and drug delivery design for tumor therapy: a review. Chin J Nat Med 2024; 22:1134-1162. [PMID: 39725513 DOI: 10.1016/s1875-5364(24)60741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Indexed: 12/28/2024]
Abstract
Active herbal ingredients are gaining recognition for their potent anti-tumor efficacy, attributable to various mechanisms including tumor cell inhibition, immune system activation, and tumor angiogenesis inhibition. Recent studies have revealed that numerous anti-tumor herbal ingredients, such as ginsenosides, ursolic acid, oleanolic acid, and Angelica sinensis polysaccharides, can be utilized to develop smart drug carriers like liposomes, micelles, and nanoparticles. These carriers can deliver active herbal ingredients and co-deliver anti-tumor drugs to enhance drug accumulation at tumor sites, thereby improving anti-tumor efficacy. This study provides a comprehensive analysis of the mechanisms by which these active herbal ingredients-derived carriers enhance therapeutic outcomes. Additionally, it highlights the structural properties of these active herbal ingredients, demonstrating how their unique features can be strategically employed to design smart drug carriers with improved anti-tumor efficacy. The insights presented aim to serve as a reference and guide future innovations in the design and application of smart drug carriers for cancer therapy that leverage active herbal ingredients.
Collapse
Affiliation(s)
- Jing Han
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanxi Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruiying Cao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiren Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jialun Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunjie Bao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Solanki R, Patel S. Evodiamine and its nano-based approaches for enhanced cancer therapy: recent advances and challenges. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8430-8444. [PMID: 38821861 DOI: 10.1002/jsfa.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Evodiamine is a bioactive alkaloid extracted from the Evodia rutaecarpa plant. It has various pharmacological effects including anti-cancer, anti-bacterial, anti-obesity, anti-neurodegenerative, anti-depressant, and cardiac protective properties. Evodiamine demonstrates potent anti-cancer activity by inhibiting the proliferation of cancer cells in vitro and in vivo. Despite the health-promoting properties of evodiamine, its clinical use is hindered by low water solubility, poor bioavailability, and toxicity. Thus, there is a need to develop alternative drug delivery systems for evodiamine to enhance its solubility, permeability, and stability, as well as to facilitate targeted, prolonged, and controlled drug release. Nanocarriers can increase the therapeutic potential of evodiamine in cancer therapy while reducing adverse side effects. To date, numerous attempts have been made through the development of smart nanocarriers to overcome the drawbacks of evodiamine. This review focuses on the pharmacological applications, anti-cancer mechanisms, and limitations of evodiamine. Various nanocarriers, including lipid-based nanoparticles, polymeric nanoparticles, cyclodextrins, and so forth, have been discussed extensively for evodiamine delivery. Nano-drug delivery systems could increase the solubility, bioavailability, stability, and therapeutic efficacy of evodiamine. This review aims to present a comprehensive and critical evaluation of several nano-formulations of evodiamine for cancer therapy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
4
|
Kareemi AF, Likhitkar S. Applications and advancements of polysaccharide-based nanostructures for enhanced drug delivery. Colloids Surf B Biointerfaces 2024; 238:113883. [PMID: 38615389 DOI: 10.1016/j.colsurfb.2024.113883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Growing demand for highly effective, site-specific delivery of pharmaceuticals and nutraceuticals using nano-sized carriers has prompted increased scrutiny of carrier biocompatibility and biodegradability. To address these concerns, biodegradable natural polymers have emerged as a transformative domain, offering non-toxic, precisely targetable carriers capable of finely modulating cargo pharmacokinetics while generating innocuous decomposition by-products. This comprehensive review illuminates the emergence of polysaccharide-based nanoparticulate drug delivery systems. These systems establish an interactive interface between drug and targeted organs, guided by strategic modifications to polysaccharide backbones, which facilitate the creation of morphologically, constitutionally, and characteristically vibrant nanostructures through various fabrication routes, underpinning their pivotal role in biomedical applications. Advancements crucial to enhancing polysaccharide-based drug delivery, such as surface modifications and bioinspired modifications for enhanced targeting, and stimuli-responsive release, strategies to overcome biological barriers, enhance tumor penetration, and optimize therapeutic outcomes are highlighted. This review also examines some potent challenges, and the contemporary way out of them, and discusses future perspectives in the field.
Collapse
Affiliation(s)
- Asra Fatimah Kareemi
- Department of Chemistry, St. Aloysius College (Autonomous), Jabalpur, Madhya Pradesh 482001, India
| | - Sweta Likhitkar
- Department of Chemistry, St. Aloysius College (Autonomous), Jabalpur, Madhya Pradesh 482001, India.
| |
Collapse
|
5
|
Gupta C, Hazra C, Poddar P, Dhara D, Byram PK, Chakravorty N, Sen R, Ghosh SK. Development and performance evaluation of self-assembled pH-responsive curcumin-bacterial exopolysaccharide micellar conjugates as bioactive delivery system. Int J Biol Macromol 2024; 263:130372. [PMID: 38395275 DOI: 10.1016/j.ijbiomac.2024.130372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The present study reports the synthesis of micellar conjugates, wherein curcumin (Cur), a bioactive compound with poor bioavailability, was covalently bonded to a bacterial exopolysaccharide (EPS). These conjugates were synthesized by utilizing succinic acid that linked Cur to the pyranosyl moiety of the EPS. The Cur-EPS conjugates appeared as spherical micelles in aqueous solution and were found to have an average hydrodynamic diameter of 254 ± 2.7 nm. The micellar conjugates showed superior stability than Cur as evident from their negative surface charge (-27 ± 1.8 mV) and low polydispersity index (PDI) (0.33 ± 0.04). The in vitro studies on release kinetics helped elucidate the pH-responsive characteristics of the Cur-EPS conjugate, as 87.50 ± 1.45 % of Cur was released at an acidic pH of 5.6, in contrast to 30.15 ± 2.61 % at systemic pH of 7.4 at 150 h. The conjugates were hemocompatible and exhibited cytotoxic effect against the osteosarcoma cell line (MG-63) after 48 h treatment. They also demonstrated superior antibacterial, antibiofilm, and antioxidant activities in comparison to free Cur. Therefore, the Cur-EPS conjugates have potential pharmaceutical applications as therapeutic biomaterial that can be applied as a drug delivery system.
Collapse
Affiliation(s)
- Chandrika Gupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Chinmay Hazra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Puja Poddar
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Dibakar Dhara
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Prasanna Kumar Byram
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India.
| | - Sudip Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| |
Collapse
|
6
|
Wang N, Wang W, Zhang H, Liu C, Wang L, Zhang N, Yu D. Self-assembly embedding of curcumin by alkylated rice bran protein. Int J Biol Macromol 2024; 262:129627. [PMID: 38266858 DOI: 10.1016/j.ijbiomac.2024.129627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Lysine-rich rice bran protein (RBP) can be used as raw material for alkylation modification to improve the self-assembly performance of protein. The results of 1H NMR, degree of alkylation, and DSC analysis showed that the alkyl chain was successfully attached to the RBP. The surface hydrophobicity and absolute ζ-potential increased. The three-dimensional structure of the alkylated RBP (ARBP) become more porous and ARBP-2 was selected as the material for embedding curcumin. The XRD results revealed that curcumin induced self-aggregation of ARBP-2 and the inclusion of curcumin was attained. The maximum encapsulation efficiency of curcumin was 82.67 % and the maximum loading amount was 171.37 g/100 g RBP. The results of atomic force microscopy (AFM), particle size, and polydispersity index (PDI) analyses revealed that the particles in the system were aggregated after curcumin was added. Curcumin was well protected by encapsulation in the self-assembled particles. Thus, this study provides a new strategy for the embedding and delivery of curcumin.
