1
|
Borg AN, Vuts J, Caulfield JC, Withall DM, Foulkes MJ, Birkett MA. Characterisation of aphid antixenosis in aphid-resistant ancestor wheat, Triticum monococcum. PEST MANAGEMENT SCIENCE 2024. [PMID: 39152728 DOI: 10.1002/ps.8380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Due to the increasing presence of insecticide resistance across cereal aphid populations, new aphid management strategies, including the engineering of host resistance to aphids into commercial wheat varieties, are required. Previous studies have identified ancestor wheat, Triticum monococcum accessions MDR045 and MDR049, with resistance against the grain aphid, Sitobion avenae. To test the hypothesis that resistance can be accounted for by antixenosis (reduced attractiveness of host plants) via the release of repellent volatile organic compounds (VOCs), we explored the response of S. avenae to MDR045 and MDR049 following S. avenae herbivory, using behaviour and electrophysiology experiments. RESULTS In four-arm olfactometry assays, alate S. avenae showed aphid density-dependent reduced preference to VOC extracts from T. monococcum MDR045 and MDR049. By contrast, alate S. avenae showed aphid density-dependent increased preference to extracts from aphid-susceptible hexaploid wheat, Triticum aestivum var. Solstice and T. monococcum MDR037. Coupled gas chromatography-electroantennography (GC-EAG), using the antennae of alate S. avenae, located 24 electrophysiologically active compounds across all tested accessions. Synthetic blends created from 21 identified EAG-active compounds confirmed bioactivity of corresponding VOC extracts in four-arm olfactometry assays against alate S. avenae. CONCLUSION Our data suggest that resistance of T. monococcum MDR045 and MDR049 to S. avenae can be at least partially accounted for by antixenosis through antennal perception of specific repellent VOC blends induced by S. avenae feeding behaviour. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexander N Borg
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
- Division of Plant and Crop Sciences, The University of Nottingham, Loughborough, UK
| | - József Vuts
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - John C Caulfield
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - David M Withall
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - M John Foulkes
- Division of Plant and Crop Sciences, The University of Nottingham, Loughborough, UK
| | - Michael A Birkett
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| |
Collapse
|
2
|
Zhang Y, Liu X, Sun Y, Liu Y, Zhang Y, Ding T, Chen J. Salivary Protein Cyclin-Dependent Kinase-like from Grain Aphid Sitobion avenae Suppresses Wheat Defense Response and Enhances Aphid Adaptation. Int J Mol Sci 2024; 25:4579. [PMID: 38731798 PMCID: PMC11083452 DOI: 10.3390/ijms25094579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Aphids are insect pests that suck phloem sap and introduce salivary proteins into plant tissues through saliva secretion. The effector of salivary proteins plays a key role in the modulation of host plant defense responses and enhancing aphid host adaptation. Based on previous transcriptome sequencing results, a candidate effector cyclin-dependent kinase-like (CDK) was identified from the grain aphid Sitobion avenae. In this study, the function of SaCDK in wheat defense response and the adaptation of S. avenae was investigated. Our results showed that the transient overexpression of SaCDK in tobacco Nicotiana benthamiana suppressed cell death triggered by mouse pro-apoptotic protein-BAX or Phytophthora infestans PAMP-INF1. SaCDK, delivered into wheat cells through a Pseudomonas fluorescens-mediated bacterial type III secretion system, suppressed callose deposition in wheat seedlings, and the overexpression of SaCDK in wheat significantly decreased the expression levels of salicylic acid and jasmonic acid signaling pathway-related genes phenylalanine ammonia lyase (PAL), pathogenesis-related 1 protein (PR1), lipoxygenase (LOX) and Ω-3 fatty acid desaturase (FAD). In addition, aphid bioassay results showed that the survival and fecundity of S. avenae were significantly increased while feeding on the wheat plants carrying SaCDK. Taken together, our findings demonstrate that the salivary protein SaCDK is involved in inhibiting host defense response and improving its host adaptation, which lays the foundation to uncover the mechanism of the interaction of cereal aphids and host plants.
Collapse
Affiliation(s)
- Yumeng Zhang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| | - Yu Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| | - Yong Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| | - Tianbo Ding
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China;
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| |
Collapse
|
3
|
Pan C, He X, Xia L, Wei K, Niu Y, Han B. Proteomic Analysis of Salivary Secretions from the Tea Green Leafhopper, Empoasca flavescens Fabrecius. INSECTS 2024; 15:296. [PMID: 38667426 PMCID: PMC11050670 DOI: 10.3390/insects15040296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/24/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Saliva plays a crucial role in shaping the compatibility of piercing-sucking insects with their host plants. Understanding the complex composition of leafhopper saliva is important for developing effective and eco-friendly control strategies for the tea green leafhopper, Empoasca flavescens Fabrecius, a major piercing-sucking pest in Chinese tea plantations. This study explored the saliva proteins of tea green leafhopper adults using a custom collection device, consisting of two layers of Parafilm stretched over a sucrose diet. A total of 152 proteins were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS) following the filter-aided sample preparation (FASP). These proteins were categorized into six groups based on their functions, including enzymes, transport proteins, regulatory proteins, cell structure proteins, other proteins, and unknown proteins. Bioinformatics analyses predicted 16 secreted proteins, which were successfully cloned and transcriptionally analyzed across various tissues and developmental stages. Genes encoding putative salivary secretory proteins, including Efmucin1, EfOBP1, EfOBP2, EfOBP3, Efmucin2, low-density lipoprotein receptor-related protein (EfLRP), EFVg1, and EFVg2, exhibited high expressions in salivary gland (SG) tissues and feeding-associated expressions at different developmental stages. These findings shed light on the potential elicitors or effectors mediating the leafhopper feeding and defense responses in tea plants, providing insights into the coevolution of tea plants and leafhoppers. The study's conclusions open avenues for the development of innovative leafhopper control technologies that reduce the reliance on pesticides in the tea industry.
