1
|
Li J, Wang YZ, Gmitter FG, Wang Y. Identifying the earliest citrus responses to Candidatus Liberibacter asiaticus infection: a temporal metabolomics study. FRONTIERS IN PLANT SCIENCE 2024; 15:1455344. [PMID: 39574442 PMCID: PMC11579704 DOI: 10.3389/fpls.2024.1455344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024]
Abstract
The global citrus industry faces a great threat from Huanglongbing (HLB), a destructive disease caused by 'Candidatus Liberibacter asiaticus' (CLas) that induces significant economic losses without any known cure. Understanding how citrus plants defend against HLB, particularly at the early stages of infection, is crucial for developing long-term solutions. This study investigated the earliest metabolic responses of fresh citrus leaves to CLas infection using untargeted metabolomics and machine learning models. HLB-tolerant and HLB-sensitive cultivars were compared to analyze their biochemical reactions within 48 hours post-infection. HESI/Q-Orbitrap MS analysis identified temporal differential metabolites, revealing distinct metabolic pathways activated in response to CLas infection. Both cultivars responded by increasing specific metabolite concentrations, such as flavonoids, within 2 hours post-infection, but the HLB-tolerant cultivar maintained higher levels throughout the 48-hour period. This early metabolic activity could influence long-term plant health by enhancing disease resistance and reducing pathogen impact. These findings provide potential biomarkers for breeding HLB-resistant cultivars and offer valuable insights for developing sustainable management strategies to mitigate the impact of HLB on the citrus industry, ensuring its long-term productivity and economic viability.
Collapse
Affiliation(s)
| | | | | | - Yu Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences,
University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
2
|
Semi-Targeted Profiling of the Lipidome Changes Induced by Erysiphe Necator in Disease-Resistant and Vitis vinifera L. Varieties. Int J Mol Sci 2023; 24:ijms24044072. [PMID: 36835477 PMCID: PMC9958630 DOI: 10.3390/ijms24044072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The ascomycete Erysiphe necator is a serious pathogen in viticulture. Despite the fact that some grapevine genotypes exhibit mono-locus or pyramided resistance to this fungus, the lipidomics basis of these genotypes' defense mechanisms remains unknown. Lipid molecules have critical functions in plant defenses, acting as structural barriers in the cell wall that limit pathogen access or as signaling molecules after stress responses that may regulate innate plant immunity. To unravel and better understand their involvement in plant defense, we used a novel approach of ultra-high performance liquid chromatography (UHPLC)-MS/MS to study how E. necator infection changes the lipid profile of genotypes with different sources of resistance, including BC4 (Run1), "Kishmish vatkhana" (Ren1), F26P92 (Ren3; Ren9), and "Teroldego" (a susceptible genotype), at 0, 24, and 48 hpi. The lipidome alterations were most visible at 24 hpi for BC4 and F26P92, and at 48 hpi for "Kishmish vatkhana". Among the most abundant lipids in grapevine leaves were the extra-plastidial lipids: glycerophosphocholine (PCs), glycerophosphoethanolamine (PEs) and the signaling lipids: glycerophosphates (Pas) and glycerophosphoinositols (PIs), followed by the plastid lipids: glycerophosphoglycerols (PGs), monogalactosyldiacylglycerols (MGDGs), and digalactosyldiacylglycerols (DGDGs) and, in lower amounts lyso-glycerophosphocholines (LPCs), lyso-glycerophosphoglycerols (LPGs), lyso-glycerophosphoinositols (LPIs), and lyso-glycerophosphoethanolamine (LPEs). Furthermore, the three resistant genotypes had the most prevalent down-accumulated lipid classes, while the susceptible genotype had the most prevalent up-accumulated lipid classes.