Collapse
Affiliation(s)
- Ning Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Weining Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Hairong Zhang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Chang Liu
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Liqi Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China; School of Computer and Information Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Na Zhang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Koshy J, Sangeetha D. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration. Int J Biol Macromol 2024; 257:128594. [PMID: 38056744 DOI: 10.1016/j.ijbiomac.2023.128594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Natural polymers and its mixtures in the form of films, sponges and hydrogels are playing a major role in tissue engineering and regenerative medicine. Hydrogels have been extensively investigated as standalone materials for drug delivery purposes as they enable effective encapsulation and sustained release of drugs. Biopolymers are widely utilised in the fabrication of hydrogels due to their safety, biocompatibility, low toxicity, and regulated breakdown by human enzymes. Among all the biopolymers, polysaccharide-based polymer is well suited to overcome the limitations of traditional wound dressing materials. Pectin is a polysaccharide which can be extracted from different plant sources and is used in various pharmaceutical and biomedical applications including cartilage regeneration. Pectin itself cannot be employed as scaffolds for tissue engineering since it decomposes quickly. This article discusses recent research and developments on pectin polysaccharide, including its types, origins, applications, and potential demands for use in AI-mediated scaffolds. It also covers the materials-design process, strategy for implementation to material selection and fabrication methods for evaluation. Finally, we discuss unmet requirements and current obstacles in the development of optimal materials for wound healing and bone-tissue regeneration, as well as emerging strategies in the field.
Collapse
Affiliation(s)
- Jijo Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - D Sangeetha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
8
|
Sultana N. Biological Properties and Biomedical Applications of Pectin and Pectin-Based Composites: A Review. Molecules 2023; 28:7974. [PMID: 38138464 PMCID: PMC10745545 DOI: 10.3390/molecules28247974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Pectin has recently drawn much attention in biomedical applications due to its distinctive chemical and biological properties. Polymers like pectin with cell-instructive properties are attractive natural biomaterials for tissue repair and regeneration. In addition, bioactive pectin and pectin-based composites exhibit improved characteristics to deliver active molecules. Pectin and pectin-based composites serve as interactive matrices or scaffolds by stimulating cell adhesion and cell proliferation and enhancing tissue remodeling by forming an extracellular matrix in vivo. Several bioactive properties, such as immunoregulatory, antibacterial, anti-inflammatory, anti-tumor, and antioxidant activities, contribute to the pectin's and pectin-based composite's enhanced applications in tissue engineering and drug delivery systems. Tissue engineering scaffolds containing pectin and pectin-based conjugates or composites demonstrate essential features such as nontoxicity, tunable mechanical properties, biodegradability, and suitable surface properties. The design and fabrication of pectic composites are versatile for tissue engineering and drug delivery applications. This article reviews the promising characteristics of pectin or pectic polysaccharides and pectin-based composites and highlights their potential biomedical applications, focusing on drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Naznin Sultana
- Texas Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
9
|
Bērziņa L, Mieriņa I. Antiradical and Antioxidant Activity of Compounds Containing 1,3-Dicarbonyl Moiety: An Overview. Molecules 2023; 28:6203. [PMID: 37687032 PMCID: PMC10488980 DOI: 10.3390/molecules28176203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Free radicals and oxidants may cause various damages both to the lifeworld and different products. A typical solution for the prophylaxis of oxidation-caused conditions is the usage of various antioxidants. Among them, various classes are found-polyphenols, conjugated polyalkenes, and some sulfur and nitrogen derivatives. Regarding the active site in the molecules, a widely discussed group of compounds are 1,3-dicarbonyl compounds. Among them are natural (e.g., curcumin and pulvinic acids) and synthetic (e.g., 4-hydroxy coumarins, substituted Meldrum's acids) compounds. Herein, information about various compounds containing the 1,3-dicarbonyl moiety is covered, and their antiradical and antioxidant activity, depending on the structure, is discussed.
Collapse
Affiliation(s)
| | - Inese Mieriņa
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia;
| |
Collapse
|
10
|
Luo W, Bai L, Zhang J, Li Z, Liu Y, Tang X, Xia P, Xu M, Shi A, Liu X, Zhang D, Yu P. Polysaccharides-based nanocarriers enhance the anti-inflammatory effect of curcumin. Carbohydr Polym 2023; 311:120718. [PMID: 37028867 DOI: 10.1016/j.carbpol.2023.120718] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/27/2023]
Abstract
Curcumin (CUR) has been discovered to have many biological activities, including anti-inflammatory, anti-cancer, anti-oxygenation, anti-human immunodeficiency virus, anti-microbial and exhibits a good effect on the prevention and treatment of many diseases. However, the limited properties of CUR, including the poor solubility, bioavailability and instability caused by enzymes, light, metal irons, and oxygen, have compelled researchers to turn their attention to drug carrier application to overcome these drawbacks. Encapsulation may provide potential protective effects to the embedding materials and/or have a synergistic effect with them. Therefore, nanocarriers, especially polysaccharides-based nanocarriers, have been developed in many studies to enhance the anti-inflammatory capacity of CUR. Consequently, it's critical to review current advancements in the encapsulation of CUR using polysaccharides-based nanocarriers, as well as further study the potential mechanisms of action where polysaccharides-based CUR nanoparticles (the complex nanoparticles/Nano CUR-delivery systems) exhibit their anti-inflammatory effects. This work suggests that polysaccharides-based nanocarriers will be a thriving field in the treatment of inflammation and inflammation-related diseases.
Collapse
Affiliation(s)
- Wei Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Liangyu Bai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaoyi Tang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Ao Shi
- School of Medicine, St.George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China.
| |
Collapse
|
11
|
Cai J, Wen H, Zhou H, Zhang D, Lan D, Liu S, Li C, Dai X, Song T, Wang X, He Y, He Z, Tan J, Zhang J. Naringenin: A flavanone with anti-inflammatory and anti-infective properties. Biomed Pharmacother 2023; 164:114990. [PMID: 37315435 DOI: 10.1016/j.biopha.2023.114990] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Although a growing body of research has recently shown how crucial inflammation and infection are to all major diseases, several of the medications currently available on the market have various unfavourable side effects, necessitating the development of alternative therapeutic choices. Researchers are increasingly interested in alternative medications or active components derived from natural sources. Naringenin is a commonly consumed flavonoid found in many plants, and since it was discovered to have nutritional benefits, it has been utilized to treat inflammation and infections caused by particular bacteria or viruses. However, the absence of adequate clinical data and naringenin's poor solubility and stability severely restrict its usage as a medicinal agent. In this article, we discuss naringenin's effects and mechanisms of action on autoimmune-induced inflammation, bacterial infections, and viral infections based on recent research. We also present a few suggestions for enhancing naringenin's solubility, stability, and bioavailability. This paper emphasizes the potential use of naringenin as an anti-inflammatory and anti-infective agent and the next prophylactic substance for the treatment of various inflammatory and infectious diseases, even though some mechanisms of action are still unclear, and offers some theoretical support for its clinical application.
Collapse
Affiliation(s)
- Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Hongli Wen
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China.
| | - He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi 563000, China.
| | - Dongfeng Lan
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Songpo Liu
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Chunyang Li
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Xiaofang Dai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China.
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China.
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
12
|
Versatile functionalization of pectic conjugate: From design to biomedical applications. Carbohydr Polym 2023; 306:120605. [PMID: 36746571 DOI: 10.1016/j.carbpol.2023.120605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Pectin exists extensively in nature and has attracted much attention in biological applications for its unique chemical and physical characteristics. Functionalized pectin, especially pectic conjugates, has given many possibilities for pectin to improve its properties and bioactivity as well as to deliver active molecules. To better exploit this strategy of pectic functionalization, this review presents in detail the structural modifications of pectin, different synthetic methods, and design strategies of pectic conjugates involving both traditional chemical and "green" approaches. Here, the research ideas and applications of pectic prodrugs as well as the development of preparation based on pectic conjugates are reviewed, with emphasis on crosslinking systems of functionalized pectin and nanosystems based on self-assembly techniques. We hope this review will provide comprehensive and valuable information for the functionalization and systematization of the pectic conjugate from synthesis to application.