Collapse
Affiliation(s)
| | | | | | | | - Yuqun Niu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (C.P.); (X.H.); (L.X.); (K.W.); (B.H.)
| | | |
Collapse
|
4
|
Chen J. Editorial: Aphids as plant pests: from biology to green control technology. FRONTIERS IN PLANT SCIENCE 2024; 14:1337558. [PMID: 38259912 PMCID: PMC10800563 DOI: 10.3389/fpls.2023.1337558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024]
Affiliation(s)
- Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Zhang Y, Fu Y, Liu X, Francis F, Fan J, Liu H, Wang Q, Sun Y, Zhang Y, Chen J. SmCSP4 from aphid saliva stimulates salicylic acid-mediated defence responses in wheat by interacting with transcription factor TaWKRY76. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2389-2407. [PMID: 37540474 PMCID: PMC10579719 DOI: 10.1111/pbi.14139] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Aphid salivary proteins are critical in modulating plant defence responses. Grain aphid Sitobion miscanthi is an important wheat pest worldwide. However, the molecular basis for the regulation of the plant resistance to cereal aphids remains largely unknown. Here, we show that SmCSP4, a chemosensory protein from S. miscanthi saliva, is secreted into wheat plants during aphid feeding. Delivery of SmCSP4 into wheat leaves activates salicylic acid (SA)-mediated plant defence responses and subsequently reduces aphid performance by deterring aphid feeding behaviour. In contrast, silencing SmCSP4 gene via nanocarrier-mediated RNAi significantly decreases the ability of aphids to activate SA defence pathway. Protein-protein interaction assays showed that SmCSP4 directly interacts with wheat transcriptional factor TaWRKY76 in plant nucleus. Furthermore, TaWRKY76 directly binds to the promoter of SA degradation gene Downy Mildew Resistant 6 (DMR6) and regulates its gene expression as transcriptional activator. SmCSP4 secreted by aphids reduces the transcriptional activation activity of TaWRKY76 on DMR6 gene expression, which is proposed to result in increases of SA accumulation and enhanced plant immunity. This study demonstrated that SmCSP4 acts as salivary elicitor that is involved in activating SA signalling defence pathway of wheat by interacting with TaWRKY76, which provide novel insights into aphid-cereal crops interactions and the molecular mechanism on induced plant immunity.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yu Fu
- PHIM Plant Health InstituteUniv Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Jia Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Huan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Yu Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yumeng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- College of Plant Health and MedicineQingdao Agricultural UniversityQingdaoChina
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
6
|
Flay C, Tahir J, Hilario E, Fraser L, Stannard K, Symonds V, Datson P. Genomic architecture of resistance to latania scale (H. lataniae) in kiwifruit (A. chinensis var. chinensis). BMC PLANT BIOLOGY 2023; 23:530. [PMID: 37907872 PMCID: PMC10617205 DOI: 10.1186/s12870-023-04504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Latania scale (Hemiberlesia lataniae Signoret) is an armoured scale insect known to cause damage to kiwifruit plants and fruit, which ultimately reduces crop values and creates post-harvest export and quarantine issues. Resistance to H. lataniae does exist in some commercial cultivars of kiwifruit. However, some of the commercial cultivars bred in New Zealand have not inherited alleles for resistance to H. lataniae carried by their parents. To elucidate the architecture of resistance in the parents and develop molecular markers to assist breeding, these experiments analysed the inheritance of resistance to H. lataniae from families related to commercial cultivars. RESULTS The first experiment identified a 15.97 Mb genomic region of interest for resistance to H. lataniae in rtGBS data of 3.23 to 19.20 Mb on chromosome 10. A larger population was then QTL mapped, which confirmed the region of interest as the sole locus contributing to H. lataniae resistance. inDel markers mapping the region of low recombination under the QTL peak further narrowed the region associated with H. lataniae resistance to a 5.73 Mb region. CONCLUSIONS The kiwifruit populations and genomic methods used in this study identify the same non-recombinant region of chromosome 10 which confers resistance of A. chinensis var. chinensis to H. lataniae. The markers developed to target the H. lataniae resistance loci will reduce the amount of costly and time-consuming phenotyping required for breeding H. lataniae scale resistance into new kiwifruit cultivars.
Collapse
Affiliation(s)
- Casey Flay
- Massey University, Palmerston North, New Zealand.
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.
| | - Jibran Tahir
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Elena Hilario
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Lena Fraser
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Kate Stannard
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | | | - Paul Datson
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Kiwifruit Breeding Centre, Te Puke, New Zealand
| |
Collapse
|
7
|
Zhao J, Liu Y, Xu S, Wang J, Zhang Z, Wang MQ, Turlings TCJ, Zhang P, Zhou A. Mealybug salivary microbes inhibit induced plant defenses. PEST MANAGEMENT SCIENCE 2023; 79:4034-4047. [PMID: 37287215 DOI: 10.1002/ps.7600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Phenacoccus solenopsis is a polyphagous invasive mealybug that caused serious damage to crops worldwide. Phloem-sucking hemipterans are known to carry symbiotic microbes in their saliva. However, the role of salivary bacteria of P. solenopsis in modulating plant defenses remains limited. Exploring the impact of salivary bacteria on plant defense responses will contribute to the development of new targets for efficient control of invasive mealybugs. RESULTS Salivary bacteria of the invasive mealybug P. solenopsis can suppress herbivore-induced plant defenses and thus enhance mealybug fitness. Mealybugs treated with an antibiotic showed decreased weight gain, fecundity and survival. Untreated mealybugs suppressed jasmonic acid (JA)-regulated defenses but activated salicylic acid (SA)-regulated defenses in cotton plants. In contrast, antibiotic-treated mealybugs triggered JA-responsive gene expression and JA accumulation, and showed shortened phloem ingestion. Reinoculating antibiotic-treated mealybugs with Enterobacteriaceae or Stenotrophomonas cultivated from mealybug saliva promoted phloem ingestion and fecundity, and restored the ability of mealybugs to suppress plant defenses. Fluorescence in situ hybridization visualization revealed that Enterobacteriaceae and Stenotrophomonas colonize salivary glands and are secreted into the mesophyll cells and phloem vessels. Exogenous application of the bacterial isolates to plant leaves inhibited JA-responsive gene expression and activated SA-responsive gene expression. CONCLUSION Our findings imply that symbiotic bacteria in the saliva of the mealybug play an important role in manipulating herbivore-induced plant defenses, enabling this important pest to evade induced plant defenses and promoting its performance and destructive effects on crops. