1
|
Dunivant TS, Godinez-Vidal D, Perkins C, Lee MG, Ta M, Groen SC. Evolutionary Systems Biology Identifies Genetic Trade-offs in Rice Defense against Aboveground and Belowground Attackers. PLANT & CELL PHYSIOLOGY 2025; 66:616-626. [PMID: 39290127 DOI: 10.1093/pcp/pcae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Like other plants, wild and domesticated rice species (Oryza nivara, O. rufipogon, and O. sativa) evolve in environments with various biotic and abiotic stresses that fluctuate in intensity through space and time. Microbial pathogens and invertebrate herbivores such as plant-parasitic nematodes and caterpillars show geographical and temporal variation in activity patterns and may respond differently to certain plant-defensive mechanisms. As such, plant interactions with multiple community members may result in conflicting selection pressures on genetic polymorphisms. Here, through assays with different aboveground and belowground herbivores, the fall armyworm (Spodoptera frugiperda) and the southern root-knot nematode (Meloidogyne incognita), and comparison with rice responses to microbial pathogens, we identify potential genetic trade-offs at the KSL8 and MG1 loci on chromosome 11. KSL8 encodes the first committed step toward the biosynthesis of either stemarane-type or stemodane-type diterpenoids through the japonica (KSL8-jap) or indica (KSL8-ind) allele. Knocking out KSL8-jap and CPS4, encoding an enzyme that acts upstream in diterpenoid synthesis, in japonica rice cultivars increased resistance to S. frugiperda and decreased resistance to M. incognita. Furthermore, MG1 resides in a haplotype that provided resistance to M. incognita, while alternative haplotypes are involved in mediating resistance to the rice blast fungus Magnaporthe oryzae and other pests and pathogens. Finally, KSL8 and MG1 alleles are located within trans-species polymorphic haplotypes and may be evolving under long-term balancing selection. Our data are consistent with a hypothesis that polymorphisms at KSL8 and MG1 may be maintained through complex and diffuse community interactions.
Collapse
Affiliation(s)
- Taryn S Dunivant
- Department of Nematology, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - Damaris Godinez-Vidal
- Department of Nematology, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - Craig Perkins
- Department of Nematology, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - Madelyn G Lee
- Department of Nematology, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - Matthew Ta
- Department of Nematology, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - Simon C Groen
- Department of Nematology, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA
| |
Collapse
|
2
|
Bian S, Li Z, Song S, Zhang X, Shang J, Wang W, Zhang D, Ni D. Enhancing Crop Resilience: Insights from Labdane-Related Diterpenoid Phytoalexin Research in Rice ( Oryza sativa L.). Curr Issues Mol Biol 2024; 46:10677-10695. [PMID: 39329985 PMCID: PMC11430374 DOI: 10.3390/cimb46090634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Rice (Oryza sativa L.), as one of the most significant food crops worldwide, holds paramount importance for global food security. Throughout its extensive evolutionary journey, rice has evolved a diverse array of defense mechanisms to fend off pest and disease infestations. Notably, labdane-related diterpenoid phytoalexins play a crucial role in aiding rice in its response to both biotic and abiotic stresses. This article provides a comprehensive review of the research advancements pertaining to the chemical structures, biological activities, and biosynthetic pathways, as well as the molecular regulatory mechanisms, underlying labdane-related diterpenoid phytoalexins discovered in rice. This insight into the molecular regulation of labdane-related diterpenoid phytoalexin biosynthesis offers valuable perspectives for future research aimed at improving crop resilience and productivity.
Collapse
Affiliation(s)
- Shiquan Bian
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zhong Li
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shaojie Song
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiao Zhang
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Jintao Shang
- Agricultural Technology Extension Center of Linping District, Hangzhou 311199, China
| | - Wanli Wang
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Dewen Zhang
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Dahu Ni
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
3
|
Garg A, Srivastava P, Verma PC, Ghosh S. ApCPS2 contributes to medicinal diterpenoid biosynthesis and defense against insect herbivore in Andrographis paniculata. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112046. [PMID: 38395069 DOI: 10.1016/j.plantsci.2024.112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Kalmegh (Andrographis paniculata) spatiotemporally produces medicinally-important ent-labdane-related diterpenoids (ent-LRDs); andrographolide (AD), 14-deoxy-11,12-didehydroandrographolide (DDAD), neoandrographolide (NAD). ApCPS1 and ApCPS2, the ent-copalyl pyrophosphate (ent-CPP)-producing class II diterpene synthases (diTPSs) were identified, but their contributions to ent-CPP precursor supply for ent-LRD biosynthesis were not well understood. Here, we characterized ApCPS4, an additional ent-CPP-forming diTPS. Further, we elucidated in planta function of the ent-CPP-producing diTPSs (ApCPS1,2,4) by integrating transcript-metabolite co-profiles, biochemical analysis and gene functional characterization. ApCPS1,2,4 localized to the plastids, where diterpenoid biosynthesis occurs in plants, but ApCPS1,2,4 transcript expression patterns and ent-LRD contents revealed a strong correlation of ApCPS2 expression and ent-LRD accumulation in kalmegh. ApCPS1,2,4 upstream sequences differentially activated β-glucuronidase (GUS) in Arabidopsis and transiently-transformed kalmegh. Similar to higher expression of ApCPS1 in kalmegh stem, ApCPS1 upstream sequence activated GUS in stem/hypocotyl of Arabidopsis and kalmegh. However, ApCPS2,4 upstream sequences weakly activated GUS expression in Arabidopsis, which was not well correlated with ApCPS2,4 transcript expression in kalmegh tissues. Whereas, ApCPS2,4 upstream sequences could activate GUS expression at a considerable level in kalmegh leaf and roots/calyx, respectively, suggesting the involvement of transcriptional regulator(s) of ApCPS2,4 that might participate in kalmegh-specific diterpenoid pathway. Interestingly, ApCPS2-silenced kalmegh showed a drastic reduction in AD, DDAD and NAD contents and compromised defense against insect herbivore Spodoptera litura. However, ent-LRD contents and herbivore defense in ApCPS1 or ApCPS4-silenced plants remained largely unaltered. Overall, these results suggested an important role of ApCPS2 in producing ent-CPP for medicinal ent-LRD biosynthesis and defense against insect herbivore.