Collapse
|
3
|
Chen Q, Min A, Luo S, He J, Wu R, Lin X, Wang Y, He W, Zhang Y, Lin Y, Li M, Zhang Y, Luo Y, Tang H, Wang X. Metabolomic Analysis Revealed Distinct Physiological Responses of Leaves and Roots to Huanglongbing in a Citrus Rootstock. Int J Mol Sci 2022; 23:ijms23169242. [PMID: 36012507 PMCID: PMC9409271 DOI: 10.3390/ijms23169242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/11/2022] Open
Abstract
Huanglongbing (HLB) is an obstinate disease in the citrus industry. No resistant citrus resources were currently available, but various degrees of Huanglongbing tolerance exist in different germplasm. Citrus junos is emerging as one of the popular rootstocks widely used in the citrus production. However, its responses to the HLB causal agent, Candidatus Liberibacter asiaticus (CLas), were still elusive. In the current study, we investigated the physiological, anatomical, and metabolomic responses of a C. junos rootstock ‘Pujiang Xiangcheng’ by a controlled CLas grafting inoculation. The summer flushes and roots were impaired at 15 weeks after inoculation, although typical leaf symptomatic phenotypes were not obvious. The chlorophyll pigments and the photosynthetic rate were compromised. The phloem sieve tubes were still working, despite the fact that the callose was deposited and the starch granules were accumulated in the phloem cells. A wide, targeted metabolomic analysis was carried out to explore the systematic alterations of the metabolites at this early stage of infection in the leaves and root system. The differentially accumulated metabolites in the CLas-affected leaves and roots compared with the mock-inoculation control tissues revealed that distinct responses were obvious. Besides the commonly observed alteration of sugar and amino acids, the active break down of starch in the roots was discovered. The different types of fatty acids were altered in the two tissues, with a more pronounced content decline in the roots. Our results not only provided fundamental knowledge about the response of the C. junos rootstock to the HLB disease, but also presented new insights into the host–pathogen interaction in the early stages.
Collapse
Affiliation(s)
- Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ailing Min
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinwei He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Runqin Wu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ximeng Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Wen He
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Yunting Zhang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Yuanxiu Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
- Correspondence: (H.T.); (X.W.)
| | - Xiaorong Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural Universtiy, Chengdu 611130, China
- Correspondence: (H.T.); (X.W.)
| |
Collapse
|
4
|
Zhang J, Zhang J, Kaliaperumal K, Zhong B. Variations of the chemical composition of Citrus sinensis Osbeck cv. Newhall fruit in relation to the symptom severity of Huanglongbing. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Pandey SS, Hendrich C, Andrade MO, Wang N. Candidatus Liberibacter: From Movement, Host Responses, to Symptom Development of Citrus Huanglongbing. PHYTOPATHOLOGY 2022; 112:55-68. [PMID: 34609203 DOI: 10.1094/phyto-08-21-0354-fi] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Candidatus Liberibacter spp. are fastidious α-proteobacteria that cause multiple diseases on plant hosts of economic importance, including the most devastating citrus disease: Huanglongbing (HLB). HLB was reported in Asia a century ago but has since spread worldwide. Understanding the pathogenesis of Candidatus Liberibacter spp. remains challenging as they are yet to be cultured in artificial media and infect the phloem, a sophisticated environment that is difficult to manipulate. Despite those challenges, tremendous progress has been made on Ca. Liberibacter pathosystems. Here, we first reviewed recent studies on genetic information of flagellar and type IV pili biosynthesis, their expression profiles, and movement of Ca. Liberibacter spp. inside the plant and insect hosts. Next, we reviewed the transcriptomic, proteomic, and metabolomic studies of susceptible and tolerant plant genotypes to Ca. Liberibacter spp. infection and how Ca. Liberibacter spp. adapt in plants. Analyses of the interactions between plants and Ca. Liberibacter spp. imply the involvement of immune response in the Ca. Liberibacter pathosystems. Lastly, we reviewed how Ca. Liberibacter spp. movement inside and interactions with plants lead to symptom development.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Connor Hendrich
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Maxuel O Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
6
|
Hu B, Rao MJ, Deng X, Pandey SS, Hendrich C, Ding F, Wang N, Xu Q. Molecular signatures between citrus and Candidatus Liberibacter asiaticus. PLoS Pathog 2021; 17:e1010071. [PMID: 34882744 PMCID: PMC8659345 DOI: 10.1371/journal.ppat.1010071] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Citrus Huanglongbing (HLB), also known as citrus greening, is one of the most devastating citrus diseases worldwide. Candidatus Liberibacter asiaticus (CLas) is the most prevalent strain associated with HLB, which is yet to be cultured in vitro. None of the commercial citrus cultivars are resistant to HLB. The pathosystem of Ca. Liberibacter is complex and remains a mystery. In this review, we focus on the recent progress in genomic research on the pathogen, the interaction of host and CLas, and the influence of CLas infection on the transcripts, proteins, and metabolism of the host. We have also focused on the identification of candidate genes for CLas pathogenicity or the improvements of HLB tolerance in citrus. In the end, we propose potentially promising areas for mechanistic studies of CLas pathogenicity, defense regulators, and genetic improvement for HLB tolerance/resistance in the future.