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongheng Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shouye Xu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jialu Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zan Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Pengjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Aiming Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Gao J, Tao T, Arthurs SP, Hussain M, Ye F, Mao R. Saliva-Mediated Contrasting Effects of Two Citrus Aphid Species on Asian Citrus Psyllid Feeding Behavior and Plant Jasmonic Acid Pathway. INSECTS 2023; 14:672. [PMID: 37623382 PMCID: PMC10455628 DOI: 10.3390/insects14080672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
While herbivorous insect saliva plays a crucial role in the interaction between plants and insects, its role in the inter-specific interactions between herbivorous insects has received little attention. Pre-infestation of citrus plants with Aphis spiraecola Patch and Aphis (Toxoptera) citricidus (Kirkaldy) exhibited positive and negative effects on the performance (feeding and reproduction) of Diaphorina citri Kuwayama. We explored the role of saliva in this plant-mediated interaction by infiltrating fresh and boiled aphid saliva into plants and detecting D. citri feeding behavior and citrus plant defense response. Leaf infiltration of A. spiraecola saliva disrupted the subsequent feeding of D. citri, indicated by prolonged extracellular stylet pathway duration and decreased phloem sap ingestion duration. By contrast, infiltration of A. citricidus saliva decreased the duration of the extracellular stylet pathway and phloem sap ingestion of D. citri. Furthermore, gene expression analysis showed that several salicylic acid (SA)- and jasmonic acid (JA)-pathway-related genes were activated by A. spiraecola saliva infiltration. However, two SA-pathway-related genes were activated and three JA-pathway-related genes were suppressed following A. citricidus saliva infiltration. Treatment with boiled saliva did not similarly impact D. citri feeding behavior or plant defense response. This study suggests that salivary components (those that can be inactivated by heating) from two citrus aphid species differently affect plant defenses and that they were responsible for the contrasting plant-mediated effects of two citrus aphids on the feeding behavior of D. citri. This study indicates a novel three-way citrus aphid-plant-citrus psyllid interaction.
Collapse
Affiliation(s)
- Jing Gao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (J.G.); (T.T.); (M.H.); (F.Y.)
| | - Tonglai Tao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (J.G.); (T.T.); (M.H.); (F.Y.)
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | | | - Mubasher Hussain
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (J.G.); (T.T.); (M.H.); (F.Y.)
| | - Fengxian Ye
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (J.G.); (T.T.); (M.H.); (F.Y.)
| | - Runqian Mao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (J.G.); (T.T.); (M.H.); (F.Y.)
| |
Collapse
|
9
|
Paprocka M, Dancewicz K, Kordan B, Damszel M, Sergiel I, Biesaga M, Mroczek J, Arroyo Garcia RA, Gabryś B. Probing behavior of Aphis fabae and Myzus persicae on three species of grapevines with analysis of grapevine leaf anatomy and allelochemicals. THE EUROPEAN ZOOLOGICAL JOURNAL 2023. [DOI: 10.1080/24750263.2022.2162615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- M. Paprocka
- Department of Botany and Ecology, University of Zielona Góra, Zielona Góra, Poland
| | - K. Dancewicz
- Department of Botany and Ecology, University of Zielona Góra, Zielona Góra, Poland
| | - B. Kordan
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury, Olsztyn, Poland
| | - M. Damszel
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury, Olsztyn, Poland
| | - I. Sergiel
- Department of Biotechnology, University of Zielona Góra, Zielona Góra, Poland
| | - M. Biesaga
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - J. Mroczek
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - R. A. Arroyo Garcia
- CSIC-INIA (CPGP) Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, Madrid, Spain
| | - B. Gabryś
- Department of Botany and Ecology, University of Zielona Góra, Zielona Góra, Poland
| |
Collapse
|
10
|
Fu Y, Liu X, Wang Q, Liu H, Cheng Y, Li H, Zhang Y, Chen J. Two salivary proteins Sm10 and SmC002 from grain aphid Sitobion miscanthi modulate wheat defense and enhance aphid performance. FRONTIERS IN PLANT SCIENCE 2023; 14:1104275. [PMID: 37056510 PMCID: PMC10086322 DOI: 10.3389/fpls.2023.1104275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
The grain aphid Sitobion miscanthi is a serious pest of wheat that causes severe economic damage by sucking phloem sap and transmitting plant viruses. Here, two putative salivary effector homologs from S. miscanthi (Sm10 and SmC002) were selected based on sequence similarity to other characterized aphid candidate effectors. These effectors were then delivered into wheat cells separately via the type III secretion system of Pseudomonas fluorescens to elucidate their functions in the regulation of plant defenses and host fitness. The results showed that the delivery of either Sm10 or SmC002 into wheat plants significantly suppressed callose deposition and affected the transcript levels of callose synthase genes. The expression levels of salicylic acid (SA)-associated defense genes were upregulated significantly in wheat leaves carrying either Sm10 or SmC002. Moreover, LC-MS/MS analysis revealed that wheat SA levels significantly increased after the delivery of the two effectors. The results of aphid bioassays conducted on the wheat plants carrying Sm10 or SmC002 showed significant increases in the survival and fecundity of S. miscanthi. This study demonstrated that the Sm10 and SmC002 salivary effectors of S. miscanthi enhanced host plant susceptibility and benefited S. miscanthi performance by regulating wheat defense signaling pathways.
