1
|
Zhang Y, Sun Y, Liu Z, Leng J, Liu Q, Song Y. Heterologous expression and enzymatic properties of lipase from Mucor circinelloides. Sci Rep 2025; 15:10871. [PMID: 40157944 PMCID: PMC11954853 DOI: 10.1038/s41598-025-93938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
Microbial lipases could be used to hydrolyze or recombine fats and oils, and had great applications in food processing, bioenergy and chemical industry. Mucor circinelloides was an important gamma-linolenic acid producing strain, and its genome was predicted to contain a large number of genes encoding lipases, the key enzymes in lipid metabolism. In the present study, a potential lipase WJ_23 from Mucor circinelloides WJ11 was cloned for the first time and heterologously expressed and purified to homogeneity in Pichia pastoris. By SDS-PAGE analysis, the molecular weight of the recombinant lipase was estimated to be ~ 34 kDa. The optimal temperature and pH of the recombinant lipase were 50 °C and 9.0, respectively. The recombinant lipase had good thermal stability at 50 °C with a broad pH stability from 6.0 to 11.0. After incubation at 37 °C for 24 h, the activity of the recombinant lipase remained over 95% between pH 7.0 and 9.0. The recombinant lipase possessed a preference for the long chain substrates. Using p-NPP as substrate, the measured kinetic parameters Vmax and Km were 94.34 U/mg and 6.37 mmoL/L, respectively. In addition, the activity of the recombinant lipase was not affected obviously by various metal ions, and it exhibited certain stability and tolerance towards several kinds of organic solvents. This research might provide a basis for the further industrial application of recombinant M. circinelloides lipase.
Collapse
Affiliation(s)
- Yao Zhang
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China.
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China.
| | - Yan Sun
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China
- School of Biological Science and Technology, University of Jinan, 336 Nanxinzhuang West Road, Jinan, 250022, People's Republic of China
| | - Zhuo Liu
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China
- School of Biological Science and Technology, University of Jinan, 336 Nanxinzhuang West Road, Jinan, 250022, People's Republic of China
| | - Jiajun Leng
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| |
Collapse
|
2
|
Homologous and Heterologous Expression of Delta(12)-Desaturase in Mucor circinelloides Enhanced the Production of Linolenic Acid. Molecules 2022; 27:molecules27175511. [PMID: 36080278 PMCID: PMC9457725 DOI: 10.3390/molecules27175511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Linolenic acid (LA) is gaining more interest within the scientific community. This is because it has a potential medical role in reducing the risk of inflammation, carcinogenesis, atherosclerosis and diabetes and is a valuable nutraceutical for human health. The oleaginous fungus Mucor circinelloides produces a high lipid content (36%), including valuable polyunsaturated fatty acids (PUFAs). However, the critical step in which oleic acid (OA) is converted into LA is not efficient at supplying enough substrates for PUFA synthesis. Hence, we propose a method to increase LA production based on genetic engineering. The overexpression of the Δ12-desaturase gene from M. circinelloides and Mortierella alpina increased the LA content and improved the lipid accumulation (from 14.9% to 21.6% in the Δ12-desaturase gene of the M. circinelloides overexpressing strain (Mc-D12MC) and from 14.9% to 18.7% in the Δ12-desaturase gene of M. alpina overexpressing strain (Mc-D12MA)). Additionally, the up-regulated expression levels of these genes targeted the genes involved in NADPH production, implying that the elevated Δ12-desaturase gene may function as a critical regulator of NADPH and lipid synthesis in M. circinelloides. This study provides the first evidence to support the design of metabolic engineering related to LA and PUFA production in M. circinelloides for potential industrial applications.
Collapse
|
3
|
Role of Cytosolic Malic Enzyme in Oleaginicity of High-Lipid-Producing Fungal Strain Mucor circinelloides WJ11. J Fungi (Basel) 2022; 8:jof8030265. [PMID: 35330267 PMCID: PMC8955760 DOI: 10.3390/jof8030265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
Mucor circinelloides, an oleaginous filamentous fungus, is gaining popularity due to its ability to synthesize significant amounts of lipids containing γ-linolenic acid (GLA) that have important health benefits. Malic enzyme (ME), which serves as the main source of NADPH in some fungi, has been found to regulate lipid accumulation in oleaginous fungi. In the present study, the role of two cytosolic ME genes, cmalA and cmalB, in the lipid accumulation of the M. circinelloides high-lipid-producing strain WJ11, was evaluated. Strains overexpressing cmalA and cmalB showed a 9.8- and 6.4-fold rise in specific ME activity, respectively, and an elevation of the lipid content by 23.2% and 5.8%, respectively, suggesting that these genes are involved in lipid biosynthesis. Due to increased lipid accumulation, overall GLA content in biomass was observed to be elevated by 11.42% and 16.85% in cmalA and cmalB overexpressing strains, respectively. Our study gives an important insight into different studies exploring the role of the cmalA gene, while we have for the first time investigated the role of the cmalB gene in the M. circinelloides WJ11 strain.
