1
|
Zhang Y, Zhou Z, Wang X, Jiao S, Zhang Q, Bao S, Zhang S, Sun L, Li X. Enhanced toxic effects of photoaged microplastics on the trophoblast cells. Toxicol Lett 2025; 409:32-41. [PMID: 40311768 DOI: 10.1016/j.toxlet.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Microplastics (MPs) are emerging as a novel pollutant, raising significant concerns regarding their adverse effects on human health. Furthermore, MPs are susceptible to light-induced aging in the environment, which alters their physical characteristics and potentially alters their toxic effects. While previous studies have documented the retention of MPs in the placenta, the specific impacts of MPs, particularly aged MPs, on placental function remain poorly understood. In the current study, we utilized 1 µm polystyrene microplastics (PS-MPs), a widely used model for MPs, to evaluate the effects of photoaged MPs on the placenta. Following oral administration of PS-MPs beginning on embryonic day 3.5 (E3.5), we observed impaired fetal growth and damage to the placental labyrinth chorionic layer in the treated pregnant mice by embryonic day 13.5 (E13.5). The photoaged PS-MPs were generated by exposure to simulated lighting for 7 or 14 days, resulting in alterations to their physical properties. Notably, enhanced cytotoxicity in trophoblast cells was observed for photoaged PS-MPs compared to pristine PS-MPs. Mechanistically, the altered physical properties of PS-MPs, along with elevated lipid peroxidation, may contribute to the increased cytotoxicity of the photoaged MPs. Our findings provide new insights into the detrimental effects and underlying mechanisms of both MPs and, in particular, aged MPs on the placenta and embryonic development. These insights are crucial for assessing the risks posed by MPs to human pregnancy.
Collapse
Affiliation(s)
- Yan Zhang
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Zijie Zhou
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Xiaoli Wang
- Endocrinology department, The Fifth People' s Hospital of Jinan, Jinan, Shandong 250022, China
| | - Shouhai Jiao
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Qingshan Zhang
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Shuai Bao
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Shuping Zhang
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Li Sun
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China.
| | - Xiaolu Li
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China.
| |
Collapse
|
2
|
Gao M, Yang Z, Zhang Z, Chen L, Xu B. Nervous system exposure of different classes of nanoparticles: A review on potential toxicity and mechanistic studies. ENVIRONMENTAL RESEARCH 2024; 259:119473. [PMID: 38908667 DOI: 10.1016/j.envres.2024.119473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Nanoparticles (NPs) are generally defined as very small particles in the size range of 1-100 nm. Due to the rapid development of modern society, many new materials have been developed. The widespread use of NPs in medical applications, the food industry and the textile industry has led to an increase in NPs in the environment and the possibility of human contact, which poses a serious threat to human health. The nervous system plays a leading role in maintaining the integrity and unity of the body and maintaining a harmonious balance with the external environment. Therefore, based on two categories of organic and inorganic NPs, this paper systematically summarizes the toxic effects and mechanisms of NPs released into the nervous system. The results showed that exposure to NPs may damage the nervous system, decrease learning and cognitive ability, and affect embryonic development. Finally, a remediation scheme for NPs entering the body via the environment is also introduced. This scheme aims to reduce the neurotoxicity caused by NPs by supplementing NPs with a combination of antioxidant and anti-inflammatory compounds. The results provide a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Mingyang Gao
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ziye Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhen Zhang
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Baoshan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
| |
Collapse
|
3
|
Yang H, Wang S. Actively Targeted Nanomedicines: A New Perspective for the Treatment of Pregnancy-Related Diseases. Reprod Sci 2024; 31:2560-2575. [PMID: 38553575 DOI: 10.1007/s43032-024-01520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/13/2024] [Indexed: 09/14/2024]
Abstract
More than 20% of pregnant women experience serious complications during pregnancy, that gravely affect the safety of both the mother and the child. Due to the unique state of pregnancy, medication during pregnancy is subject to various restrictions. Nanotechnology is an emerging technology that has been the focus of extensive medical research, and great progress has recently been made in developing sensitive diagnostic modalities and efficient medical treatment. Accumulating evidence has shown that nanodrug delivery systems can significantly improve the targeting, reduce the toxicity and improve the bioavailability of drugs. Recently, some actively targeted nanomedicines have been explored in the treatment of pregnancy-related diseases. This article reviews common types of nanocarriers and active targeting ligands in common pregnancy-related diseases and complications such as preeclampsia, preterm birth, fetal growth restriction, and choriocarcinoma. Finally, the challenges and future prospects in the development of these nanomaterials are discussed, with the aim of providing guidance for future research directions.
Collapse
Affiliation(s)
- Hui Yang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwu Road, Jinan, 250021, China
| | - Shan Wang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China.