Collapse
Affiliation(s)
- Yu Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yumeng Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmei Li
- Ministry of Agricultural and Rural Affairs-Centre for Agriculture and Bioscience International (MARA-CABI) Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Zhang Y, Liu X, Francis F, Xie H, Fan J, Wang Q, Liu H, Sun Y, Chen J. The salivary effector protein Sg2204 in the greenbug Schizaphis graminum suppresses wheat defence and is essential for enabling aphid feeding on host plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2187-2201. [PMID: 35984895 PMCID: PMC9616526 DOI: 10.1111/pbi.13900] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/26/2022] [Accepted: 07/19/2022] [Indexed: 05/04/2023]
Abstract
Aphids secrete diverse repertoires of salivary effectors into host plant cells to promote infestation by modulating plant defence. The greenbug Schizaphis graminum is an important cereal aphid worldwide. However, the secreted effectors of S. graminum are still uncharacterized. Here, 76 salivary proteins were identified from the watery saliva of S. graminum using transcriptome and proteome analyses. Among them, a putative salivary effector Sg2204 was significantly up-regulated during aphid feeding stages, and transient overexpression of Sg2204 in Nicotiana benthamiana inhibited cell death induced by BAX or INF1. Delivering Sg2204 into wheat via the type III secretion system of Pseudomonas fluorescens EtAnH suppressed pattern-triggered immunity (PTI)-associated callose deposition. The transcript levels of jasmonic acid (JA)- and salicylic acid (SA)-associated defence genes of wheat were significantly down-regulated, and the contents of both JA and SA were also significantly decreased after delivery of Sg2204 into wheat leaves. Additionally, feeding on wheat expressing Sg2204 significantly increased the weight and fecundity of S. graminum and promoted aphid phloem feeding. Sg2204 was efficiently silenced via spray-based application of the nanocarrier-mediated transdermal dsRNA delivery system. Moreover, Sg2204-silenced aphids induced a stronger wheat defence response and resulted in negative impacts on aphid feeding behaviour, survival and fecundity. Silencing of Sg2204 homologues from four aphid species using nanocarrier-delivered dsRNA also significantly reduced aphid performance on host plants. Thus, our study characterized the salivary effector Sg2204 of S. graminum involved in promoting host susceptibility by suppressing wheat defence, which can also be regarded as a promising RNAi target for aphid control.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Haicui Xie
- College of Agronomy and BiotechnologyHebei Normal University of Science and TechnologyQinhuangdao CityChina
| | - Jia Fan
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Department of EntomologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Huan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yu Sun
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- College of Agronomy and BiotechnologyHebei Normal University of Science and TechnologyQinhuangdao CityChina
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
12
|
Huo Y, Zhao J, Meng X, Yang J, Zhang Z, Liu Z, Fang R, Zhang L. Laodelphax striatellus saliva mucin enables the formation of stylet sheathes to facilitate its feeding and rice stripe virus transmission. PEST MANAGEMENT SCIENCE 2022; 78:3498-3507. [PMID: 35604851 DOI: 10.1002/ps.6990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Laodelphax striatellus transmits rice stripe virus (RSV) during sap feeding on the rice plant. The insect saliva proteins have direct and indirect roles in mediating RSV transmission; however, the function of most saliva proteins remains unclear. RESULTS In this study, we sequenced L. striatellus saliva proteins using shotgun liquid chromatography-electrospray ionization-tandem mass spectrometry. We identified 41 secreted saliva proteins, among which a saliva mucin-like protein, designated LssaMP, was the most abundant. In silico analysis revealed the sequence conservation among planthoppers. We revealed that the LssaMP gene is specifically expressed in the salivary glands and the protein is secreted as a component of gel saliva. Using LssaMP-specific double-stranded RNA (dsRNA) to silence gene expression, we revealed that LssaMP is required for formation of the salivary sheath, an important structure for sap feeding. Disrupting LssaMP expression resulted in inefficient formation of the feeding structure, thereby stopping insects from secreting watery saliva and acquiring sufficient nutrients from the phloem sap. We confirmed that RSV is mainly released via the watery saliva, which passes through the salivary sheathes into the plant phloem. An insufficient feeding structure results in decreased release of watery saliva, as well as the arboviruses. CONCLUSION This study clarified the function of an insect saliva protein in mediating insect feeding, as well as arbovirus transmission. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Huo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangyi Meng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ziyu Zhang
- School of Life Sciences, Hebei University, Baoding, China
| | - Zhiwei Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lili Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Zhang Y, Liu X, Fu Y, Crespo-Herrera L, Liu H, Wang Q, Zhang Y, Chen J. Salivary Effector Sm9723 of Grain Aphid Sitobion miscanthi Suppresses Plant Defense and Is Essential for Aphid Survival on Wheat. Int J Mol Sci 2022; 23:6909. [PMID: 35805913 PMCID: PMC9266898 DOI: 10.3390/ijms23136909] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 12/04/2022] Open
Abstract
Aphid salivary effectors play important roles in modulating plant defense responses. The grain aphid Sitobion miscanthi is one of the most economically important cereal aphids worldwide. However, little information is available on the identification and functional analysis of salivary effectors of S. miscanthi. In this study, a candidate salivary effector Sm9723 was identified, which was specifically expressed in aphid salivary glands and highly induced during the aphid feeding phase. Transient overexpression of Sm9723 in Nicotiana benthamiana suppressed BAX and INF1-induced cell death. Further, Sm9723 overexpression inhibited N. benthamiana defense responses by reducing pattern-triggered immunity associated callose deposition and expression levels of jasmonic and salicylic acid-associated defense genes. In addition, the salivary effector Sm9723 of S. miscanthi was effectively silenced through nanocarrier-mediated dsRNA delivery system. After silencing Sm9723, fecundity and survival of S. miscanthi decreased significantly, and the aphid feeding behavior was also negatively affected. These results suggest salivary effector Sm9723 is involved in suppressing plant immunity and is essential in enabling aphid virulence, which could be applied as potential target gene for RNAi-mediated pest control of S. miscanthi.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.L.); (Y.F.); (H.L.); (Q.W.); (Y.Z.)
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.L.); (Y.F.); (H.L.); (Q.W.); (Y.Z.)
| | - Yu Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.L.); (Y.F.); (H.L.); (Q.W.); (Y.Z.)
| | | | - Huan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.L.); (Y.F.); (H.L.); (Q.W.); (Y.Z.)
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.L.); (Y.F.); (H.L.); (Q.W.); (Y.Z.)
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yumeng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.L.); (Y.F.); (H.L.); (Q.W.); (Y.Z.)