Collapse
Affiliation(s)
- Anchal Garg
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Payal Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Praveen Chandra Verma
- Molecular Biology and Biotechnology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Lucknow 226001, India
| | - Sumit Ghosh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Xu M, Di D, Fan L, Ma Y, Wei X, Shang EX, Onakpa MM, Johnson OO, Duan JA, Che CT, Zhou J, Zhao M. Structurally diverse (9β-H)-pimarane derivatives with six frameworks from the leaves of Icacina oliviformis and their cytotoxic activities. PHYTOCHEMISTRY 2023; 214:113804. [PMID: 37541354 DOI: 10.1016/j.phytochem.2023.113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
Thirteen previously undescribed (9β-H)-pimarane derivatives, icacinolides A-G (1-7) and oliviformislactones C-H (8-13), together with four known analogs (14-17), were isolated from the leaves of Icacina oliviformis. Their structures were constructed by extensive spectroscopic analysis, 13C NMR-DP4+ analysis, ECD calculation, single-crystal X-ray diffraction, and chemical methods. These structurally diverse isolates were classified into six framework types: rearranged 3-epi-17-nor-(9β-H)-pimarane, rearranged 17-nor-(9β-H)-pimarane, 16-nor-(9β-H)-pimarane, 17-nor-(9β-H)-pimarane, 17,19-di-nor-(9β-H)-pimarane, and (9β-H)-pimarane. Among them, compounds 1, 5, and 7 were the first examples of three rearranged 3-epi-17-nor-(9β-H)-pimaranes featuring a unique (11S)-carboxyl-9-oxatricyclo[5.3.1.02,7]dodecane motif with contiguous stereogenic centers, whereas their C-3 epimers, compounds 2-4 and 6 were the second examples of four rearranged 17-nor-(9β-H)-pimaranes. Additionally, compounds 8 and 12/13 represented the second examples of a 16-nor-(9β-H)-pimarane and two 17,19-di-nor-(9β-H)-pimaranes, respectively. In cytotoxic bioassay, compound 2 exhibited significant cytotoxic against HT-29 with IC50 values of 7.88 μM, even stronger than 5-fluorouracil, and 15 showed broad-spectrum cytotoxic activities against HepG2, HT-29, and MIA PaCa-2 with IC50 values of 11.62, 9.77, and 4.91 μM, respectively. Meanwhile, a preliminary structure-activity relationship suggested that 3,20-epoxy, 6,19-lactone, 2-OH, 7-OH, and 8-OH in (9β-H)-pimarane derivatives might be active groups, whereas ring C aromatization may decrease the cytotoxic activities.
Collapse
Affiliation(s)
- Mingming Xu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resource Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resource Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Di Di
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resource Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resource Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Lu Fan
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Yingrun Ma
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resource Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resource Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Xinyi Wei
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resource Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resource Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resource Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resource Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Monday M Onakpa
- Department of Veterinary Pharmacology and Toxicology, University of Abuja, Abuja, 920001, Nigeria
| | - Oluwatosin O Johnson
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, CMUL Campus, Lagos, 100254, Nigeria
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resource Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resource Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Chun-Tao Che
- Department of Pharmaceutical Sciencesollege of Pharmacy, the University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Junfei Zhou
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resource Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resource Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, People's Republic of China.
| | - Ming Zhao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resource Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resource Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, People's Republic of China; Department of Pharmaceutical Sciencesollege of Pharmacy, the University of Illinois at Chicago, Chicago, IL, 60612, United States.
| |
Collapse
|
5
|
da Costa DS, dos Santos LN, Ferreira NR, Takeuchi KP, Lopes AS. Mairá-Potato ( Casimirella sp.): Botanical, Food, Pharmacological, and Phytochemical Aspects. Molecules 2023; 28:6069. [PMID: 37630321 PMCID: PMC10458469 DOI: 10.3390/molecules28166069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Millions of people in the world live in food insecurity, so identifying a tuber with characteristics capable of meeting the demand for food and also identifying active compounds that can be used to minimize harm to human health is of great value. The aim was to carry out a review based on systematic review tools and the main objective was to seek information on botanical, food, pharmacological, and phytochemical aspects of Casimirella sp. and propose possible applications. This review showed papers that addressed botanical, food, pharmacological, and phytochemical aspects of the Mairá-potato and presented suggestions for using this tuber allied to the information described in the works found in the Google Academic, Scielo, Science Direct, Scopus, PubMed, and Web of Science databases. This review synthesized knowledge about the Mairá-potato that can contribute to the direction of further research on the suggested technological applications, both on the use of this tuber as a polymeric material and its use as biomaterial, encapsulation, bioactive use, and 3D printing, because this work collected information about this non-conventional food plant (PANC) that shows great potential for use in various areas of study.
Collapse
Affiliation(s)
- Danusa Silva da Costa
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Pará), Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (L.N.d.S.); (N.R.F.); (A.S.L.)
| | - Lucely Nogueira dos Santos
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Pará), Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (L.N.d.S.); (N.R.F.); (A.S.L.)
| | - Nelson Rosa Ferreira
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Pará), Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (L.N.d.S.); (N.R.F.); (A.S.L.)
| | - Katiuchia Pereira Takeuchi
- Department of Food and Nutrition, Faculty of Nutrition, UFMT (Federal University of Mato Grosso), Cuiabá 78060-900, MT, Brazil;
| | - Alessandra Santos Lopes
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Pará), Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (L.N.d.S.); (N.R.F.); (A.S.L.)