Collapse
|
13
|
Zhao L, Ding X, Khan IM, Yue L, Zhang Y, Wang Z. Preparation and characterization of curcumin/chitosan conjugate as an efficient photodynamic antibacterial agent. Carbohydr Polym 2023; 313:120852. [PMID: 37182952 DOI: 10.1016/j.carbpol.2023.120852] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Curcumin (Cur) is a natural pigment with excellent biological activity. The poor stability and insolubility of Cur in water severely limit its application. Therefore, to overcome these dilemmas which are big hindrances in their application, a novel derivative (COCS-Cur) was prepared by the esterification reaction of carboxylated chitosan (COCS) and Cur. The structure and properties of conjugate were determined through a series of characterizations. The derivatives had excellent solubility as well as stability. In addition, antioxidant and photodynamic antibacterial experiments proved that COCS-Cur had the excellent free radical scavenging ability and photodynamic antibacterial activity. The derivatives presented a better antibacterial effect on Staphylococcus aureus (S. aureus) than Escherichia coli (E. coli). Noteworthy, the COCS-Cur derivatives showed no obvious toxicity which makes them a stronger contender and potential antimicrobial agent or functional nutrient for application in the food industry.
Collapse
|
14
|
Odun-Ayo F, Reddy L. Potential Biomedical Applications of Modified Pectin as a Delivery System for Bioactive Substances. POLYSACCHARIDES 2023; 4:1-32. [DOI: 10.3390/polysaccharides4010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Pectin is a polysaccharide that has been recently gaining attention because it is renewable, inexpensive, biocompatible, degradable, non-toxic, non-polluting, and has mechanical integrity. The recent extraction techniques and modification to the structural property of pectin have led to the modified pectin whose chemical and surface functional groups yield galacturonic acid and galactose contents which are primarily responsible for its improved and better use in biomedical applications including drug delivery and thus producing high-value products. Major attention on modified pectin has been focused on the aspect of its bioactive functionalities that opposes cancer development. Nevertheless, modified pectin can be combined with a wide range of biopolymers with unique characteristics and activities which thus enhances its application in different areas. This has enabled the current applications of modified pectin through different approaches in addition to the prominent anti-cancer functional capabilities, which were reviewed. Furthermore, this paper highlights the potential of modified pectin as a delivery system of bioactive substances, its synergistic and prebiotic effects, gut microbiota effect and antiviral properties amongst other roles applicable in the biomedical and pharmaceutical industries.
Collapse
Affiliation(s)
- Frederick Odun-Ayo
- Department of Biotechnology and Consumer Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, District Six Campus, Cape Town 7530, South Africa
| | - Lalini Reddy
- Department of Biotechnology and Consumer Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, District Six Campus, Cape Town 7530, South Africa
| |
Collapse
|
15
|
Modified Curcumins as Potential Drug Candidates for Breast Cancer: An Overview. Molecules 2022; 27:molecules27248891. [PMID: 36558022 PMCID: PMC9784715 DOI: 10.3390/molecules27248891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BC), the most common malignancy in women, results from significant alterations in genetic and epigenetic mechanisms that alter multiple signaling pathways in growth and malignant progression, leading to limited long-term survival. Current studies with numerous drug therapies have shown that BC is a complex disease with tumor heterogeneity, rapidity, and dynamics of the tumor microenvironment that result in resistance to existing therapy. Targeting a single cell-signaling pathway is unlikely to treat or prevent BC. Curcumin (a natural yellow pigment), the principal ingredient in the spice turmeric, is well-documented for its diverse pharmacological properties including anti-cancer activity. However, its clinical application has been limited because of its low solubility, stability, and bioavailability. To overcome the limitation of curcumin, several modified curcumin conjugates and curcumin mimics were developed and studied for their anti-cancer properties. In this review, we have focused on the application of curcumin mimics and their conjugates for breast cancer.
Collapse
|
16
|
Yun L, Li K, Liu C, Deng L, Li J. Dual-modified starch micelles as a promising nanocarrier for doxorubicin. Int J Biol Macromol 2022; 219:685-693. [PMID: 35878670 DOI: 10.1016/j.ijbiomac.2022.07.141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
Natural amphiphilic polymer micelles have garnered considerable research attention as nanocarriers for delivering drugs. The objective of this study was to explore the possibility of applying biocompatible dual-modified starch micelles as drug delivery vehicles. To this end, a dual-modified corn starch polymer (SCD) was synthesized with zwitterionic sulfobetaine and deoxycholic acid; spherical micelles with an average particle size of ~200 nm were prepared through the self-assembly of SCD. The effects of dual modification on the degree of substitution, molecular structure, and functional properties of SCD were investigated. Further, doxorubicin was successfully incorporated into the micelles, and an in vitro drug release study was performed to confirm that the drug-loaded micelles displayed pH-sensitive properties with controlled and sustained release. The dissolve-diffuse-erosion-degradation release process was described according to the dynamic models of drug release for SCD micelles. The results can be used as reference information for further studies in the biotechnology and pharmaceutical domains.
Collapse
Affiliation(s)
- Linqi Yun
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; The Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, PR China
| | - Cancan Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Ligao Deng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
17
|
Wu Z, Li H, Zhao X, Ye F, Zhao G. Hydrophobically modified polysaccharides and their self-assembled systems: A review on structures and food applications. Carbohydr Polym 2022; 284:119182. [DOI: 10.1016/j.carbpol.2022.119182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023]
|
18
|
Zhao L, Tong Q, Liu Y, Geng Z, Yin L, Xu W, Rehman A. Fabrication and characterization of octenyl succinic anhydride modified pullulan micelles for encapsulating curcumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2874-2884. [PMID: 34755344 DOI: 10.1002/jsfa.11628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Curcumin has become increasingly popular in functional foods and beverages field as a result of its high biological activity. Nevertheless, the application of curcumin is usually limited by its poor water solubility, low absorption, rapid metabolism and instability. Accordingly, the development of an appropriate wall material is crucial for its effective use. In the present study, curcumin-octenyl succinic anhydride modified pullulan (Cur-OSAP) micelles were successfully prepared by an anti-solvent co-precipitation method. RESULTS Octenyl succinic anhydride modified pullulan (OSAP) micelles exhibited the highest encapsulation efficiency (57.31%) and loading capacity (5.73%) of curcumin when the mass ratio of OSAP to curcumin was 10:1 and the degree of substitution of OSAP was 0.0469, at which point Cur-OSAP micelles formed via hydrogen binding and hydrophobic interactions, as confirmed by Fourier transform infrared and fluorescence techniques. The transmission electron microscopy results showed that the Cur-OSAP micelles were roughly spherical in shape with diameters in the approximate range 30-60 nm. CONCLUSION The encapsulation of OSAP greatly improved photostability and sustained release properties of curcumin in Cur-OSAP micelles. These findings suggest that OSAP can be used as a carrier to encapsulate and protect hydrophobic food ingredients. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qunyi Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yutong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ziwei Geng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lichen Yin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wentian Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Dib T, Pan H, Chen S. Recent Advances in Pectin-based Nanoencapsulation for Enhancing the Bioavailability of Bioactive Compounds: Curcumin Oral Bioavailability. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2012796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thamila Dib
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
20
|
Amekyeh H, Alkhader E, Sabra R, Billa N. Prospects of Curcumin Nanoformulations in Cancer Management. Molecules 2022; 27:361. [PMID: 35056675 PMCID: PMC8777756 DOI: 10.3390/molecules27020361] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
There is increasing interest in the use of natural compounds with beneficial pharmacological effects for managing diseases. Curcumin (CUR) is a phytochemical that is reportedly effective against some cancers through its ability to regulate signaling pathways and protein expression in cancer development and progression. Unfortunately, its use is limited due to its hydrophobicity, low bioavailability, chemical instability, photodegradation, and fast metabolism. Nanoparticles (NPs) are drug delivery systems that can increase the bioavailability of hydrophobic drugs and improve drug targeting to cancer cells via different mechanisms and formulation techniques. In this review, we have discussed various CUR-NPs that have been evaluated for their potential use in treating cancers. Formulations reviewed include lipid, gold, zinc oxide, magnetic, polymeric, and silica NPs, as well as micelles, dendrimers, nanogels, cyclodextrin complexes, and liposomes, with an emphasis on their formulation and characteristics. CUR incorporation into the NPs enhanced its pharmaceutical and therapeutic significance with respect to solubility, absorption, bioavailability, stability, plasma half-life, targeted delivery, and anticancer effect. Our review shows that several CUR-NPs have promising anticancer activity; however, clinical reports on them are limited. We believe that clinical trials must be conducted on CUR-NPs to ensure their effective translation into clinical applications.