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.L.); (Y.F.); (H.L.); (Q.W.); (Y.Z.)
| |
Collapse
|
14
|
Wang Q, Liu X, Liu H, Fu Y, Cheng Y, Zhang L, Shi W, Zhang Y, Chen J. Transcriptomic and Metabolomic Analysis of Wheat Kernels in Response to the Feeding of Orange Wheat Blossom Midges ( Sitodiplosis mosellana) in the Field. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1477-1493. [PMID: 35090120 DOI: 10.1021/acs.jafc.1c06239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The orange wheat blossom midge (Sitodiplosis mosellana Géhin) is an insect pest that feeds on wheat (Triticum aestivum L.). The resistance mechanisms of wheat to S. mosellana infestation are largely unknown. In this study, the wheat varieties LX99 and 6218 were identified as highly resistant and susceptible, respectively, via field investigations conducted over two consecutive years. Morphological and microstructural observations of mature wheat kernels following S. mosellana infestation revealed that the degree of cell structure damage in resistant LX99 grains was less than that in susceptible 6218 grains. Transcriptomic and metabolomic analyses of seeds following S. mosellana feeding showed that the differentially expressed genes and differentially accumulated metabolites from LX99 were mostly enriched in several primary and secondary metabolic pathways, including phenylpropanoid biosynthesis, flavonoid biosynthesis, and phenylalanine biosynthesis. Additionally, phenylpropanoid- and flavonoid-related gene expression was significantly upregulated following S. mosellana infestation in LX99 relative to that in 6218. Some metabolites involved in phenylpropanoid/flavonoid pathways, such as cinnamic acid, coumarin, epigallocatechin, and naringenin, were only induced in infested LX99 kernels. These results suggest that phenylpropanoid/flavonoid pathways play important roles in wheat kernel resistance to S. mosellana attack and provide useful insights for the breeding and utilization of resistant varieties.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Huan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Yu Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Yumeng Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Lijiao Zhang
- Plant Protection and Epidemic Station of Luquan District, Hebei 050299, P. R. China
| | - Wangpeng Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
15
|
Xie H, Shi F, Li J, Yu M, Yang X, Li Y, Fan J. The Reciprocal Effect of Elevated CO 2 and Drought on Wheat-Aphid Interaction System. FRONTIERS IN PLANT SCIENCE 2022; 13:853220. [PMID: 35909776 PMCID: PMC9330134 DOI: 10.3389/fpls.2022.853220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/08/2022] [Indexed: 05/13/2023]
Abstract
Due to the rising concentration of atmospheric CO2, climate change is predicted to intensify episodes of drought. However, our understanding of how combined environmental conditions, such as elevated CO2 and drought together, will influence crop-insect interactions is limited. In the present study, the direct effects of combined elevated CO2 and drought stress on wheat (Triticum aestivum) nutritional quality and insect resistance, and the indirect effects on the grain aphid (Sitobion miscanthi) performance were investigated. The results showed that, in wheat, elevated CO2 alleviated low water content caused by drought stress. Both elevated CO2 and drought promoted soluble sugar accumulation. However, opposite effects were found on amino acid content-it was decreased by elevated CO2 and increased by drought. Further, elevated CO2 down-regulated the jasmonic acid (JA) -dependent defense, but up-regulated the salicylic acid (SA)-dependent defense. Meanwhile, drought enhanced abscisic acid accumulation that promoted the JA-dependent defense. For aphids, their feeding always induced phytohormone resistance in wheat under either elevated CO2 or drought conditions. Similar aphid performance between the control and the combined two factors were observed. We concluded that the aphid damage suffered by wheat in the future under combined elevated CO2 and drier conditions tends to maintain the status quo. We further revealed the mechanism by which it happened from the aspects of wheat water content, nutrition, and resistance to aphids.
Collapse
Affiliation(s)
- Haicui Xie
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Fengyu Shi
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jingshi Li
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Miaomiao Yu
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuetao Yang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yun Li
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jia Fan
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jia Fan
| |
Collapse
|
16
|
Álvarez-Lagazzi AP, Cabrera N, Francis F, Ramírez CC. Bacillus subtilis (Bacillales, Bacillaceae) Spores Affect Survival and Population Growth in the Grain Aphid Sitobion avenae (Hemiptera, Aphididae) in Relation to the Presence of the Facultative Bacterial Endosymbiont Regiella insecticola (Enterobacteriales, Enterobacteriaceae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2043-2050. [PMID: 34463330 DOI: 10.1093/jee/toab164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 06/13/2023]
Abstract
The grain aphid Sitobion avenae (Fabricius) is one of the most important cereal pests, damaging crops through sap sucking and virus transmission. Sitobion avenae harbors the secondary endosymbiont Regiella insecticola, which is highly prevalent in populations in south-central Chile and other regions of the world. In order to develop ecological alternatives for biological control, we studied the effect of applying the spores of a strain of the bacterium Bacillus subtilis on the survival and fecundity of the most prevalent genotype of S. avenae in central Chile. The strain selected was one that in previous studies had shown the ability to outcompete other bacteria. Using clones of this aphid genotype infected and uninfected with R. insecticola, we found that applying B. subtilis spores through artificial diets and spraying on leaves decreased both adult survival and nymph production. The detection of spores within the aphid body was negatively correlated with nymph production and was lower in the presence of R. insecticola when applied in diets. B. subtilis spores applied on leaves reduced the number of aphids, an effect that was stronger on aphids harboring R. insecticola. A possible interaction between endosymbiotic bacteria and bacterial antagonists within the aphid body is discussed.