| |
Collapse
|
6
|
Wang L, Fu J, Shen Q, Wang Q. OsWRKY10 extensively activates multiple rice diterpenoid phytoalexin biosynthesis to enhance rice blast resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37186469 DOI: 10.1111/tpj.16259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Phytoalexin is the main chemical weapon against disease pathogens in plants. Rice produces a number of phytoalexins to defend pathogens, most of which belong to diterpenoid phytoalexins. Three biosynthetic gene clusters (BGCs) and a few non-cluster genes are responsible for rice diterpenoid phytoalexin biosynthesis. The corresponding regulatory mechanism of these phytoalexins in response to pathogen challenges still remains unclear. Here we identified a transcription factor, OsWRKY10, positively regulating rice diterpenoid phytoalexin biosynthesis. Knockout mutants of OsWRKY10 obtained by the CRISPR/Cas9 technology are more susceptible to Magnaporthe oryzae infection, while overexpression of OsWRKY10 enhances resistance to rice blast. Further analysis reveals that overexpression of OsWRKY10 increases accumulation of multiple rice diterpenoid phytoalexins and expression of genes in three BGCs and non-clustered genes in response to M. oryzae infection. Knockout of OsWRKY10 impairs upregulation of rice diterpenoid phytoalexin biosynthesis gene expression by blast pathogen and CuCl2 treatment. OsWRKY10 directly binds to the W-boxes or W-box-like elements (WLEs) of rice diterpenoid phytoalexin biosynthesis gene promoters to regulate the corresponding gene expression. This study identified an extensive regulator (OsWRKY10) with the broad transcriptional regulation on rice diterpenoid phytoalexin biosynthesis, providing the insight to characterize regulation of rice chemical defense for improving disease resistance.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinqin Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
7
|
Valletta A, Iozia LM, Fattorini L, Leonelli F. Rice Phytoalexins: Half a Century of Amazing Discoveries; Part I: Distribution, Biosynthesis, Chemical Synthesis, and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:260. [PMID: 36678973 PMCID: PMC9862927 DOI: 10.3390/plants12020260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Cultivated rice is a staple food for more than half of the world's population, providing approximately 20% of the world's food energy needs. A broad spectrum of pathogenic microorganisms causes rice diseases leading to huge yield losses worldwide. Wild and cultivated rice species are known to possess a wide variety of antimicrobial secondary metabolites, known as phytoalexins, which are part of their active defense mechanisms. These compounds are biosynthesized transiently by rice in response to pathogens and certain abiotic stresses. Rice phytoalexins have been intensively studied for over half a century, both for their biological role and their potential application in agronomic and pharmaceutical fields. In recent decades, the growing interest of the research community, combined with advances in chemical, biological, and biomolecular investigation methods, has led to a notable acceleration in the growth of knowledge on rice phytoalexins. This review provides an overview of the knowledge gained in recent decades on the diversity, distribution, biosynthesis, chemical synthesis, and bioactivity of rice phytoalexins, with particular attention to the most recent advances in this research field.
Collapse
Affiliation(s)
- Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Maria Iozia
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Fattorini
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Leonelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Rahaman F, Shukor Juraimi A, Rafii MY, Uddin K, Hassan L, Chowdhury AK, Karim SMR, Yusuf Rini B, Yusuff O, Bashar HMK, Hossain A. Allelopathic potential in rice - a biochemical tool for plant defence against weeds. FRONTIERS IN PLANT SCIENCE 2022; 13:1072723. [PMID: 36589133 PMCID: PMC9795009 DOI: 10.3389/fpls.2022.1072723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Rice is a key crop for meeting the global food demand and ensuring food security. However, the crop has been facing great problems to combat the weed problem. Synthetic herbicides pose a severe threat to the long-term viability of agricultural output, agroecosystems, and human health. Allelochemicals, secondary metabolites of allelopathic plants, are a powerful tool for biological and eco-friendly weed management. The dynamics of weed species in various situations are determined by crop allelopathy. Phenolics and momilactones are the most common allelochemicals responsible for herbicidal effects in rice. The dispersion of allelochemicals is influenced not only by crop variety but also by climatic conditions. The most volatile chemicals, such as terpenoids, are usually emitted by crop plants in drought-stricken areas whereas the plants in humid zones release phytotoxins that are hydrophilic in nature, including phenolics, flavonoids, and alkaloids. The allelochemicals can disrupt the biochemical and physiological processes in weeds causing them to die finally. This study insight into the concepts of allelopathy and allelochemicals, types of allelochemicals, techniques of investigating allelopathic potential in rice, modes of action of allelochemicals, pathways of allelochemical production in plants, biosynthesis of allelochemicals in rice, factors influencing the production of allelochemicals in plants, genetical manipulation through breeding to develop allelopathic traits in rice, the significance of rice allelopathy in sustainable agriculture, etc. Understanding these biological phenomena may thus aid in the development of new and novel weed-control tactics while allowing farmers to manage weeds in an environmentally friendly manner.
Collapse
Affiliation(s)
- Ferdoushi Rahaman
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
| | - Abdul Shukor Juraimi
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
| | - Mohd Y. Rafii
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Selangor, Malaysia
| | - Kamal Uddin
- Department of Land Management, University Putra Malaysia (UPM), Serdang, Malaysia
| | - Lutful Hassan
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Abul Kashem Chowdhury
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | | | - Bashir Yusuf Rini
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | - Oladosu Yusuff
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Selangor, Malaysia
| | - H. M. Khairul Bashar
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
- On-Farm Research Division (OFRD), Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Akbar Hossain
- Soil Science Division, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
9
|
Yao H, Wu M, Lin L, Wu Z, Bae M, Park S, Wang S, Zhang W, Gao J, Wang D, Piao Y. Design strategies for adhesive hydrogels with natural antibacterial agents as wound dressings: Status and trends. Mater Today Bio 2022; 16:100429. [PMID: 36164504 PMCID: PMC9508611 DOI: 10.1016/j.mtbio.2022.100429] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
The wound healing process is usually susceptible to different bacterial infections due to the complex physiological environment, which significantly impairs wound healing. The topical application of antibiotics is not desirable for wound healing because the excessive use of antibiotics might cause bacteria to develop resistance and even the production of super bacteria, posing significant harm to human well-being. Wound dressings based on adhesive, biocompatible, and multi-functional hydrogels with natural antibacterial agents have been widely recognized as effective wound treatments. Hydrogels, which are three-dimensional (3D) polymer networks cross-linked through physical interactions or covalent bonds, are promising for topical antibacterial applications because of their excellent adhesion, antibacterial properties, and biocompatibility. To further improve the healing performance of hydrogels, various modification methods have been developed with superior biocompatibility, antibacterial activity, mechanical properties, and wound repair capabilities. This review summarizes hundreds of typical studies on various ingredients, preparation methods, antibacterial mechanisms, and internal antibacterial factors to understand adhesive hydrogels with natural antibacterial agents for wound dressings. Additionally, we provide prospects for adhesive and antibacterial hydrogels in biomedical applications and clinical research.