Collapse
Affiliation(s)
- Bin Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Junaid Rao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Connor Hendrich
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Suh JH, Guha A, Wang Z, Li SY, Killiny N, Vincent C, Wang Y. Metabolomic analysis elucidates how shade conditions ameliorate the deleterious effects of greening (Huanglongbing) disease in citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1798-1814. [PMID: 34687249 DOI: 10.1111/tpj.15546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/05/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Under tropical and subtropical environments, citrus leaves are exposed to excess sunlight, inducing photoinhibition. Huanglongbing (HLB, citrus greening), a devastating phloem-limited disease putatively caused by Candidatus Liberibacter asiaticus, exacerbates this challenge with additional photosynthetic loss and excessive starch accumulation. A combined metabolomics and physiological approach was used to elucidate whether shade alleviates the deleterious effects of HLB in field-grown citrus trees, and to understand the underlying metabolic mechanisms related to shade-induced morpho-physiological changes in citrus. Using metabolite profiling and multinomial logistic regression, we identified pivotal metabolites altered in response to shade. A core metabolic network associated with shade conditions was identified through pathway enrichment analysis and metabolite mapping. We measured physio-biochemical responses and growth and yield characteristics. With these, the relationships between metabolic network and the variables measured above were investigated. We found that moderate-shade alleviates sink limitation by preventing excessive starch accumulation and increasing foliar sucrose levels. Increased growth and fruit yield in shaded compared with non-shaded trees were associated with increased photosystem II efficiency and leaf carbon fixation pathway metabolites. Our study also shows that, in HLB-affected trees under shade, the signaling of plant hormones (auxins and cytokinins) and nitrogen supply were downregulated with reducing new shoot production likely due to diminished needs of cell damage repair and tissue regeneration under shade. Overall, our findings provide the first glimpse of the complex dynamics between cellular metabolites and leaf physiological functions in citrus HLB pathosystem under shade, and reveal the mechanistic basis of how shade ameliorates HLB disease.
Collapse
Affiliation(s)
- Joon Hyuk Suh
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| | - Anirban Guha
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| | - Zhixin Wang
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| | - Sheng-Yang Li
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| | - Christopher Vincent
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| | - Yu Wang
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| |
Collapse
|
8
|
Cavaco AR, Matos AR, Figueiredo A. Speaking the language of lipids: the cross-talk between plants and pathogens in defence and disease. Cell Mol Life Sci 2021; 78:4399-4415. [PMID: 33638652 PMCID: PMC11073031 DOI: 10.1007/s00018-021-03791-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022]
Abstract
Lipids and fatty acids play crucial roles in plant immunity, which have been highlighted over the past few decades. An increasing number of studies have shown that these molecules are pivotal in the interactions between plants and their diverse pathogens. The roles played by plant lipids fit in a wide spectrum ranging from the first physical barrier encountered by the pathogens, the cuticle, to the signalling pathways that trigger different immune responses and expression of defence-related genes, mediated by several lipid molecules. Moreover, lipids have been arising as candidate biomarkers of resistance or susceptibility to different pathogens. Studies on the apoplast and extracellular vesicles have been highlighting the possible role of lipids in the intercellular communication and the establishment of systemic acquired resistance during plant-pathogen interactions. From the pathogen perspective, lipid metabolism and specific lipid molecules play pivotal roles in the pathogen's life cycle completion, being crucial during recognition by the plant and evasion from the host immune system, therefore potentiating infection. Studies conducted in the last years have contributed to a better understanding of the language of lipids during the cross-talk between plants and pathogens. However, it is essential to continue exploring the knowledge brought up to light by transcriptomics and proteomics studies towards the elucidation of lipid signalling processes during defence and disease. In this review, we present an updated overview on lipids associated to plant-pathogen interactions, exploiting their roles from the two sides of this battle.