Collapse
Affiliation(s)
- Alan P Álvarez-Lagazzi
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca 3460000, Chile
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Campus Talca 3460000, Chile
| | - Nuri Cabrera
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca 3460000, Chile
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Campus Talca 3460000, Chile
| | - Frederic Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Claudio C Ramírez
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca 3460000, Chile
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Campus Talca 3460000, Chile
| |
Collapse
|
17
|
Zhang Y, Fu Y, Francis F, Liu X, Chen J. Insight into watery saliva proteomes of the grain aphid, Sitobion avenae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21752. [PMID: 33084142 DOI: 10.1002/arch.21752] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
The grain aphid, Sitobion avenae, is an economically important cereal pest worldwide. Aphid saliva plays an essential role in the interaction between aphids and their host plants. However, limited information is available regarding the proteins found in the saliva of S. avenae. Here, the watery saliva proteins from S. avenae were collected in an artificial diet and identified using a liquid chromatography-mass spectrometry/mass spectrometry analysis. A total of 114 proteins were identified in S. avenae saliva, including several enzymes, binding proteins, and putative effectors, as well as other proteins with unknown functions. In comparison with salivary proteins from nine other aphid species, the most striking feature of the salivary protein from S. avenae was the different patterns of protein functions. Several orthologous proteins secreted by other aphid species such as glucose dehydrogenase, elongation factors, and effector C002 were also detected in S. avenae saliva and speculated to play a significant role in aphid-plant interactions. These results provide further insight into the molecular basis between aphids and cereal plant interactions.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Li F, Hua H, Han Y, Hou M. Plant-Mediated Horizontal Transmission of Asaia Between White-Backed Planthoppers, Sogatella furcifera. Front Microbiol 2020; 11:593485. [PMID: 33329476 PMCID: PMC7734105 DOI: 10.3389/fmicb.2020.593485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/06/2020] [Indexed: 11/23/2022] Open
Abstract
Asaia is a bacterial symbiont of sugar-feeding insects that has been shown to be vertically transmitted by maternal transmission and paternal transmission mechanism, and to be horizontally transmitted via co-feeding artificial diet and venereal routes. Here, the first case of plant-mediated horizontal transmission of Asaia between white-backed planthoppers (WBPH), Sogatella furcifera, was reported. In Asaia-infected WBPH, Asaia was detected mostly in salivary glands and to a less extent in stylets. The rice leaf sheaths fed by Asaia-infected WBPH for 12 h were all positive with Asaia, where Asaia persisted for at least 30 d but was localized in the feeding sites only. When confined to Asaia-infected leaf sheaths for 7 d at the sites pre-infested by the Asaia-infected WBPH, all Asaia-free WBPH became infected with Asaia and the acquired Asaia could be vertically transmitted to their offspring. Phylogenetic analysis confirmed an identical Asaia strain in the Asaia-infected donor WBPH, the Asaia-infected leaf sheaths, and the newly infected recipient WBPH. Our findings provide direct evidence for the first time that rice plant can mediate horizontal transmission of Asaia between WBPH, which may contribute to the spread of Asaia in the field WBPH populations.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Hongxia Hua
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongqiang Han
- College of Life Science and Environmental Resources, Yichun University, Yichun, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Souza MF, Davis JA. Detailed Characterization of Melanaphis sacchari (Hemiptera: Aphididae) Feeding Behavior on Different Host Plants. ENVIRONMENTAL ENTOMOLOGY 2020; 49:683-691. [PMID: 32333015 DOI: 10.1093/ee/nvaa036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 06/11/2023]
Abstract
Worldwide, Melanaphis sacchari Zehntner is reported on several plants in the family Poaceae, including important crops. In the United States, M. sacchari has been present primarily on sugarcane (Saccharum officinarum L.), but recently sorghum (Sorghum bicolor (L.) Moench) has become a main host. It is not clear how M. sacchari exploits sorghum or other plant species present in the Louisiana agro-ecoscape, but there is potential for these plants to be bridging hosts. Thus, this study determined the feeding behavior of M. sacchari on sorghum, rice, Oryza sativa (L.), sweetpotato, Ipomea batatas (L.), maize, Zea mays (L.), Johnsongrass, S. halepense (L.), and wheat Triticum aestivum (L.) using electrical penetration graphs. Melanaphis sacchari established sustained feeding on sorghum, Johnsongrass, wheat, and rice, only a negligent percentage on maize and no aphid fed on sweetpotato. Differences in Electrical Penetration Graph parameters among the plants in nonpenetrating total time and the lower number of probes, time to penetration initiation, proportion of individuals probing, number of probes shorter than 30 s, number of probes longer than 30 s but shorter than 3 min, pathway phase duration, and number of cell punctures during pathway phase, suggest epidermis and mesophyll factors affecting aphid feeding behavior. While the lack of differences in number of feeding occurrences, total time feeding, and number of sustained feeding occurrences shows that M. sacchari is able to feed on those plants, sieve element factors such as resistance or low nutritional quality prevent the growth of this population in field.
Collapse
Affiliation(s)
- M F Souza
- Department of Entomology, Louisiana State University Agricultural Center, 404 Life Sciences, Baton Rouge, LA
| | - J A Davis
- Department of Entomology, Louisiana State University Agricultural Center, 404 Life Sciences, Baton Rouge, LA
| |
Collapse
|
20
|
Xie H, Shi J, Shi F, Xu H, He K, Wang Z. Aphid fecundity and defenses in wheat exposed to a combination of heat and drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2713-2722. [PMID: 31943041 PMCID: PMC7210778 DOI: 10.1093/jxb/eraa017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/13/2020] [Indexed: 05/10/2023]
Abstract
Plants are routinely subjected simultaneously to different abiotic and biotic stresses, such as heat, drought, and insect infestation. Plant-insect interactions in such complex stress situations are poorly understood. We evaluated the performance of the grain aphid (Sitobion avenae) in wheat (Triticum aestivum L.) exposed to a combination of heat and drought stresses. We also performed assays of the relative water content, nutritional quality, and responses of phytohormone signaling pathways. Lower relative water content and accumulation of soluble sugars and amino acids were observed in plants exposed to combined heat and drought stress. These conditions increased abscisic acid levels in the absence of aphids, as well as leading to higher levels of jasmonate-dependent transcripts. The grain aphid infestation further increased abscisic acid levels and the abundance of jasmonic acid- and salicylic acid-dependent defenses under the combined stress conditions. Aphids reared on plants grown under drought stress alone showed lower net reproductive rates, intrinsic rates of increase, and finite rates of increase compared with aphids reared on plants in the absence of stress. The heat-treated plants also showed a decreased aphid net reproductive rate. These findings demonstrate that exposure to a combination of stresses enhances plant defense responses against aphids as well as altering nutritional quality.