Collapse
Affiliation(s)
- Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Ming Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Liwei Lin
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Zhonglian Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Minjun Bae
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sumin Park
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Shuli Wang
- Fujian Engineering Research Center for Solid-State Lighting, Department of Electronic Science, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Wang Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Dongan Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, 999077, PR China
| | - Yuanzhe Piao
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.,Advanced Institutes of Convergence Technology, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| |
Collapse
|
10
|
Sun Y, Chen Z, Wang G, Lv H, Mao Y, Ma K, Wang Y. De novo production of versatile oxidized kaurene diterpenes in Escherichia coli. Metab Eng 2022; 73:201-213. [DOI: 10.1016/j.ymben.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
|
11
|
Yu J, Tu X, Huang AC. Functions and biosynthesis of plant signaling metabolites mediating plant-microbe interactions. Nat Prod Rep 2022; 39:1393-1422. [PMID: 35766105 DOI: 10.1039/d2np00010e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2015-2022Plants and microbes have coevolved since their appearance, and their interactions, to some extent, define plant health. A reasonable fraction of small molecules plants produced are involved in mediating plant-microbe interactions, yet their functions and biosynthesis remain fragmented. The identification of these compounds and their biosynthetic genes will open up avenues for plant fitness improvement by manipulating metabolite-mediated plant-microbe interactions. Herein, we integrate the current knowledge on their chemical structures, bioactivities, and biosynthesis with the view of providing a high-level overview on their biosynthetic origins and evolutionary trajectory, and pinpointing the yet unknown and key enzymatic steps in diverse biosynthetic pathways. We further discuss the theoretical basis and prospects for directing plant signaling metabolite biosynthesis for microbe-aided plant health improvement in the future.
Collapse
Affiliation(s)
- Jingwei Yu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Xingzhao Tu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Ancheng C Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
12
|
Li LP, Han JQ, Yang F, Wu X, Xie JH, Zhou QL. Total Synthesis of the Alleged Structure of (+)-Fimbricalyxoid A. Org Lett 2022; 24:3477-3481. [PMID: 35522037 DOI: 10.1021/acs.orglett.2c01076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An enantioselective total synthesis of the alleged structure of (+)-fimbricalyxoid A is reported. The synthetic strategy features a pyridine-N-oxidate-mediated SN2' reaction to introduce an oxygen functionality at position C3 of the A-ring and a sequential three-step process via the cleavage of the C-O bonds and hemiketalization to form the 3,20-oxybridge. With this strategy, the target molecule was synthesized in 19% overall yield and 12 steps from our previously synthesized cis-fused octahydrophenanthrene (+)-6.
Collapse
Affiliation(s)
- Lin-Ping Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia-Qi Han
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fan Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiong Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300070, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300070, China
| |
Collapse
|
13
|
Zhang Y, Li M, Liu Q, Huang J, Chen Y. A Synthetic View on Momilactones and Related 9β-H Pimarane Skeleton Diterpenoids. Front Chem 2022; 10:882404. [PMID: 35386847 PMCID: PMC8979168 DOI: 10.3389/fchem.2022.882404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Allelochemicals are secondary metabolites produced from plants and used to prevent and control the invasion of other plants and microorganisms, with broad application prospects in crop protection. Structurally, momilactones belong to 9β-H pimarane diterpenoids, one of rice’s significant allelochemicals with anti-weeds and antibacterial activity. Rare studies have been reported with the synthesis challenges of the unique 9β-H pimarane skeleton. Hence, synthetic strategies of momilactones and related 9β-H pimarane skeleton are reviewed from 1984 to 2021.
Collapse
Affiliation(s)
| | | | | | - Jian Huang
- *Correspondence: Jian Huang, ; Yang Chen,
| | - Yang Chen
- *Correspondence: Jian Huang, ; Yang Chen,
| |
Collapse
|
14
|
Brambilla A, Sommer A, Ghirardo A, Wenig M, Knappe C, Weber B, Amesmaier M, Lenk M, Schnitzler JP, Vlot AC. Immunity-associated volatile emissions of β-ionone and nonanal propagate defence responses in neighbouring barley plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:615-630. [PMID: 34849759 DOI: 10.1093/jxb/erab520] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Plants activate biochemical responses to combat stress. (Hemi-)biotrophic pathogens are fended off by systemic acquired resistance (SAR), a primed state allowing plants to respond faster and more strongly upon subsequent infection. Here, we show that SAR-like defences in barley (Hordeum vulgare) are propagated between neighbouring plants, which respond with enhanced resistance to the volatile cues from infected senders. The emissions of the sender plants contained 15 volatile organic compounds (VOCs) associated with infection. Two of these, β-ionone and nonanal, elicited resistance upon plant exposure. Whole-genome transcriptomics analysis confirmed that interplant propagation of defence in barley is established as a form of priming. Although gene expression changes were more pronounced after challenge infection of the receiver plants with Blumeria graminis f. sp. hordei, differential gene expression in response to the volatile cues of the sender plants included an induction of HISTONE DEACETYLASE 2 (HvHDA2) and priming of TETRATRICOPEPTIDE REPEAT-LIKE superfamily protein (HvTPL). Because HvHDA2 and HvTPL transcript accumulation was also enhanced by exposure of barley to β-ionone and nonanal, our data identify both genes as possible defence/priming markers in barley. Our results suggest that VOCs and plant-plant interactions are relevant for possible crop protection strategies priming defence responses in barley.
Collapse
Affiliation(s)
- Alessandro Brambilla
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Anna Sommer
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Andrea Ghirardo
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Claudia Knappe
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Baris Weber
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Melissa Amesmaier
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Miriam Lenk
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| | - A Corina Vlot
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| |
Collapse
|
15
|
Feilner JM, Plangger I, Wurst K, Magauer T. Bifunctional Polyene Cyclizations: Synthetic Studies on Pimarane Natural Products. Chemistry 2021; 27:12410-12421. [PMID: 34213030 PMCID: PMC8457131 DOI: 10.1002/chem.202101926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 11/10/2022]
Abstract
Polyene cyclizations generate molecular complexity from a linear polyene in a single step. While methods to initiate these cyclizations have been continuously expanded and improved over the years, the majority of polyene substrates are still limited to simple alkyl-substituted alkenes. In this study, we took advantage of the unique reactivity of higher-functionalized bifunctional alkenes. The realization of a polyene tetracyclization of a dual nucleophilic aryl enol ether involving a transannular endo-termination step enabled the total synthesis of the tricyclic diterpenoid pimara-15-en-3α-8α-diol. The highly flexible and modular route allowed for the preparation of a diverse library of cyclization precursors specifically designed for the total synthesis of the tetracyclic nor-diterpenoid norflickinflimiod C. The tetracyclization of three diversely substituted allenes enabled access to complex pentacyclic products and provided a detailed insight into the underlying reaction pathways.