Collapse
Affiliation(s)
- Hilda Amekyeh
- Department of Pharmaceutics, School of Pharmacy, University of Health and Allied Sciences, Ho PMB 31, Ghana;
| | - Enas Alkhader
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan;
| | - Rayan Sabra
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Nashiru Billa
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
21
|
Yap KM, Sekar M, Fuloria S, Wu YS, Gan SH, Mat Rani NNI, Subramaniyan V, Kokare C, Lum PT, Begum MY, Mani S, Meenakshi DU, Sathasivam KV, Fuloria NK. Drug Delivery of Natural Products Through Nanocarriers for Effective Breast Cancer Therapy: A Comprehensive Review of Literature. Int J Nanomedicine 2021; 16:7891-7941. [PMID: 34880614 PMCID: PMC8648329 DOI: 10.2147/ijn.s328135] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Despite recent advances in the diagnosis and treatment of breast cancer (BC), it remains a global health issue affecting millions of women annually. Poor prognosis in BC patients is often linked to drug resistance as well as the lack of effective therapeutic options for metastatic and triple-negative BC. In response to these unmet needs, extensive research efforts have been devoted to exploring the anti-BC potentials of natural products owing to their multi-target mechanisms of action and good safety profiles. Various medicinal plant extracts/essential oils and natural bioactive compounds have demonstrated anti-cancer activities in preclinical BC models. Despite the promising preclinical results, however, the clinical translation of natural products has often been hindered by their poor stability, aqueous solubility and bioavailability. There have been attempts to overcome these limitations, particularly via the use of nano-based drug delivery systems (NDDSs). This review highlights the tumour targeting mechanisms of NDDSs, the advantages and disadvantages of the major classes of NDDSs and their current clinical status in BC treatment. Besides, it also discusses the proposed anti-BC mechanisms and nanoformulations of nine medicinal plants' extracts/essential oils and nine natural bioactive compounds; selected via the screening of various scientific databases, including PubMed, Scopus and Google Scholar, based on the following keywords: "Natural Product AND Nanoparticle AND Breast Cancer". Overall, these nanoformulations exhibit improved anti-cancer efficacy against preclinical BC models, with some demonstrating biocompatibility with normal cell lines and mouse models. Further clinical studies are, however, warranted to ascertain their efficacy and biocompatibility in humans.
Collapse
Affiliation(s)
- Kah Min Yap
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | | - Chandrakant Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society’s, Sinhgad Institute of Pharmacy, Narhe, Pune, 411041, India
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Asir-Abha, 61421, Saudi Arabia
| | - Shankar Mani
- Department of Pharmaceutical Chemistry, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, Karnataka, 571418, India
| | | | | | | |
Collapse
|
22
|
Horue M, Rivero Berti I, Cacicedo ML, Castro GR. Microbial production and recovery of hybrid biopolymers from wastes for industrial applications- a review. BIORESOURCE TECHNOLOGY 2021; 340:125671. [PMID: 34333348 DOI: 10.1016/j.biortech.2021.125671] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Agro-industrial wastes to be a global concern since agriculture and industrial processes are growing exponentially with the fast increase of the world population. Biopolymers are complex molecules produced by living organisms, but also found in many wastes or derived from wastes. The main drawbacks for the use of polymers are the high costs of the polymer purification processes from waste and the scale-up in the case of biopolymer production by microorganisms. However, the use of biopolymers at industrial scale for the development of products with high added value, such as food or biomedical products, not only can compensate the primary costs of biopolymer production, but also improve local economies and environmental sustainability. The present review describes some of the most relevant aspects related to the synthesis of hybrid materials and nanocomposites based on biopolymers for the development of products with high-added value.
Collapse
Affiliation(s)
- Manuel Horue
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - Maximiliano L Cacicedo
- Children's Hospital, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG). Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000 Rosario, Santa Fe, Argentina.
| |
Collapse
|
23
|
Van Hung P, Duyen TTM, Phi NTL, Quynh TN. Fabrication and Functional Properties of Curcuma Starch Nanoparticles as Affected by Different Degree of Polymerization of Debranched Curcuma Starch. STARCH-STARKE 2021. [DOI: 10.1002/star.202100163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pham Van Hung
- Department of Food Technology International University Quarter 6, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Trinh Thi My Duyen
- Department of Food Technology International University Quarter 6, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Nguyen Thi Lan Phi
- Vietnam National University Ho Chi Minh City Vietnam
- Department of Food Technology Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
| | - Tran Nha Quynh
- Department of Food Technology International University Quarter 6, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| |
Collapse
|
24
|
Structure and Applications of Pectin in Food, Biomedical, and Pharmaceutical Industry: A Review. COATINGS 2021. [DOI: 10.3390/coatings11080922] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pectin is a biocompatible polysaccharide with intrinsic biological activity, which may exhibit different structures depending on its source or extraction method. The extraction of pectin from various industrial by-products presents itself as a green option for the valorization of agro-industrial residues by producing a high commercial value product. Pectin is susceptible to physical, chemical, and/or enzymatic changes. The numerous functional groups present in its structure can stimulate different functionalities, and certain modifications can enable pectin for countless applications in food, agriculture, drugs, and biomedicine. It is currently a trend to use pectin to produce edible coating to protect foodstuff, antimicrobial bio-based films, nanoparticles, healing agents, and cancer treatment. Advances in methodology, use of different sources of extraction, and knowledge about structural modification have significantly expanded the properties, yields, and applications of this polysaccharide. Recently, structurally modified pectin has shown better functional properties and bioactivities than the native one. In addition, pectin can be used in conjunction with a wide variety of biopolymers with differentiated properties and specific functionalities. In this context, this review presents the structural characteristics and properties of pectin and information on the modification of this polysaccharide, its respective applications, perspectives, and future challenges.
Collapse
|
25
|
Mundlia J, Ahuja M, Kumar P. Enhanced biological activity of polyphenols on conjugation with gellan gum. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1760273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jyoti Mundlia
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Munish Ahuja
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Pradeep Kumar
- Faculty of Health Sciences, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Parktown, South Africa
| |
Collapse
|
26
|
Evaluation of the bioaccessibility of tetrahydrocurcumin-hyaluronic acid conjugate using in vitro and ex vivo models. Int J Biol Macromol 2021; 182:1322-1330. [PMID: 34004198 DOI: 10.1016/j.ijbiomac.2021.05.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Tetrahydrocurcumin-hyaluronic acid (THC-HA) conjugate was synthesized in order to improve the bioaccessibility of tetrahydrocurcumin (THC). The successful conjugation was confirmed by the results from 1H-nuclear magnetic resonance (1H NMR), Differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Bioaccessibility enhancement from the THC-HA conjugate compared to the free crystalline THC suspension was demonstrated by the results from ex vivo Franz diffusion cell using small intestine from porcine and in vitro TNO dynamic gastrointestinal model-1 (TIM-1). Additionally, in vitro release was studied, and the integrity of the conjugate in both simulated gastric and intestinal conditions was found to maintain for up to 4 h. Mucoadhesive assay and rheological results indicated that the mucoadhesive property of THC-HA, in combination with the aqueous solubility enhancement, might contribute to the increased bioaccessibility. This study provides a promising approach to enhance the bioaccessibility of tetrahydrocurcumin through the innovative conjugation with hyaluronic acid.