Collapse
|
4
|
Fazili ABA, Shah AM, Zan X, Naz T, Nosheen S, Nazir Y, Ullah S, Zhang H, Song Y. Mucor circinelloides: a model organism for oleaginous fungi and its potential applications in bioactive lipid production. Microb Cell Fact 2022; 21:29. [PMID: 35227264 PMCID: PMC8883733 DOI: 10.1186/s12934-022-01758-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
Microbial oils have gained massive attention because of their significant role in industrial applications. Currently plants and animals are the chief sources of medically and nutritionally important fatty acids. However, the ever-increasing global demand for polyunsaturated fatty acids (PUFAs) cannot be met by the existing sources. Therefore microbes, especially fungi, represent an important alternative source of microbial oils being investigated. Mucor circinelloides—an oleaginous filamentous fungus, came to the forefront because of its high efficiency in synthesizing and accumulating lipids, like γ-linolenic acid (GLA) in high quantity. Recently, mycelium of M. circinelloides has acquired substantial attraction towards it as it has been suggested as a convenient raw material source for the generation of biodiesel via lipid transformation. Although M. circinelloides accumulates lipids naturally, metabolic engineering is found to be important for substantial increase in their yields. Both modifications of existing pathways and re-formation of biosynthetic pathways in M. circinelloides have shown the potential to improve lipid levels. In this review, recent advances in various important metabolic aspects of M. circinelloides have been discussed. Furthermore, the potential applications of M. circinelloides in the fields of antioxidants, nutraceuticals, bioremediation, ethanol production, and carotenoids like beta carotene and astaxanthin having significant nutritional value are also deliberated.
Collapse
|
5
|
Zan X, Cui F, Sun J, Zhou S, Song Y. Novel Dual-Functional Enzyme Lip10 Catalyzes Lipase and Acyltransferase Activities in the Oleaginous Fungus Mucor circinelloides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13176-13184. [PMID: 31690075 DOI: 10.1021/acs.jafc.9b05617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipases or triacylglycerol (TAG) lipases belong to the α/β-hydrolases superfamily, which are enzymes capable of catalyzing the hydrolysis of the ester bond between fatty acids and glycerol. Interestingly, some lipases have been found to not only possess hydrolysis activity but also acyltransferase activity in yeasts and microalgae. Our present study reported a novel dual-functional Mucor circinelloides lipase Lip10 with a slight lipolysis activity but a noteworthy phospholipid/diacylglycerol acyltransferase (PDAT) activity. The purified Lip10 mutants prefer to utilize phosphatidyl serine to form TAG over phosphatidyl ethanolamine and phosphatidylcholine. Site-directed mutagenesis indicated that the histidine residue in the acyltransferase motif H-(X)4-D is indispensable for the PDAT activity of Lip10. Overexpression of the acyltransferase motif of Lip10 promoted cell growth by 12% and increased lipid production by 14% compared to the control, whilst overexpression of the lipase motif induced lipid degradation in M. circinelloides.
Collapse
Affiliation(s)
- Xinyi Zan
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , P. R. China
| | - Fengjie Cui
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , P. R. China
| | - Jianing Sun
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , P. R. China
| | - Shuai Zhou
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , P. R. China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science , Shandong University of Technology , Zibo 255049 , P. R. China
| |
Collapse
|
6
|
Rodrigues Reis CE, Bento HBS, Carvalho AKF, Rajendran A, Hu B, De Castro HF. Critical applications of Mucor circinelloides within a biorefinery context. Crit Rev Biotechnol 2019; 39:555-570. [PMID: 30931637 DOI: 10.1080/07388551.2019.1592104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The establishment of an efficient and feasible biorefinery model depends on, among other factors, particularly the selection of the most appropriate microorganism. Mucor circinelloides is a dimorphic fungus species able to produce a wide variety of hydrolytic enzymes, lipids prone to biodiesel production, carotenoids, ethanol, and biomass with significant nutritional value. M. circinelloides also has been selected as a model species for genetic modification by being the first filamentous oleaginous species to have its genome fully characterized, as well as being a species characterized as a potential bioremediation agent. Considering the potential of replacing several nonrenewable feedstocks is widely dependent on fossil fuels, the exploitation of microbial processes and products is a desirable solution for promoting a green and sustainable future. Here, we introduce and thoroughly describe the recent and critical applications of this remarkable fungus within the context of developing a fungal-based biorefinery.
Collapse
Affiliation(s)
- Cristiano E Rodrigues Reis
- a Department of Chemical Engineering, Engineering School of Lorena , University of São Paulo , Lorena , São Paulo , Brazil
| | - Heitor B S Bento
- a Department of Chemical Engineering, Engineering School of Lorena , University of São Paulo , Lorena , São Paulo , Brazil
| | - Ana K F Carvalho
- a Department of Chemical Engineering, Engineering School of Lorena , University of São Paulo , Lorena , São Paulo , Brazil
| | - Aravindan Rajendran
- b Department of Bioproducts and Biosystems Engineering , University of Minnesota , Saint Paul , MN , USA
| | - Bo Hu
- b Department of Bioproducts and Biosystems Engineering , University of Minnesota , Saint Paul , MN , USA
| | - Heizir F De Castro
- a Department of Chemical Engineering, Engineering School of Lorena , University of São Paulo , Lorena , São Paulo , Brazil
| |
Collapse
|
7
|
Zan X, Tang X, Chu L, Song Y. Characteristics of cell growth and lipid accumulation of high and low lipid-producing strains of Mucor circinelloides grown on different glucose-oil mixed media. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|