Collapse
Affiliation(s)
- Julian M. Feilner
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Immanuel Plangger
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical ChemistryLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Thomas Magauer
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
16
|
Bharadwaj R, Kumar SR, Sharma A, Sathishkumar R. Plant Metabolic Gene Clusters: Evolution, Organization, and Their Applications in Synthetic Biology. FRONTIERS IN PLANT SCIENCE 2021; 12:697318. [PMID: 34490002 PMCID: PMC8418127 DOI: 10.3389/fpls.2021.697318] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/05/2021] [Indexed: 05/21/2023]
Abstract
Plants are a remarkable source of high-value specialized metabolites having significant physiological and ecological functions. Genes responsible for synthesizing specialized metabolites are often clustered together for a coordinated expression, which is commonly observed in bacteria and filamentous fungi. Similar to prokaryotic gene clustering, plants do have gene clusters encoding enzymes involved in the biosynthesis of specialized metabolites. More than 20 gene clusters involved in the biosynthesis of diverse metabolites have been identified across the plant kingdom. Recent studies demonstrate that gene clusters are evolved through gene duplications and neofunctionalization of primary metabolic pathway genes. Often, these clusters are tightly regulated at nucleosome level. The prevalence of gene clusters related to specialized metabolites offers an attractive possibility of an untapped source of highly useful biomolecules. Accordingly, the identification and functional characterization of novel biosynthetic pathways in plants need to be worked out. In this review, we summarize insights into the evolution of gene clusters and discuss the organization and importance of specific gene clusters in the biosynthesis of specialized metabolites. Regulatory mechanisms which operate in some of the important gene clusters have also been briefly described. Finally, we highlight the importance of gene clusters to develop future metabolic engineering or synthetic biology strategies for the heterologous production of novel metabolites.
Collapse
Affiliation(s)
- Revuru Bharadwaj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Sarma R. Kumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, Querétaro, Mexico
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
17
|
Hansen CC, Nelson DR, Møller BL, Werck-Reichhart D. Plant cytochrome P450 plasticity and evolution. MOLECULAR PLANT 2021; 14:1244-1265. [PMID: 34216829 DOI: 10.1016/j.molp.2021.06.028] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/28/2021] [Accepted: 06/30/2021] [Indexed: 05/27/2023]
Abstract
The superfamily of cytochrome P450 (CYP) enzymes plays key roles in plant evolution and metabolic diversification. This review provides a status on the CYP landscape within green algae and land plants. The 11 conserved CYP clans known from vascular plants are all present in green algae and several green algae-specific clans are recognized. Clan 71, 72, and 85 remain the largest CYP clans and include many taxa-specific CYP (sub)families reflecting emergence of linage-specific pathways. Molecular features and dynamics of CYP plasticity and evolution are discussed and exemplified by selected biosynthetic pathways. High substrate promiscuity is commonly observed for CYPs from large families, favoring retention of gene duplicates and neofunctionalization, thus seeding acquisition of new functions. Elucidation of biosynthetic pathways producing metabolites with sporadic distribution across plant phylogeny reveals multiple examples of convergent evolution where CYPs have been independently recruited from the same or different CYP families, to adapt to similar environmental challenges or ecological niches. Sometimes only a single or a few mutations are required for functional interconversion. A compilation of functionally characterized plant CYPs is provided online through the Plant P450 Database (erda.dk/public/vgrid/PlantP450/).
Collapse
Affiliation(s)
- Cecilie Cetti Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Daniele Werck-Reichhart
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France.
| |
Collapse
|
18
|
Bae S, Han JW, Dang QL, Kim H, Choi GJ. Plant Disease Control Efficacy of Platycladus orientalis and Its Antifungal Compounds. PLANTS 2021; 10:plants10081496. [PMID: 34451541 PMCID: PMC8400505 DOI: 10.3390/plants10081496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022]
Abstract
Plants contain a number of bioactive compounds that exhibit antimicrobial activity, which can be recognized as an important source of agrochemicals for plant disease control. In searching for natural alternatives to synthetic fungicides, we found that a methanol extract of the plant species Platycladus orientalis suppressed the disease development of rice blast caused by Magnaporthe oryzae. Through a series of chromatography procedures in combination with activity-guided fractionation, we isolated and identified a total of eleven compounds including four labdane-type diterpenes (1-4), six isopimarane-type diterpenes (5-10), and one sesquiterpene (11). Of the identified compounds, the MIC values of compounds 1, 2, 5 & 6 mixture, 9, and 11 ranged from 100 to 200 μg/mL against M. oryzae, whereas the other compounds were over 200 μg/mL. When rice plants were treated with the antifungal compounds, compounds 1, 2, and 9 effectively suppressed the development of rice blast at all concentrations tested by over 75% compared to the non-treatment control. In addition, a mixture of compounds 5 & 6 that constituted 66% of the P. orientalis ethyl acetate fraction also exhibited a moderate disease control efficacy. Together, our data suggest that the methanol extract of P. orientalis including terpenoid compounds has potential as a crop protection agent.
Collapse
Affiliation(s)
- Sohyun Bae
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Korea;
| | - Jae Woo Han
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Korea;
| | - Quang Le Dang
- Research and Development Center of Bioactive Compounds, Vietnam Institute of Industrial Chemistry, Hanoi 100000, Vietnam;
| | - Hun Kim
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Korea;
- Correspondence: (H.K.); (G.J.C.)
| | - Gyung Ja Choi
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Korea;
- Correspondence: (H.K.); (G.J.C.)
| |
Collapse
|
19
|
Biochemistry of Terpenes and Recent Advances in Plant Protection. Int J Mol Sci 2021; 22:ijms22115710. [PMID: 34071919 PMCID: PMC8199371 DOI: 10.3390/ijms22115710] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/23/2023] Open
Abstract
Biodiversity is adversely affected by the growing levels of synthetic chemicals released into the environment due to agricultural activities. This has been the driving force for embracing sustainable agriculture. Plant secondary metabolites offer promising alternatives for protecting plants against microbes, feeding herbivores, and weeds. Terpenes are the largest among PSMs and have been extensively studied for their potential as antimicrobial, insecticidal, and weed control agents. They also attract natural enemies of pests and beneficial insects, such as pollinators and dispersers. However, most of these research findings are shelved and fail to pass beyond the laboratory and greenhouse stages. This review provides an overview of terpenes, types, biosynthesis, and their roles in protecting plants against microbial pathogens, insect pests, and weeds to rekindle the debate on using terpenes for the development of environmentally friendly biopesticides and herbicides.