Collapse
|
27
|
Chen Y, Jia D, Wang Q, Sun Y, Rao Z, Lei X, Zhao J, Zeng K, Xu Z, Ming J. Promotion of the anticancer activity of curcumin based on a metal-polyphenol networks delivery system. Int J Pharm 2021; 602:120650. [PMID: 33957265 DOI: 10.1016/j.ijpharm.2021.120650] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022]
Abstract
Curcumin (Cur), a hydrophobic active pharmaceutical ingredient with high anticancer activity, has poor water solubility and low bioavailability. Although many delivery systems have been developed to improve their bioavailability, some limitation such as low drug loading efficiency and poor stability are still remained. The metal-polyphenol networks (MPNs) delivery system designed in this subject solved above problems and effectively improved the anticancer activity of Cur. The synthesized Cur@EGCG-Fe(III) is consisting of epigallocatechin gallate (EGCG), iron chloride (FeCl3) and Cur, and the well-designed structure endow Cur@EGCG-Fe(III) high loading efficiency, good water solubility and stability. After the Cur@EGCG-Fe(III) nanoparticles were internalized by MCF-7 cells, the Cur could be released in endo/lysosomal microenvironment (pH = 5.0), and the Cur delivery in the deep tumor could be realized. The distribution of Cur@EGCG-Fe(III) in MCF-7 cells was analyzed by laser confocal, and Cur@EGCG-Fe(III) could effectively deliver more Cur into MCF-7 cells in comparison with free Cur. In addition, the results of flow cytometry and western blot further indicated that Cur@EGCG-Fe(III) had a stronger ability to induce apoptosis than free Cur. Transwell cell migration and invasion experiments showed that Cur and EGCG-Fe(III) had a synergistic effect in inhibiting MCF-7 cell migration and invasion. In vitro hemolysis and in vivo experiments showed that the Cur@EGCG-Fe(III) had negligible effect on the blood environment and a great tumor-inhibition efficacy, indicating that the MPNs delivery system had a good blood compatibility and antitumor activity. Our results indicated that MPNs-coated Cur nanoparticle could be a new form of Cur delivery system for anticancer application.
Collapse
Affiliation(s)
- Yuanyuan Chen
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Die Jia
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Qiming Wang
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yueru Sun
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhenan Rao
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
28
|
Tao Y, Zheng D, Zhao J, Liu K, Liu J, Lei J, Wang L. Self-Assembling pH-Responsive Nanoparticle Platform Based on Pectin-Doxorubicin Conjugates for Codelivery of Anticancer Drugs. ACS OMEGA 2021; 6:9998-10004. [PMID: 34056155 PMCID: PMC8153661 DOI: 10.1021/acsomega.0c06131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceutical science based on biological nanotechnology is developing rapidly in parallel with the development of nanomaterials and nanotechnology in general. Pectin is a natural polysaccharide obtainable from a wide range of sources. Here, we show that doxorubicin (DOX)-conjugated hydrophilic pectin (PET) comprising an amphiphilic polymer loaded with hydrophobic dihydroartemisinin (DHA) self-assemble into nanoparticles. Importantly, conjugated DOX and DHA could be released quickly in a weakly acidic environment by cleavage of the acid-sensitive acyl hydrazone bond. Confocal microscopy and flow cytometry confirmed that these PET-DOX/DHA nanoparticles efficiently delivered DOX into the nuclei of MCF-7 cells. Significant tumor growth reduction was monitored in a female C57BL/6 mouse model, showing that the PET-DOX/DHA nanoparticle-mediated drug delivery system inhibited tumor growth and may improve therapy. Thus, we have demonstrated that pectin may be useful in the design of materials for biomedical applications.
Collapse
Affiliation(s)
- Yinghua Tao
- Beijing
Key Laboratory of Lignocellulosic Chemistry, College of Material Science
and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- Westlake
University, Hangzhou 310024, P. R. China
| | - Dan Zheng
- Beijing
Key Laboratory of Lignocellulosic Chemistry, College of Material Science
and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jingyang Zhao
- Beijing
Key Laboratory of Lignocellulosic Chemistry, College of Material Science
and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Kefeng Liu
- Beijing
Key Laboratory of Lignocellulosic Chemistry, College of Material Science
and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250353, Shandong, P. R. China
| | - Jing Liu
- Beijing
Key Laboratory of Lignocellulosic Chemistry, College of Material Science
and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jiandu Lei
- Beijing
Key Laboratory of Lignocellulosic Chemistry, College of Material Science
and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Luying Wang
- Beijing
Key Laboratory of Lignocellulosic Chemistry, College of Material Science
and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
29
|
Chen M, Li L, Xia L, Jiang S, Kong Y, Chen X, Wang H. The kinetics and release behaviour of curcumin loaded pH-responsive PLGA/chitosan fibers with antitumor activity against HT-29 cells. Carbohydr Polym 2021; 265:118077. [PMID: 33966841 DOI: 10.1016/j.carbpol.2021.118077] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 12/27/2022]
Abstract
The bioavailability and clinical effect of curcumin (Cur) are greatly restricted due to its physicochemical instability and high hydrophobicity. To overcome the disadvantages, the nanofibers of poly(lactide-glycolide)/chitosan loaded with Cur (PLGA/CS/Cur) was developed here by electrospinning technique for controlled Cur delivery. The incorporated Cur was well-dispersed and maintained crystalline form in PLGA/CS fiber matrix by hydrogen bonding. The incorporation of Cur had no obvious influence on the fiber size and morphology but exerted impacts on thermal stability. At pH 7.4, the release followed Fickian diffusion mechanism; while at pH 2.0, the release followed the coexistence of diffusion and erosion mechanisms. In addition, the amount of Cur released at pH 2.0 was much higher than that at pH 7.4. As a result, the nanofibers demonstrated higher anticancer activity at acidic environment. Therefore, the PLGA/CS/Cur nanofibers may be served as a potential pH responsive vehicle for the controlled drug delivery.
Collapse
Affiliation(s)
- Minmin Chen
- School of Chemistry and Material Engineering, Chaohu University, 238000, Hefei, Anhui, PR China; School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009, Hefei, Anhui, PR China
| | - Linin Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009, Hefei, Anhui, PR China
| | - Li Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009, Hefei, Anhui, PR China
| | - Suwei Jiang
- Department of Biological and Environmental Engineering, Hefei University, 230601, Hefei, Anhui, PR China
| | - Yaqiong Kong
- School of Chemistry and Material Engineering, Chaohu University, 238000, Hefei, Anhui, PR China
| | - Xiaoju Chen
- School of Chemistry and Material Engineering, Chaohu University, 238000, Hefei, Anhui, PR China.
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009, Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009, Hefei, Anhui, PR China.
| |
Collapse
|
30
|
Sethiya A, Agarwal DK, Agarwal S. Current Trends in Drug Delivery System of Curcumin and its Therapeutic Applications. Mini Rev Med Chem 2021; 20:1190-1232. [PMID: 32348221 DOI: 10.2174/1389557520666200429103647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Curcumin is a poly phenolic compound extracted from turmeric. Over the past years, it has acquired significant interest among researchers due to its numerous pharmacological activities like anti- cancer, anti-alzheimer, anti-diabetic, anti-bacterial, anti-inflammatory and so on. However, the clinical use of curcumin is still obstructed due to tremendously poor bioavailability, rapid metabolism, lower gastrointestinal absorption, and low permeability through cell that makes its pharmacology thrilling. These issues have led to enormous surge of investigation to develop curcumin nano formulations which can overcome these restrictive causes. The scientists all across the universe are working on designing several drug delivery systems viz. liposomes, micelles, magnetic nano carriers, etc. for curcumin and its composites which not only improve its physiochemical properties but also enhanced its therapeutic applications. The review aims to systematically examine the treasure of information about the medicinal use of curcumin. This article delivers a general idea of the current study piloted to overwhelm the complications with the bioavailability of curcumin which have exhibited an enhanced biological activity than curcumin. This article explains the latest and detailed study of curcumin and its conjugates, its phytochemistry and biological perspectives and also proved curcumin as an efficient drug candidate for the treatment of numerous diseases. Recent advancements and futuristic viewpoints are also deliberated, which shall help researchers and foster commercial translations of improved nanosized curcumin combination for the treatment of various diseases.