Collapse
Affiliation(s)
- Ana Rita Cavaco
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisbon, Portugal
| | - Ana Rita Matos
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisbon, Portugal
| | - Andreia Figueiredo
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
9
|
Zuñiga C, Peacock B, Liang B, McCollum G, Irigoyen SC, Tec-Campos D, Marotz C, Weng NC, Zepeda A, Vidalakis G, Mandadi KK, Borneman J, Zengler K. Linking metabolic phenotypes to pathogenic traits among "Candidatus Liberibacter asiaticus" and its hosts. NPJ Syst Biol Appl 2020; 6:24. [PMID: 32753656 PMCID: PMC7403731 DOI: 10.1038/s41540-020-00142-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
Candidatus Liberibacter asiaticus (CLas) has been associated with Huanglongbing, a lethal vector-borne disease affecting citrus crops worldwide. While comparative genomics has provided preliminary insights into the metabolic capabilities of this uncultured microorganism, a comprehensive functional characterization is currently lacking. Here, we reconstructed and manually curated genome-scale metabolic models for the six CLas strains A4, FL17, gxpsy, Ishi-1, psy62, and YCPsy, in addition to a model of the closest related culturable microorganism, L. crescens BT-1. Predictions about nutrient requirements and changes in growth phenotypes of CLas were confirmed using in vitro hairy root-based assays, while the L. crescens BT-1 model was validated using cultivation assays. Host-dependent metabolic phenotypes were revealed using expression data obtained from CLas-infected citrus trees and from the CLas-harboring psyllid Diaphorina citri Kuwayama. These results identified conserved and unique metabolic traits, as well as strain-specific interactions between CLas and its hosts, laying the foundation for the development of model-driven Huanglongbing management strategies.
Collapse
Affiliation(s)
- Cristal Zuñiga
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Beth Peacock
- Department of Microbiology and Plant Pathology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Bo Liang
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Greg McCollum
- USDA, ARS, US Horticultural Research Laboratory, 2001 S. Rock Road, Fort Pierce, FL, 34945, USA
| | - Sonia C Irigoyen
- Texas A&M AgriLife Research and Extension Center, Texas A&M University System, Weslaco, TX, USA
| | - Diego Tec-Campos
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Campus de Ciencias Exactas e Ingenierías, Mérida, 97203, Yucatán, México
| | - Clarisse Marotz
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Nien-Chen Weng
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Alejandro Zepeda
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Campus de Ciencias Exactas e Ingenierías, Mérida, 97203, Yucatán, México
| | - Georgios Vidalakis
- Department of Microbiology and Plant Pathology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, Texas A&M University System, Weslaco, TX, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA.
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA.
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0403, USA.
| |
Collapse
|
10
|
Jain M, Munoz-Bodnar A, Gabriel DW. 'Candidatus Liberibacter asiaticus' peroxiredoxin (LasBCP) suppresses oxylipin-mediated defense signaling in citrus. JOURNAL OF PLANT PHYSIOLOGY 2019; 236:61-65. [PMID: 30884323 DOI: 10.1016/j.jplph.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/08/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
The Lasbcp (CLIBASIA_RS00445) 1-Cys peroxiredoxin gene is conserved among all 13 sequenced strains of Candidatus Liberibacter asiaticus, the causal agent of Huanglongbing or "citrus greening" disease. LasBCP was previously characterized as a secreted peroxiredoxin with substrate specificity for organic peroxides, and as a potential pathogenicity effector. Agrobacterium-mediated transient expression of LasBCP in citrus leaves provided significant protection against peroxidation of free and membrane-bound lipids, thereby preserving the molecular integrity of the chlorophyll apparatus and reducing accumulation of lipid peroxidation products (oxylipins) following exposure to tert-butyl hydroperoxide (tBOOH, an organic peroxide). Oxylipins extracted from GUS-expressing citrus leaves reduced viability of L. crescens, the only Liberibacter species cultured to date. However, similar extracts obtained from LasBCP-expressing leaves were less inhibitory to L. crescens growth and viability in culture. Quantitative RT-PCR analyses showed coordinated transcriptional downregulation of oxylipin biosynthetic (CitFAD, CitLOX, CitAOS and CitAOC), and jasmonic acid (JA) (CitJAR1, CitCOI1 and CitJIN1) and salicylic acid (SA) (CitPAL, CitICS and CitPR1) signaling pathway genes in citrus leaves expressing LasBCP and treated with tBOOH. The negative response regulator of jasmonic acid CitJAZ1 was upregulated in LasBCP-expressing citrus leaves under similar conditions. These data clearly demonstrated a protective role of secreted LasBCP in favor of Las survival and colonization by alleviating ROS-induced lipid peroxidation in citrus host, preventing accumulation of antimicrobial oxylipins, and suppressing both localized and systemic immune responses in planta.