Collapse
|
20
|
Tomita K, Yashiroda Y, Matsuo Y, Piotrowski JS, Li SC, Okamoto R, Yoshimura M, Kimura H, Kawamura Y, Kawamukai M, Boone C, Yoshida M, Nojiri H, Okada K. Genome-wide Screening of Genes Associated with Momilactone B Sensitivity in the Fission Yeast. G3-GENES GENOMES GENETICS 2021; 11:6270786. [PMID: 33956138 PMCID: PMC8496333 DOI: 10.1093/g3journal/jkab156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/28/2021] [Indexed: 12/05/2022]
Abstract
Momilactone B is a natural product with dual biological activities, including antimicrobial and allelopathic properties, and plays a major role in plant chemical defense against competitive plants and pathogens. The pharmacological effects of momilactone B on mammalian cells have also been reported. However, little is known about the molecular and cellular mechanisms underlying its broad bioactivity. In this study, the genetic determinants of momilactone B sensitivity in yeast were explored to gain insight into its mode of action. We screened fission yeast mutants resistant to momilactone B from a pooled culture containing genome-wide gene-overexpressing strains in a drug-hypersensitive genetic background. Overexpression of pmd1, bfr1, pap1, arp9, or SPAC9E9.06c conferred resistance to momilactone B. In addition, a drug-hypersensitive, barcoded deletion library was newly constructed and the genes that imparted altered sensitivity to momilactone B upon deletion were identified. Gene Ontology and fission yeast phenotype ontology enrichment analyses predicted the biological pathways related to the mode of action of momilactone B. The validation of predictions revealed that momilactone B induced abnormal phenotypes such as multiseptated cells and disrupted organization of the microtubule structure. This is the first investigation of the mechanism underlying the antifungal activity of momilactone B against yeast. The results and datasets obtained in this study narrow the possible targets of momilactone B and facilitate further studies regarding its mode of action.
Collapse
Affiliation(s)
- Keisuke Tomita
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yasuhiro Matsuo
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Jeff S Piotrowski
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Sheena C Li
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Reika Okamoto
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Mami Yoshimura
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiromi Kimura
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yumi Kawamura
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Makoto Kawamukai
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Charles Boone
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazunori Okada
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
21
|
Perochon A, Benbow HR, Ślęczka-Brady K, Malla KB, Doohan FM. Analysis of the chromosomal clustering of Fusarium-responsive wheat genes uncovers new players in the defence against head blight disease. Sci Rep 2021; 11:7446. [PMID: 33811222 PMCID: PMC8018971 DOI: 10.1038/s41598-021-86362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/08/2021] [Indexed: 11/17/2022] Open
Abstract
There is increasing evidence that some functionally related, co-expressed genes cluster within eukaryotic genomes. We present a novel pipeline that delineates such eukaryotic gene clusters. Using this tool for bread wheat, we uncovered 44 clusters of genes that are responsive to the fungal pathogen Fusarium graminearum. As expected, these Fusarium-responsive gene clusters (FRGCs) included metabolic gene clusters, many of which are associated with disease resistance, but hitherto not described for wheat. However, the majority of the FRGCs are non-metabolic, many of which contain clusters of paralogues, including those implicated in plant disease responses, such as glutathione transferases, MAP kinases, and germin-like proteins. 20 of the FRGCs encode nonhomologous, non-metabolic genes (including defence-related genes). One of these clusters includes the characterised Fusarium resistance orphan gene, TaFROG. Eight of the FRGCs map within 6 FHB resistance loci. One small QTL on chromosome 7D (4.7 Mb) encodes eight Fusarium-responsive genes, five of which are within a FRGC. This study provides a new tool to identify genomic regions enriched in genes responsive to specific traits of interest and applied herein it highlighted gene families, genetic loci and biological pathways of importance in the response of wheat to disease.
Collapse
Affiliation(s)
- Alexandre Perochon
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Harriet R Benbow
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Katarzyna Ślęczka-Brady
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Keshav B Malla
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fiona M Doohan
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
22
|
Sharifi R, Ryu C. Social networking in crop plants: Wired and wireless cross-plant communications. PLANT, CELL & ENVIRONMENT 2021; 44:1095-1110. [PMID: 33274469 PMCID: PMC8049059 DOI: 10.1111/pce.13966] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 05/03/2023]
Abstract
The plant-associated microbial community (microbiome) has an important role in plant-plant communications. Plants decipher their complex habitat situations by sensing the environmental stimuli and molecular patterns and associated with microbes, herbivores and dangers. Perception of these cues generates inter/intracellular signals that induce modifications of plant metabolism and physiology. Signals can also be transferred between plants via different mechanisms, which we classify as wired- and wireless communications. Wired communications involve direct signal transfers between plants mediated by mycorrhizal hyphae and parasitic plant stems. Wireless communications involve plant volatile emissions and root exudates elicited by microbes/insects, which enable inter-plant signalling without physical contact. These producer-plant signals induce microbiome adaptation in receiver plants via facilitative or competitive mechanisms. Receiver plants eavesdrop to anticipate responses to improve fitness against stresses. An emerging body of information in plant-plant communication can be leveraged to improve integrated crop management under field conditions.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Department of Plant ProtectionCollege of Agriculture and Natural Resources, Razi UniversityKermanshahIran
| | - Choong‐Min Ryu
- Molecular Phytobacteriology LaboratoryInfectious Disease Research Center, KRIBBDaejeonSouth Korea
- Biosystem and Bioengineering ProgramUniversity of Science and Technology (UST)DaejeonSouth Korea
| |
Collapse
|
23
|
Affiliation(s)
- Trinh-Don Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Thu-Thuy T Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada.