Collapse
Affiliation(s)
- Haicui Xie
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao City, Hebei Province, China
| | - Jianqin Shi
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao City, Hebei Province, China
| | - Fengyu Shi
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao City, Hebei Province, China
| | - Haiyun Xu
- College of Life Science, Hebei University, Baoding City, Hebei Province, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Javed K, Qiu D. Protein Elicitor PeBL1 of Brevibacillus laterosporus Enhances Resistance Against Myzus persicae in Tomato. Pathogens 2020; 9:pathogens9010057. [PMID: 31947681 PMCID: PMC7168619 DOI: 10.3390/pathogens9010057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/29/2022] Open
Abstract
Myzus persicae, a destructive aphid of tomato usually managed by chemical pesticides, is responsible for huge annual losses in agriculture. In the current work, a protein elicitor, PeBL1, was investigated for its capacity to induce a defense response against M. persicae in tomato. Population growth rates of M. persicae (second and third generation) decreased with PeBL1 treatments as compared with controls. In a host selection assay, M. persicae showed preference for colonizing control plants as compared to tomato seedlings treated with PeBL1. Tomato leaves treated with PeBL1 gave rise to a hazardous surface environment for M. persicae due to formation of trichomes and wax. Jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) showed significant accumulation in tomato seedlings treated by PeBL1. The following results showed that PeBL1 significantly modified the tomato leaf surface structure to reduce reproduction and deter colonization by M. persicae. Defense processes also included activation of JA, SA, and ET pathways. The study provides evidence for use of PeBL1 in the protection of tomato from M. persicae.
Collapse
|
22
|
Li L, Wang S, Yang X, Francis F, Qiu D. Protein elicitor PeaT1 enhanced resistance against aphid (Sitobion avenae) in wheat. PEST MANAGEMENT SCIENCE 2020; 76:236-243. [PMID: 31149755 DOI: 10.1002/ps.5502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/28/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Sitobion avenae, a dominant aphid in wheat that causes huge annual losses in agriculture, is mainly controlled using chemical pesticides. In this study, we investigated a protein elicitor, PeaT, for its induction of the defense response in wheat against Sitobion avenae. RESULTS Intrinsic rates of increase in second and third generations of S. avenae decreased in the PeaT1 (second generation 0.31 ± 0.01, third generation 0.28 ± 0.01) treatment compared with controls (second generation 0.28 ± 0.01, third generation 0.26 ± 0.01). S. avenae preferred to colonize control rather than PeaT1-treated wheat seedlings in a host selection test. PeaT1-treated wheat leaves possessed more trichomes and wax that formed a disadvantageous surface environment for S. avenae. Both salicylic acid (SA) and jasmonic acid (JA) accumulated significantly in PeaT1-treated wheat seedlings. CONCLUSION These results showed that PeaT1 modified physical surface structures in wheat to reduce reproduction and deter colonization by S. avenae. SA and JA were involved in the induced physical defense process. This study provided evidence for use of PeaT1 as a 'vaccine' to protect wheat from Sitobion avenae. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Shuangchao Wang
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiufen Yang
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Frederic Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Dewen Qiu
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
23
|
Zhang Y, Fu Y, Fan J, Li Q, Francis F, Chen J. Comparative transcriptome and histological analyses of wheat in response to phytotoxic aphid Schizaphis graminum and non-phytotoxic aphid Sitobion avenae feeding. BMC PLANT BIOLOGY 2019; 19:547. [PMID: 31823722 PMCID: PMC6902339 DOI: 10.1186/s12870-019-2148-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/19/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Infestation of the phytotoxic aphid Schizaphis graminum can rapidly induce leaf chlorosis in susceptible plants, but this effect is not observed with the nonphytotoxic aphid Sitobion avenae. However, few studies have attempted to identify the different defence responses induced in wheat by S. graminum and S. avenae feeding and the mechanisms underlying the activation of chlorosis by S. graminum feeding. RESULTS S. graminum feeding significantly reduced the chlorophyll content of wheat leaves, and these effects were not observed with S. avenae. A transcriptomic analysis showed that the expression levels of genes involved in the salicylic acid, jasmonic acid and ethylene signalling defence pathways were significantly upregulated by both S. avenae and S. graminum feeding; however, more plant defence genes were activated by S. graminum feeding than S. avenae feeding. The transcript levels of genes encoding cell wall-modifying proteins were significantly increased after S. graminum feeding, but only a few of these genes were induced by S. avenae. Furthermore, various reactive oxygen species-scavenging genes, such as 66 peroxidase (POD) and 8 ascorbate peroxidase (APx) genes, were significantly upregulated after S. graminum feeding, whereas only 15 POD and one APx genes were induced by S. avenae feeding. The activity of four antioxidant enzymes was also significantly upregulated by S. graminum feeding. Cytological examination showed that S. graminum feeding induced substantial hydrogen peroxide (H2O2) accumulation in wheat leaves. The chlorosis symptoms and the loss of chlorophyll observed in wheat leaves after S. graminum feeding were reduced and inhibited by the scavenging of H2O2 by dimethylthiourea, which indicated that H2O2 plays important role in the induction of chlorosis by S. graminum feeding. CONCLUSIONS S. graminum and S. avenae feeding induces the JA, SA and ET signalling pathways, but S. graminum activated stronger plant defence responses than S. avenae. S. graminum feeding triggers strong ROS-scavenging activity and massive H2O2 production in wheat leaves, and the accumulation of H2O2 induced by S. graminum feeding is involved in the activation of chlorosis in wheat leaves. These results enhance our understanding of mechanisms underlying aphid-wheat interactions and provide clues for the development of aphid-resistant wheat varieties.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Yu Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Jia Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| |
Collapse
|
24
|
Chen Y, Serteyn L, Wang Z, He K, Francis F. Reduction of Plant Suitability for Corn Leaf Aphid (Hemiptera: Aphididae) Under Elevated Carbon Dioxide Condition. ENVIRONMENTAL ENTOMOLOGY 2019; 48:935-944. [PMID: 31116399 DOI: 10.1093/ee/nvz045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Indexed: 05/24/2023]
Abstract