Collapse
Affiliation(s)
- Ayushi Sethiya
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| | | | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| |
Collapse
|
31
|
Effect of sophorolipid on the curcumin-loaded ternary composite nanoparticles self-assembled from zein and chondroitin sulfate. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106493] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Gullón P, del Río PG, Gullón B, Oliveira D, Costa P, Lorenzo JM. Pectooligosaccharides as Emerging Functional Ingredients: Sources, Extraction Technologies, and Biological Activities. SUSTAINABLE PRODUCTION TECHNOLOGY IN FOOD 2021:71-92. [DOI: 10.1016/b978-0-12-821233-2.00004-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
33
|
Chen L, Song Z, Zhi X, Du B. Photoinduced Antimicrobial Activity of Curcumin-Containing Coatings: Molecular Interaction, Stability and Potential Application in Food Decontamination. ACS OMEGA 2020; 5:31044-31054. [PMID: 33324812 PMCID: PMC7726744 DOI: 10.1021/acsomega.0c04065] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/26/2020] [Indexed: 06/01/2023]
Abstract
Polyvinyl acetate (PVAc) and curcumin (Cu) were utilized for preparing new protecting PVAc-Cu x (x = 1, 5 and 10) coatings exerting antimicrobial photodynamic activity upon white light irradiation. Toward Salmonella typhimurium or Staphylococcus aureus, the killing efficiency represented the dependence on the Cu concentration and irradiation intensity. Toward S. aureus, the killing efficiency of PVAc-Cu 10 coating reached 93% at an energy density of 72 J/cm2. With the change in storage time of coating, the results implied significant stability of photosterilization efficiency within 60 days. Compared with the control experiment, lower total viable counts (TVCs) and total volatile basic nitrogen (TVB-N) values in fresh meat packaged by PVDC films with PVAc-Cu 10 coatings during storage at 4 °C demonstrated the practicability of the PVAc-Cu x coatings in decontaminating fresh pork. PVAc packed curcumin tightly within polymer chains, thus preventing tautomerization or, more probably, conformational transition, which is advantageous for improving photostability and emission lifetime.
Collapse
Affiliation(s)
- Liwei Chen
- Beijing Laboratory of Food Quality
and Safety, Beijing Key Laboratory of Agricultural Product Detection
and Control of Spoilage Organisms and Pesticide Residue, Faculty of
Food Science and Engineering, Beijing University
of Agriculture, Beijing 102206, China
| | - Ziyue Song
- Beijing Laboratory of Food Quality
and Safety, Beijing Key Laboratory of Agricultural Product Detection
and Control of Spoilage Organisms and Pesticide Residue, Faculty of
Food Science and Engineering, Beijing University
of Agriculture, Beijing 102206, China
| | - Xiujuan Zhi
- Beijing Laboratory of Food Quality
and Safety, Beijing Key Laboratory of Agricultural Product Detection
and Control of Spoilage Organisms and Pesticide Residue, Faculty of
Food Science and Engineering, Beijing University
of Agriculture, Beijing 102206, China
| | - Bin Du
- Beijing Laboratory of Food Quality
and Safety, Beijing Key Laboratory of Agricultural Product Detection
and Control of Spoilage Organisms and Pesticide Residue, Faculty of
Food Science and Engineering, Beijing University
of Agriculture, Beijing 102206, China
| |
Collapse
|
34
|
Wang Y, Han Q, Wang Y, Qin D, Luo Q, Zhang H. Self-assembly, rheological properties and antioxidant activities of chitosan grafted with tryptophan and phenylalanine. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Liu J, Tan J, Hua X, Jiang Z, Wang M, Yang R, Cao Y. Interfacial properties of ultrahigh methoxylated pectin. Int J Biol Macromol 2020; 152:403-410. [PMID: 32105690 DOI: 10.1016/j.ijbiomac.2020.02.264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/14/2020] [Accepted: 02/23/2020] [Indexed: 11/16/2022]
Abstract
The interfacial properties of ultrahigh methoxylated pectin (UHMP) prepared via esterification of citrus pectin (CP) were investigated. The intrinsic viscosity ([η]) of pectin was significantly decreased from 1211.5 mL/g to 294.9 mL/g as the degree of methylation (DM) increased from 63.18 ± 0.08% to 91.52 ± 0.11%. Surface tension (γ) analysis indicated that UHMP had a critical micelle concentration (CMC) of 0.8 g/L, which was slightly smaller than that of sugar beet pectin (SBP) (1.0 g/L). The morphology of the UHMP aggregation presented a network structure and irregular clusters at 10 μg/mL and 1 μg/mL based on atomic force microscopy (AFM). Transmission electron microscopy (TEM) observations further confirmed the self-aggregation behaviours and rod-like micelles of UHMP. The surface excess (Γ) was 1.69 ± 0.17 μmol/m2 for UHMP, which was lower than the values of SBP (1.88 ± 0.21 μmol/m2) and CP (2.91 ± 0.57 μmol/m2). Correspondingly, UHMP possessed the highest molecular area (A) of 0.99 ± 0.10 nm2. Thus, UHMP was proposed to be more flexible and extendable at the interface. The interfacial shear rheology study suggested that UHMP was able to form an elastic-dominant interfacial film to stabilize the oil/water interface.
Collapse
Affiliation(s)
- Jingran Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Jing Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Xiao Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China.
| | - Zhumao Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business, China; College of Life Sciences, Yantai University, 26400 Yantai, China
| | - Mingming Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business, China
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business, China.
| |
Collapse
|
36
|
Mohammadian Haftcheshmeh S, Karimzadeh MR, Azhdari S, Vahedi P, Abdollahi E, Momtazi-Borojeni AA. Modulatory effects of curcumin on the atherogenic activities of inflammatory monocytes: Evidence from in vitro and animal models of human atherosclerosis. Biofactors 2020; 46:341-355. [PMID: 31875344 DOI: 10.1002/biof.1603] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is a complex and long-lasting disorder characterized by chronic inflammation of arteries that leads to the initiation and progression of lipid-rich plaques, in which monocytes/macrophages play the central role in endothelial inflammation and taking up these lipids. Circulating monocytes can adopt a long-term proinflammatory phenotype leading to their atherogenic activities. During atherogenic condition, inflammatory monocytes adhere to the surface of the activated endothelial cells and then transmigrate across the endothelial monolayer into the intima, where they proliferate and differentiate into macrophages and take up the lipoproteins, forming foam cells that derive atherosclerosis progression. Therefore, modulating the atherogenic activities of inflammatory monocytes can provide a valuable therapeutic approach for atherosclerosis prevention and treatment. Curcumin is a naturally occurring polyphenolic compound with numerous pharmacological activities and shows protective effects against atherosclerosis; however, underlying mechanisms are not clearly known yet. In the present review, on the basis of a growing body of evidence, we show that curcumin can exert antiatherosclerotic effect through inhibiting the atherogenic properties of monocytes, including inflammatory cytokine production, adhesion, and transendothelial migration, as well as intracellular cholesterol accumulation.