| |
Collapse
|
24
|
Commisso M, Guarino F, Marchi L, Muto A, Piro A, Degola F. Bryo-Activities: A Review on How Bryophytes Are Contributing to the Arsenal of Natural Bioactive Compounds against Fungi. PLANTS (BASEL, SWITZERLAND) 2021; 10:203. [PMID: 33494524 PMCID: PMC7911284 DOI: 10.3390/plants10020203] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/05/2023]
Abstract
Usually regarded as less evolved than their more recently diverged vascular sisters, which currently dominate vegetation landscape, bryophytes seem having nothing to envy to the defensive arsenal of other plants, since they had acquired a suite of chemical traits that allowed them to adapt and persist on land. In fact, these closest modern relatives of the ancestors to the earliest terrestrial plants proved to be marvelous chemists, as they traditionally were a popular remedy among tribal people all over the world, that exploit their pharmacological properties to cure the most different diseases. The phytochemistry of bryophytes exhibits a stunning assortment of biologically active compounds such as lipids, proteins, steroids, organic acids, alcohols, aliphatic and aromatic compounds, polyphenols, terpenoids, acetogenins and phenylquinones, thus it is not surprising that substances obtained from various species belonging to such ancestral plants are widely employed as antitumor, antipyretic, insecticidal and antimicrobial. This review explores in particular the antifungal potential of the three Bryophyta divisions-mosses (Musci), hornworts (Anthocerotae) and liverworts (Hepaticae)-to be used as a sources of interesting bioactive constituents for both pharmaceutical and agricultural areas, providing an updated overview of the latest relevant insights.
Collapse
Affiliation(s)
- Mauro Commisso
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona (VR), Italy;
| | - Francesco Guarino
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy;
| | - Laura Marchi
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Via Gramsci 14, 43125 Parma (PR), Italy;
| | - Antonella Muto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Via Ponte P. Bucci 6b, Arcavacata di Rende, 87036 Cosenza (CS), Italy;
| | - Amalia Piro
- Laboratory of Plant Biology and Plant Proteomics (Lab.Bio.Pro.Ve), Department of Chemistry and Chemical Technologies, University of Calabria, Ponte P. Bucci 12 C, Arcavacata di Rende, 87036 Cosenza (CS), Italy;
| | - Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco delle Scienze 11/A, 43124 Parma (PR), Italy
| |
Collapse
|
25
|
Xu MM, Zhou J, Zeng L, Xu J, Onakpa MM, Duan JA, Che CT, Bi H, Zhao M. Pimarane-derived diterpenoids with anti- Helicobacter pylori activity from the tuber of Icacina trichantha. Org Chem Front 2021. [DOI: 10.1039/d1qo00374g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two novel diterpenoids and ten known analogs were obtained from the tuber of Icacina trichantha. All compounds exhibited antibacterial activity against Helicobacter pylori strains with MIC values ranging from 8 to 64 μg mL−1.
Collapse
Affiliation(s)
- Ming-Ming Xu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| | - Junfei Zhou
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| | - Liping Zeng
- Department of Pathogen Biology
- Jiangsu Key Laboratory of Pathogen Biology
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Jingchen Xu
- Department of Pathogen Biology
- Jiangsu Key Laboratory of Pathogen Biology
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Monday M. Onakpa
- Department of Veterinary Pharmacology and Toxicology
- University of Abuja
- Abuja 920001
- Nigeria
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| | - Chun-Tao Che
- Department of Pharmaceutical Sciences
- College of Pharmacy
- University of Illinois at Chicago
- Chicago
- USA
| | - Hongkai Bi
- Department of Pathogen Biology
- Jiangsu Key Laboratory of Pathogen Biology
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Ming Zhao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| |
Collapse
|
26
|
Zeng D, Wang MW, Xiang M, Liu LW, Wang PY, Li Z, Yang S. Design, synthesis, and antimicrobial behavior of novel oxadiazoles containing various N-containing heterocyclic pendants. PEST MANAGEMENT SCIENCE 2020; 76:2681-2692. [PMID: 32149457 DOI: 10.1002/ps.5814] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/18/2019] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The gradually elevated outbreak of plant bacterial diseases severely limits agricultural products and small amounts of pesticides can manage them. Our group has previously synthesized and screened the antimicrobial activity of diverse 1,3,4-oxadiazole thioether/sulfone compounds bridged by a sulfur atom at the 2-position of 1,3,4-oxadiazole. However, few studies have evaluated the effect of eliminating the sulfur atom on bioactivity. Herein, a novel type of N-containing heterocyclic pendants-tagged 1,3,4-oxadiazoles bridged by alkyl chains only was systematically synthesized and evaluated for their antimicrobial activities. RESULTS Bioassay results revealed that antibacterial efficacy increased by 551- and 314-fold against the corresponding phytopathogens Xanthomonas oryzae pv. oryzae and X. axonopodis pv. citri compared to commercial agents bismerthiazol and thiodiazole copper. In vivo trials showed that C 1 exerted remarkable curative activity against rice bacterial blight with a control effectiveness of 52.9% at 200 μg mL-1 . Antibacterial mechanism research found that C 1 could reduce the hypersensitive response behavior and pathogenicity of Xoo through targeting the type III secretion system (T3SS) at a lower drug dose. This outcome was verified by observing the significantly down-regulated proteins and representative genes from the related quantitative proteomics and qRT-PCR assays. CONCLUSION This study can inspire the design of innovative molecular frameworks targeting the T3SS of phytopathogens for controlling bacterial infections. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Ming-Wei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Meng Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhong Li
- College of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- College of Pharmacy, East China University of Science & Technology, Shanghai, China
| |
Collapse
|
27
|
Feilner JM, Wurst K, Magauer T. A Transannular Polyene Tetracyclization for Rapid Construction of the Pimarane Framework. Angew Chem Int Ed Engl 2020; 59:12436-12439. [PMID: 32167649 PMCID: PMC7383491 DOI: 10.1002/anie.202003127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Indexed: 01/27/2023]
Abstract
Polyene cyclizations are one of the most powerful and fascinating chemical transformations to rapidly generate molecular complexity. However, cyclizations employing heteroatom-substituted polyenes are rare. Described here is the tetracyclization of a dual nucleophilic aryl enol ether involving an unprecedented transannular endo-termination step. In this transformation, five stereocenters, two of which are quaternary, four carbon-carbon bonds, and four six-membered rings are formed from a readily available cyclization precursor. The realization of this cyclization enabled short synthetic access to the tricyclic diterpenoid pimara-15-en-3α-8α-diol.