In the current context of global climate change, atmospheric carbon dioxide (CO2) concentrations are continuously rising with potential influence on plant-herbivore interactions. The effect of elevated CO2 (eCO2) on feeding behavior of corn leaf aphid, Rhopalosiphum maidis (Fitch) on barley seedlings Hordeum vulgare L. was tracked using electrical penetration graph (EPG). The nutrient content of host plant and the developmental indexes of aphids under eCO2 and ambient CO2 (aCO2) conditions were also investigated. Barley seedlings under eCO2 concentration had lower contents of crude protein and amino acids. EPG analysis showed the plants cultivated under eCO2 influenced the aphid feeding behavior, by prolonging the total pre-probation time of the aphids (wandering and locating the feeding site) and the ingestion of passive phloem sap. Moreover, fresh body weight, fecundity and intrinsic population growth rate of R. maidis was significantly decreased in eCO2 in contrast to aCO2 condition. Our findings suggested that changes in plant nutrition caused by eCO2, mediated via the herbivore host could affect insect feeding behavior and population dynamics.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| | - Laurent Serteyn
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - KangLai He
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Frederic Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| |
Collapse
|
25
|
Zhang Y, Fan J, Fu Y, Francis F, Chen J. Plant-Mediated Interactions between Two Cereal Aphid Species: Promotion of Aphid Performance and Attraction of More Parasitoids by Infestation of Wheat with Phytotoxic Aphid Schizaphis graminum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2763-2773. [PMID: 30790517 DOI: 10.1021/acs.jafc.8b06150] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here, we investigated changes in physiological characteristics in wheat affected by phytotoxic-aphid Schizaphis graminum feeding and nonphytotoxic-aphid Sitobion avenae feeding. We also determined whether shared host-mediated interspecific interactions occur between S. graminum and S. avenae. S. graminum feeding but not S. avenae feeding induced significant chlorophyll loss and hydrogen peroxide accumulation in wheat. Gene-expression analysis and GC/MS metabonomic results indicated that S. graminum infestation induced stronger salicylic acid mediated defense responses than S. avenae did and significantly increased the contents of several amino acids in wheat leaves. Feeding on wheat preinfested with S. graminum significantly increased the reproduction of both aphids and shortened the development time of S. graminum. However, olfactometer bioassays showed that the parasitoid wasp Aphidius gifuensis was more attracted to the odors of S. graminum infested wheat than to those of control and S. avenae infested wheat. This study demonstrates that S. graminum and S. avenae feeding induced different defense responses and changes in plant nutritional quality. Additionally, plant-mediated interactions occurred between these cereal aphids.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , PR China
| | - Jia Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , PR China
| | - Yu Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , PR China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech , University of Liège , Gembloux B-5030 , Belgium
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , PR China
| |
Collapse
|
26
|
Li Q, Fan J, Sun J, Wang MQ, Chen J. Plant-Mediated Horizontal Transmission of Hamiltonella defensa in the Wheat Aphid Sitobion miscanthi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13367-13377. [PMID: 30516997 DOI: 10.1021/acs.jafc.8b04828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hamiltonella defensa is mainly vertically transmitted, but evidence suggests that horizontal transmission may occur. Here, the first case of plant-mediated horizontal transmission of H. defensa between wheat aphids, Sitobion miscanthi, was reported. H. defensa was harbored in sheath cells, secondary bacteriocytes, and hemolymph. After Hamiltonella-infected aphids fed on wheat leaves, H. defensa was observed in aphid stylets and plant phloem. H. defensa persisted in wheat leaves for at least 10 days. Most Hamiltonella-uninfected aphids became infected with H. defensa after sustained feeding on infected plant leaves and showed almost 100% stable vertical transmission over the next five generations. These horizontal transmission experiments were replicated using two other plants, rice and corn, and two different wheat aphid species, Rhopalosiphum padi and Schizaphis graminum. Surprisingly, aphid feeding induced plant infection only locally rather than systemically in leaves. Our findings indicate that plants may act as horizontal transmission intermediaries, contributing to the ubiquity of the otherwise maternally inherited H. defensa.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
- College of Plant Science and Technology , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| | - Jia Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| | - Jingxuan Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| | - Man-Qun Wang
- College of Plant Science and Technology , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| |
Collapse
|
27
|
Paprocka M, Gliszczyńska A, Dancewicz K, Gabryś B. Novel Hydroxy- and Epoxy- cis-Jasmone and Dihydrojasmone Derivatives Affect the Foraging Activity of the Peach Potato Aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Molecules 2018; 23:E2362. [PMID: 30223586 PMCID: PMC6225294 DOI: 10.3390/molecules23092362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/29/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
Jasmonates show great potential in sustainable agriculture due to their various roles in natural mechanisms of plant defense, and because they are non-toxic, non-mutagenic, and easily metabolized. The aim of the study was to explore structure⁻activity relationships of dihydrojasmone, cis-jasmone, and their derivatives at the plant⁻aphid interface. We focused on the behavioral responses of aphids, following the exogenous application of natural jasmonates and their derivatives to the host plants. Aphid probing behavior was examined using an electrical penetration graph technique (EPG). The chemoenzymatic transformation of cis-jasmone and the activity of two new derivatives are described. The application of cis-jasmone, dihydrojasmone, the hydroxyderivatives, epoxyderivatives, and alkyl-substituted δ-lactones hindered the foraging activity of Myzus persicae (Sulz.) (Hemiptera: Aphididae) during early stages of probing at the level of non-phloem tissues. The application of saturated bicyclic epoxy-δ-lactone enhanced plant acceptance by M. persicae. Jasmonate derivatives containing a hydroxy group, especially in correlation with a lactone ring, were more active than natural compounds and other derivatives studied. Jasmonates of the present study are worth considering as elements of sustainable aphid control as components of the "push⁻pull" strategy.
Collapse
Affiliation(s)
- Marlena Paprocka
- Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland.
| | - Anna Gliszczyńska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Katarzyna Dancewicz
- Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland.
| | - Beata Gabryś
- Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland.
| |
Collapse
|