Collapse
Affiliation(s)
| | - Mohammad R Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Elham Abdollahi
- Department of Medical Immunology and Allergy, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir A Momtazi-Borojeni
- Halal Research Center of IRI, FDA, Tehran, Iran
- Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Yang W, Liang X, Xu L, Deng C, Jin W, Wang X, Kong Y, Duan M, Nei Y, Zeng J, Li B. Structures, fabrication mechanisms, and emulsifying properties of self-assembled and spray-dried ternary complexes based on lactoferrin, oat β-glucan and curcumin: A comparison study. Food Res Int 2020; 131:109048. [PMID: 32247490 DOI: 10.1016/j.foodres.2020.109048] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/10/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022]
Abstract
Protein-polyphenol-polysaccharide non-covalent ternary complexes possess many unique structural and functional properties. However, rare work is available to fabricate the neutral polysaccharide-based ternary complexes. Herein, the ternary complexes composed of lactoferrin (LF), oat β-glucan (OG), and curcumin (Cur) with three binding sequences were successfully developed through self-assembly technique and spray drying technique, respectively. Spray drying could enhance the extent of the intermolecular associations among LF, OG, and Cur, leading to the formation of ternary complexes with smaller particle sizes and lower turbidities. Cur can be loaded in LF-OG complexes to form an amorphous complex through the intermolecular interactions (mainly hydrophobic interactions and hydrogen bonding). The ternary complexes can be used as potential emulsifiers to stabilize oil-in-water Pickering emulsions. The emulsifying capacity (to enhance physical stability) of the complexes was in the order as follows: the spray-dried ternary complexes > the spray-dried LF-OG complexes > the self-assembled ternary complexes > the self-assembled LF-OG complexes. The structural and functional properties (e.g., emulsifying property) of OG-based ternary complexes can be controlled by adjusting the binding sequences. These results will broaden our current understanding of protein-polyphenol-polysaccharide ternary complexes and provide more applications of OG in food, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Wei Yang
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China.
| | - Xinhong Liang
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Linshuang Xu
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Chujun Deng
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
| | - Xiaohui Wang
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Yaru Kong
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Mengge Duan
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Yuanyang Nei
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Jie Zeng
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Bo Li
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China.
| |
Collapse
|
38
|
Nano-micelles based on hydroxyethyl starch-curcumin conjugates for improved stability, antioxidant and anticancer activity of curcumin. Carbohydr Polym 2020; 228:115398. [DOI: 10.1016/j.carbpol.2019.115398] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 12/18/2022]
|
39
|
Dextran-Curcumin Nanoparticles as a Methotrexate Delivery Vehicle: A Step Forward in Breast Cancer Combination Therapy. Pharmaceuticals (Basel) 2019; 13:ph13010002. [PMID: 31881645 PMCID: PMC7169412 DOI: 10.3390/ph13010002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
With the aim to effectively deliver methotrexate (MTX) to breast cancer cells, we designed a nanocarrier system (DC) derived from the self-assembly of a dextran-curcumin conjugate prepared via enzyme chemistry with immobilized laccase acting as a solid biocatalyst. Nanoparticles consisted of homogeneously dispersed nanospheres with a mean diameter of 290 nm, as characterized by combined transmission electron microscopy and dynamic light scattering investigations. DC was able to control the MTX release overtime (t1/2 value of 310 min), with cell internalization studies proving its presence inside MCF-7 cytoplasm. Finally, improved MTX efficacy was obtained in viability assays, and attributed to the synergy of curcumin moieties and loaded MTX as underlined by a combination index (CI) < 1.
Collapse
|
40
|
Wang Y, Chen J, Han Q, Luo Q, Zhang H, Wang Y. Construction of doxorubicin-conjugated lentinan nanoparticles for enhancing the cytotoxocity effects against breast cancer cells. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Karabasz A, Lachowicz D, Karewicz A, Mezyk-Kopec R, Stalińska K, Werner E, Cierniak A, Dyduch G, Bereta J, Bzowska M. Analysis of toxicity and anticancer activity of micelles of sodium alginate-curcumin. Int J Nanomedicine 2019; 14:7249-7262. [PMID: 31564877 PMCID: PMC6735652 DOI: 10.2147/ijn.s213942] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Background Curcumin is a natural polyphenol with anti-inflammatory, chemopreventive and anticancer activity. However, its high hydrophobicity and poor bioavailability limit its medical application. The development of nanocarriers for curcumin delivery is an attractive approach to overcome its low bioavailability and fast metabolism in the liver. We synthesized a blood compatible alginate-curcumin conjugate, AA-Cur, which formed colloidally stable micelles of approximately 200 nm and, as previously shown, exerted strong cytotoxicity against mouse cancer cell lines. Here we analyze in vivo toxicity and antitumor activity of AA-Cur in two different mouse tumor models. Method Potential toxicity of intravenously injected AA-Cur was evaluated by: i) analyses of blood parameters (morphology and biochemistry), ii) histology, iii) DNA integrity (comet assay), and iv) cytokine profiling (flow cytometry). Antitumor activity of AA-Cur was evaluated by measuring the growth of subcutaneously inoculated colon MC38-CEA- or orthotopically injected breast 4T1 tumor cells in control mice vs mice treated with AA-Cur. Results Injections of four doses of AA-Cur did not reveal any toxicity of the conjugate, thus indicating the safety of its use. AA-Cur elicited moderate anti-tumor activity toward colon MC38-CEA or breast 4T1 carcinomas. Conclusion The tested conjugate of alginate and curcumin, AA-Cur, is non-toxic and safe, but exhibits limited anticancer activity.
Collapse
Affiliation(s)
- Alicja Karabasz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Dorota Lachowicz
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Kraków, Poland
| | - Anna Karewicz
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Renata Mezyk-Kopec
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krystyna Stalińska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ewa Werner
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.,Department of Animal Reproduction and Anatomy, Faculty of Animal Science, University of Agriculture, Krakow, Poland
| | - Agnieszka Cierniak
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Grzegorz Dyduch
- Department of Pathomorphology, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
42
|
Cross-linking of hyaluronic acid by curcumin analogue to construct nanomicelles for delivering anticancer drug. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Improved antioxidant, antimicrobial and anticancer activity of naringenin on conjugation with pectin. 3 Biotech 2019; 9:312. [PMID: 31406634 DOI: 10.1007/s13205-019-1835-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
The purpose of the present study was to improve the aqueous solubility of naringenin by conjugating with water-soluble polysaccharide carrier, pectin. The pectin-naringenin conjugate was synthesized employing dicyclohexylcarbodiimide and dimethylaminopyridine. The conjugation was confirmed by various physicochemical characterizations. The results of differential scanning calorimetry, X-ray diffraction and morphological analyses revealed semi-crystalline nature of the conjugate. The chromatographic analysis showed 37.069 µg naringenin/mg of conjugate. The conjugate was determined to have molecular weight of 6.22 × 104 kDa by static light scattering. In silico molecular mechanistic simulations performed for pectin and naringenin revealed the energetic and geometrical stability within the polysaccharide-polyphenol conjugate. The critical aggregation concentration was in the range of 44.67-56.23 μg/mL as determined by dynamic light scattering and fluorescence spectroscopy. On in vitro release, 99.4% (pH 1.2) and 57.62% (pH 7.4) of naringenin were found to be released over a period of 30 h and 48 h, respectively. Further, the release of naringenin followed Higuchi's square-root kinetics with diffusion as the possible release mechanism. A comparative evaluation for antioxidant activity revealed a significantly higher radical scavenging activity of conjugate over the naringenin. Further, the conjugate exhibited significantly higher antimicrobial action against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa while a comparable antimicrobial activity was observed against Escherichia coli and Bacillus subtilis. The cytotoxicity studies of the synthesized conjugate showed anti-cancer activity against NIH: OVCAR-5 cells. In conclusion, the pectin-naringenin conjugate presented hydrocolloidal properties with improved therapeutic efficacy and delivery over the native polyphenol.