Collapse
Affiliation(s)
- Julian M. Feilner
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical ChemistryLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Thomas Magauer
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
28
|
Guo B, Zhao M, Wu Z, Onakpa MM, Burdette JE, Che CT. 19-nor-pimaranes from Icacina trichantha. Fitoterapia 2020; 144:104612. [PMID: 32437735 DOI: 10.1016/j.fitote.2020.104612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 11/29/2022]
Abstract
Four new unusual 19-nor-pimarane-type diterpenes were isolated from the tuber of Icacina trichantha (Icacinaceae, Oliv.). The structures were elucidated based on spectroscopic and HRMS analysis. The absolute configurations were determined by electronic circular dichroism. All four compounds are structural analogues of icacinol and humirianthol, but do not demonstrate the same cytotoxic activity. A plausible biogenetic pathway is proposed.
Collapse
Affiliation(s)
- Brian Guo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States of America.
| | - Ming Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States of America; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Zhenlong Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States of America; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Monday M Onakpa
- Department of Veterinary Pharmacology and Toxicology, University of Abuja, Abuja 920001, Nigeria
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States of America
| | - Chun-Tao Che
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States of America
| |
Collapse
|
29
|
Feilner JM, Wurst K, Magauer T. A Transannular Polyene Tetracyclization for Rapid Construction of the Pimarane Framework. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Julian M. Feilner
- Institute of Organic Chemistry and Center for Molecular Biosciences Leopold-Franzens-University Innsbruck Innrain 80–82 6020 Innsbruck Austria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry Leopold-Franzens-University Innsbruck Innrain 80–82 6020 Innsbruck Austria
| | - Thomas Magauer
- Institute of Organic Chemistry and Center for Molecular Biosciences Leopold-Franzens-University Innsbruck Innrain 80–82 6020 Innsbruck Austria
| |
Collapse
|
30
|
Zhou J, Wu Z, Guo B, Sun M, Onakpa MM, Yao G, Zhao M, Che CT. Modified diterpenoids from the tuber of Icacina oliviformis as protein tyrosine phosphatase 1B inhibitors. Org Chem Front 2020. [DOI: 10.1039/c9qo01320b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two modified diterpenoids featuring a novel 4,12-dioxatetracyclo[8.6.0.02,7.010,14]hexadecane core, together with a 3,4-seco-pimarane, a 3,4-seco-cleistanthane, and eight pimarane derivatives were isolated from the tuber of Icacina oliviformis.
Collapse
Affiliation(s)
- Junfei Zhou
- Department of Pharmaceutical Sciences
- College of Pharmacy
- University of Illinois at Chicago
- Chicago
- USA
| | - Zhenlong Wu
- Department of Pharmaceutical Sciences
- College of Pharmacy
- University of Illinois at Chicago
- Chicago
- USA
| | - Brian Guo
- Department of Pharmaceutical Sciences
- College of Pharmacy
- University of Illinois at Chicago
- Chicago
- USA
| | - Meng Sun
- Department of Pharmaceutical Sciences
- College of Pharmacy
- University of Illinois at Chicago
- Chicago
- USA
| | - Monday M. Onakpa
- Department of Veterinary Pharmacology and Toxicology
- Faculty of Veterinary Medicine
- University of Abuja
- Abuja 920001
- Nigeria
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
| | - Ming Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- People's Republic of China
| | - Chun-Tao Che
- Department of Pharmaceutical Sciences
- College of Pharmacy
- University of Illinois at Chicago
- Chicago
- USA
| |
Collapse
|
31
|
Preventive Effects of Fluoro-Substituted Benzothiadiazole Derivatives and Chitosan Oligosaccharide against the Rice Seedling Blight Induced by Fusarium oxysporum. PLANTS 2019; 8:plants8120538. [PMID: 31771294 PMCID: PMC6963531 DOI: 10.3390/plants8120538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022]
Abstract
Rice seedling blight, caused by Fusarium oxysporum, significantly affects global rice production levels. Fluoro-substituted benzothiadiazole derivatives (FBT) and chitosan oligosaccharide (COS) are elicitors that can enhance plant resistance to pathogen infection. However, there is a lack of information regarding FBT and COS used as elicitors in rice seedlings blight. Therefore, the aim of this study was to evaluate the effect of FBT and COS treatments on rice seedling blight and elucidate the molecular mechanisms of the two elicitors for inducing resistance using proteomic technique. Results indicated that FBT and COS significantly reduced the disease incidence and index, and relived the root growth inhibition caused by F. oxysporum (p < 0.05). Biochemical analyses demonstrated that these two elicitors effectively enhanced activities of defense enzymes. Moreover, the proteomic results of rice root tissues disclosed more differentially expressed proteins in diterpenoid biosynthesis pathway that were particularly stimulated by two elicitors compared to the other pathways studied, resulting in the accumulation of antimicrobial substance, momilactone. Findings of this study could provide sound theoretical basis for further applications of FBT and COS used as rice elicitors against seedling blight.
Collapse
|
32
|
Wang W, Li Y, Dang P, Zhao S, Lai D, Zhou L. Rice Secondary Metabolites: Structures, Roles, Biosynthesis, and Metabolic Regulation. Molecules 2018; 23:E3098. [PMID: 30486426 PMCID: PMC6320963 DOI: 10.3390/molecules23123098] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 02/05/2023] Open
Abstract
Rice (Oryza sativa L.) is an important food crop providing energy and nutrients for more than half of the world population. It produces vast amounts of secondary metabolites. At least 276 secondary metabolites from rice have been identified in the past 50 years. They mainly include phenolic acids, flavonoids, terpenoids, steroids, alkaloids, and their derivatives. These metabolites exhibit many physiological functions, such as regulatory effects on rice growth and development, disease-resistance promotion, anti-insect activity, and allelopathic effects, as well as various kinds of biological activities such as antimicrobial, antioxidant, cytotoxic, and anti-inflammatory properties. This review focuses on our knowledge of the structures, biological functions and activities, biosynthesis, and metabolic regulation of rice secondary metabolites. Some considerations about cheminformatics, metabolomics, genetic transformation, production, and applications related to the secondary metabolites from rice are also discussed.
Collapse
Affiliation(s)
- Weixuan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Yuying Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Pengqin Dang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Siji Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|