Collapse
Affiliation(s)
- Mukesh Jain
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | | | - Dean W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
11
|
Hung WL, Wang Y. A Targeted Mass Spectrometry-Based Metabolomics Approach toward the Understanding of Host Responses to Huanglongbing Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10651-10661. [PMID: 30220206 DOI: 10.1021/acs.jafc.8b04033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Candidatus Liberibacter asiaticus (CLas) is the major culprit of Huanglongbing (HLB), the most destructive citrus disease worldwide. The polymerase chain reaction (PCR) is the most common method for detecting the presence of CLas in the tree. However, due to the uneven distribution of bacteria and a minimum bacterial titer requirement, an infected tree may test false negative. Thus, our current study profiled primary and secondary metabolites of CLas-free leaves harvested from a citrus undercover protection system (CUPS) to prevent a misjudgment of CLas infection. Functional enrichment analysis revealed several metabolic pathways significantly affected by CLas infection, mainly biosynthesis of amino acids and secondary metabolites. Comparisons of CLas-infected metabolite alterations among oranges, mandarins, and grapefruits revealed that host responses to CLas were different. The metabolite signature highlighted in this study will provide a fuller understanding of how CLas bacteria affect the biosynthesis of primary and secondary metabolites in different hosts.
Collapse
Affiliation(s)
- Wei-Lun Hung
- Citrus Research and Education Center, Department of Food Science and Human Nutrition , University of Florida , 700 Experiment Station Road , Lake Alfred , Florida 33850 , United States
- School of Food Safety , Taipei Medical University , 250 Wu-Hsing Street , Taipei 11031 , Taiwan
| | - Yu Wang
- Citrus Research and Education Center, Department of Food Science and Human Nutrition , University of Florida , 700 Experiment Station Road , Lake Alfred , Florida 33850 , United States
| |
Collapse
|
12
|
Feng S, Niu L, Suh JH, Hung WL, Wang Y. Comprehensive Metabolomics Analysis of Mandarins ( Citrus reticulata) as a Tool for Variety, Rootstock, and Grove Discrimination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10317-10326. [PMID: 30205680 DOI: 10.1021/acs.jafc.8b03877] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The metabolite profile responsible for the quality of mandarin fruit is influenced by preharvest factors including genotype, rootstock, grove location, etc. In this paper, mandarin varieties were discriminated using metabolomics. Additionally, effects on metabolic profiles due to grove location and rootstock differences were also investigated. Results revealed that mandarin varieties could be differentiated using the metabolite profile, while the compositions of flavonoids have the potential for variety differentiation. With regard to fruits of the same variety, grove location might determine the overall profile of metabolites, whereas rootstock possibly affected composition of secondary metabolites. Pathway enrichment analysis demonstrated that biosynthesis pathways of terpenoids and steroids involving limonene and linalool were highly influenced by variety diversity. Moreover, the flavonoid biosynthesis pathway, involving hesperetin, naringenin, eriodictyol, and taxifolin, was indicated to have a close relationship with rootstock differentiation. This study provides useful and important information with depth for breeding and optimizing preharvest practices.
Collapse
Affiliation(s)
- Shi Feng
- Department of Food Science and Human Nutrition , University of Florida , 572 Newell Drive , Gainesville , Florida 32611 , United States
- Citrus Research and Education Center, Food Science and Human Nutrition , University of Florida , 700 Experiment Station Road , Lake Alfred , Florida 33850 , United States
| | - Liying Niu
- Citrus Research and Education Center, Food Science and Human Nutrition , University of Florida , 700 Experiment Station Road , Lake Alfred , Florida 33850 , United States
- Institute of Farm Product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , People's Republic of China
| | - Joon Hyuk Suh
- Citrus Research and Education Center, Food Science and Human Nutrition , University of Florida , 700 Experiment Station Road , Lake Alfred , Florida 33850 , United States
| | - Wei-Lun Hung
- Citrus Research and Education Center, Food Science and Human Nutrition , University of Florida , 700 Experiment Station Road , Lake Alfred , Florida 33850 , United States
| | - Yu Wang
- Department of Food Science and Human Nutrition , University of Florida , 572 Newell Drive , Gainesville , Florida 32611 , United States
- Citrus Research and Education Center, Food Science and Human Nutrition , University of Florida , 700 Experiment Station Road , Lake Alfred , Florida 33850 , United States
| |
Collapse
|