Collapse
|
44
|
Diao J, Bai F, Wang Y, Han Q, Xu X, Zhang H, Luo Q, Wang Y. Engineering of pectin-dopamine nano-conjugates for carrying ruthenium complex: A potential tool for biomedical applications. J Inorg Biochem 2019; 191:135-142. [DOI: 10.1016/j.jinorgbio.2018.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/22/2018] [Accepted: 11/25/2018] [Indexed: 11/27/2022]
|
45
|
Lycium barbarum polysaccharides grafted with doxorubicin: An efficient pH-responsive anticancer drug delivery system. Int J Biol Macromol 2019; 121:964-970. [DOI: 10.1016/j.ijbiomac.2018.10.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/28/2018] [Accepted: 10/14/2018] [Indexed: 12/19/2022]
|
46
|
Minzanova ST, Mironov VF, Arkhipova DM, Khabibullina AV, Mironova LG, Zakirova YM, Milyukov VA. Biological Activity and Pharmacological Application of Pectic Polysaccharides: A Review. Polymers (Basel) 2018; 10:E1407. [PMID: 30961332 PMCID: PMC6401843 DOI: 10.3390/polym10121407] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 01/07/2023] Open
Abstract
Pectin is a polymer with a core of alternating α-1,4-linked d-galacturonic acid and α-1,2-l-rhamnose units, as well as a variety of neutral sugars such as arabinose, galactose, and lesser amounts of other sugars. Currently, native pectins have been compared to modified ones due to the development of natural medicines and health products. In this review, the results of a study of the bioactivity of pectic polysaccharides, including its various pharmacological applications, such as its immunoregulatory, anti-inflammatory, hypoglycemic, antibacterial, antioxidant and antitumor activities, have been summarized. The potential of pectins to contribute to the enhancement of drug delivery systems has been observed.
Collapse
Affiliation(s)
- Salima T Minzanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Vladimir F Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Daria M Arkhipova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Anna V Khabibullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Lubov G Mironova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Yulia M Zakirova
- Kazan (Volga region) Federal University, Kazan University, KFU, Kazan 420008, Russia.
| | - Vasili A Milyukov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| |
Collapse
|
47
|
Xu XY, Meng X, Li S, Gan RY, Li Y, Li HB. Bioactivity, Health Benefits, and Related Molecular Mechanisms of Curcumin: Current Progress, Challenges, and Perspectives. Nutrients 2018; 10:E1553. [PMID: 30347782 PMCID: PMC6213156 DOI: 10.3390/nu10101553] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Curcumin is a principal curcuminoid of turmeric (Curcuma longa), which is commonly used as a spice in cooking and a yellow pigment in the food processing industry. Recent studies have demonstrated that curcumin has a variety of biological activities and pharmacological performances, providing protection and promotion of human health. In addition to presenting an overview of the gut metabolism of curcumin, this paper reviews the current research progress on its versatile bioactivity, such as antioxidant, anti-inflammatory, and immune-regulatory activities, and also intensively discusses its health benefits, including the protective or preventive effects on cancers and diabetes, as well as the liver, nervous system, and cardiovascular systems, highlighting the potential molecular mechanisms. Besides, the beneficial effects of curcumin on human are further stated based on clinical trials. Considering that there is still a debate on the beneficial effects of curcumin, we also discuss related challenges and prospects. Overall, curcumin is a promising ingredient of novel functional foods, with protective efficacy in preventing certain diseases. We hope this comprehensive and updated review will be helpful for promoting human-based studies to facilitate its use in human health and diseases in the future.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiao Meng
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ya Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
48
|
Mundlia J, Ahuja M, Kumar P, Pillay V. Pectin–curcumin composite: synthesis, molecular modeling and cytotoxicity. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2538-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Xu WW, Zheng CC, Huang YN, Chen WY, Yang QS, Ren JY, Wang YM, He QY, Liao HX, Li B. Synephrine Hydrochloride Suppresses Esophageal Cancer Tumor Growth and Metastatic Potential through Inhibition of Galectin-3-AKT/ERK Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9248-9258. [PMID: 30113849 DOI: 10.1021/acs.jafc.8b04020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A library consisting of 429 food-source compounds was used to screen the natural products with anticancer properties in esophageal squamous cell carcinoma (ESCC). We demonstrated for the first time that synephrine, an active compound isolated from leaves of citrus trees, markedly suppressed cell proliferation (inhibition rate with 20 μM synephrine at day 5:71.1 ± 5.8% and 75.7 ± 6.2% for KYSE30 and KYSE270, respectively) and colony formation (inhibition rate with 10 μM synephrine: 86.5 ± 5.9% and 82.3 ± 4.5% for KYSE30 and KYSE270, respectively), as well as migration (inhibition rate with 10 μM synephrine: 76.9 ± 4.4% and 62.2 ± 5.8% for KYSE30 and KYSE270, respectively) and invasion abilities (inhibition rate with 10 μM synephrine: 73.3 ± 7.5% and 75.3 ± 3.4% for KYSE30 and KYSE270, respectively) of ESCC cells in a dose-dependent manner, without significant toxic effect on normal esophageal epithelial cells. Mechanistically, quantitative proteomics and bioinformatics analyses were performed to explore the synephrine-regulated proteins. Western blot and qRT-PCR data indicated that synephrine may downregulate Galectin-3 to inactivate AKT and ERK pathways. In addition, we found that the sensitivity of ESCC to fluorouracil (5-FU) could be enhanced by synephrine. Furthermore, in vivo experiments showed that synephrine had significant antitumor effect on ESCC tumor xenografts in nude mice (inhibition rate with 20 mg/kg synephrine is 61.3 ± 20.5%) without observed side effects on the animals. Taken together, synephrine, a food-source natural product, may be a potential therapeutic strategy in ESCC.
Collapse
Affiliation(s)
- Wen Wen Xu
- Institute of Biomedicine, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- National Engineering Research Center of Genetic Medicine , Jinan University , Guangzhou 510632 , P. R. China
| | - Can-Can Zheng
- Institute of Biomedicine, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Yun-Na Huang
- Institute of Biomedicine, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- National Engineering Research Center of Genetic Medicine , Jinan University , Guangzhou 510632 , P. R. China
| | - Wen-You Chen
- Department of Thoracic Surgery, First Affiliated Hospital , Jinan University , Guangzhou 510632 , P. R. China
| | - Qing-Sheng Yang
- Department of Thoracic Surgery, First Affiliated Hospital , Jinan University , Guangzhou 510632 , P. R. China
| | - Jia-Yi Ren
- School of Traditional Chinese Medicine , Jinan University , Guangzhou 510632 , P. R. China
| | - Yue-Ming Wang
- Institute of Biomedicine, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- National Engineering Research Center of Genetic Medicine , Jinan University , Guangzhou 510632 , P. R. China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Hua-Xin Liao
- Institute of Biomedicine, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- National Engineering Research Center of Genetic Medicine , Jinan University , Guangzhou 510632 , P. R. China
| | - Bin Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| |
Collapse
|
50
|
Peng S, Li Z, Zou L, Liu W, Liu C, McClements DJ. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Food Funct 2018. [PMID: 29517797 DOI: 10.1039/c7fo01814b] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Curcumin is a bioactive phytochemical that can be utilized as a nutraceutical or pharmaceutical in functional foods, supplements, and medicines. However, the application of curcumin as a nutraceutical in commercial food and beverage products is currently limited by its low water-solubility, chemical instability, and poor oral bioavailability. In this study, all-natural colloidal delivery systems were developed to overcome these challenges, which consisted of saponin-coated curcumin nanoparticles formed using a pH-driven loading method. The physicochemical and structural properties of the curcumin nanoparticles formed using this process were characterized, including particle size distribution, surface potential, morphology, encapsulation efficiency, and loading capacity. Fourier transform infrared spectroscopy and X-ray diffraction indicated that curcumin was present in the nanoparticles in an amorphous form. The curcumin nanoparticles were unstable to aggregation at low pH values (<3) and high NaCl concentrations (>200 mM), which was attributed to a reduction in electrostatic repulsion between them. However, they were stable at higher pH values (3 to 8) and lower NaCl levels (0 to 200 mM), due to a stronger electrostatic repulsion between them. They also exhibited good stability during refrigerated storage (4 °C) or after conversion into a powdered form (lyophilized). A simulated gastrointestinal tract study demonstrated that the in vitro bioaccessibility was around 3.3-fold higher for curcumin nanoparticles than for free curcumin. Furthermore, oral administration to Sprague Dawley rats indicated that the in vivo bioavailability was around 8.9-fold higher for curcumin nanoparticles than for free curcumin. These results have important implications for the development of curcumin-enriched functional foods, supplements, and drugs.
Collapse
Affiliation(s)
- Shengfeng Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China.
| | - Ziling Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China. and School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, PR China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China.
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China.
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|