| |
Collapse
|
4
|
Li H, Miao D, Hu H, Xue P, Zhou K, Mao Z. Titanium Dioxide Nanoparticles Induce Maternal Preeclampsia-like Syndrome and Adverse Birth Outcomes via Disrupting Placental Function in SD Rats. TOXICS 2024; 12:367. [PMID: 38787146 PMCID: PMC11125676 DOI: 10.3390/toxics12050367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The escalating utilization of titanium dioxide nanoparticles (TiO2 NPs) in everyday products has sparked concerns regarding their potential hazards to pregnant females and their offspring. To address these concerns and shed light on their undetermined adverse effects and mechanisms, we established a pregnant rat model to investigate the impacts of TiO2 NPs on both maternal and offspring health and to explore the underlying mechanisms of those impacts. Pregnant rats were orally administered TiO2 NPs at a dose of 5 mg/kg body weight per day from GD5 to GD18 during pregnancy. Maternal body weight, organ weight, and birth outcomes were monitored and recorded. Maternal pathological changes were examined by HE staining and TEM observation. Maternal blood pressure was assessed using a non-invasive blood analyzer, and the urinary protein level was determined using spot urine samples. Our findings revealed that TiO2 NPs triggered various pathological alterations in maternal liver, kidney, and spleen, and induced maternal preeclampsia-like syndrome, as well as leading to growth restriction in the offspring. Further examination unveiled that TiO2 NPs hindered trophoblastic cell invasion into the endometrium via the promotion of autophagy. Consistent hypertension and proteinuria resulted from the destroyed the kidney GBM. In total, an exposure to TiO2 NPs during pregnancy might increase the risk of human preeclampsia through increased maternal arterial pressure and urinary albumin levels, as well as causing fetal growth restriction in the offspring.
Collapse
Affiliation(s)
- Haixin Li
- Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China; (H.L.); (H.H.); (P.X.)
| | - Dandan Miao
- Huai’an Center for Disease Control and Prevention, Huai’an 223001, China;
| | - Haiting Hu
- Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China; (H.L.); (H.H.); (P.X.)
| | - Pingping Xue
- Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China; (H.L.); (H.H.); (P.X.)
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing 211100, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211100, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhilei Mao
- Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China; (H.L.); (H.H.); (P.X.)
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing 211100, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211100, China
| |
Collapse
|
5
|
Zhang X, Song Y, Gong H, Wu C, Wang B, Chen W, Hu J, Xiang H, Zhang K, Sun M. Neurotoxicity of Titanium Dioxide Nanoparticles: A Comprehensive Review. Int J Nanomedicine 2023; 18:7183-7204. [PMID: 38076727 PMCID: PMC10710240 DOI: 10.2147/ijn.s442801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The increasing use of titanium dioxide nanoparticles (TiO2 NPs) across various fields has led to a growing concern regarding their environmental contamination and inevitable human exposure. Consequently, significant research efforts have been directed toward understanding the effects of TiO2 NPs on both humans and the environment. Notably, TiO2 NPs exposure has been associated with multiple impairments of the nervous system. This review aims to provide an overview of the documented neurotoxic effects of TiO2 NPs in different species and in vitro models. Following exposure, TiO2 NPs can reach the brain, although the specific mechanism and quantity of particles that cross the blood-brain barrier (BBB) remain unclear. Exposure to TiO2 NPs has been shown to induce oxidative stress, promote neuroinflammation, disrupt brain biochemistry, and ultimately impair neuronal function and structure. Subsequent neuronal damage may contribute to various behavioral disorders and play a significant role in the onset and progression of neurodevelopmental or neurodegenerative diseases. Moreover, the neurotoxic potential of TiO2 NPs can be influenced by various factors, including exposure characteristics and the physicochemical properties of the TiO2 NPs. However, a systematic comparison of the neurotoxic effects of TiO2 NPs with different characteristics under various exposure conditions is still lacking. Additionally, our understanding of the underlying neurotoxic mechanisms exerted by TiO2 NPs remains incomplete and fragmented. Given these knowledge gaps, it is imperative to further investigate the neurotoxic hazards and risks associated with exposure to TiO2 NPs.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yuanyuan Song
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hongyang Gong
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Chunyan Wu
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Binquan Wang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Wenxuan Chen
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jiawei Hu
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hanhui Xiang
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ke Zhang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Mingkuan Sun
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
6
|
Song Z, Song R, Liu Y, Wu Z, Zhang X. Effects of ultra-processed foods on the microbiota-gut-brain axis: The bread-and-butter issue. Food Res Int 2023; 167:112730. [PMID: 37087282 DOI: 10.1016/j.foodres.2023.112730] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
The topic of gut microbiota and the microbiota-gut-brain (MGB) axis has become the forefront of research and reports in the past few years. The gut microbiota is a dynamic interface between the environment, food, and the host, reflecting the health status as well as maintaining normal physiological metabolism. Modern ultra-processed foods (UPF) contain large quantities of saturated and trans fat, added sugar, salt, and food additives that seriously affect the gut and physical health. In addition, these unhealthy components directly cause changes in gut microbiota functions and microbial metabolism, subsequently having the potential to impact the neural network. This paper reviews an overview of the link between UPF ingredients and the MGB axis. Considerable studies have examined that high intake of trans fat, added sugar and salt have deleterious effects on gut and brain functions, but relatively less focus has been placed on the impact of food additives on the MGB axis. Data from several studies suggest that food additives might be linked to metabolic diseases and inflammation. They may also alter the gut microbiota composition and microbial metabolites, which potentially affect cognition and behavior. Therefore, we emphasize that food additives including emulsifiers, artificial sweeteners, colorants, and preservatives interact with the gut microbiota and their possible effects on altering the brain and behavior based on the latest research. Future studies should further investigate whether gut dysbiosis mediates the effect of UPF on brain diseases and behavior. This thesis here sheds new light on future research pointing to the potentially detrimental effects of processed food consumption on brain health.
Collapse
|
7
|
Sharifi M, Farahani MK, Salehi M, Atashi A, Alizadeh M, Kheradmandi R, Molzemi S. Exploring the Physicochemical, Electroactive, and Biodelivery Properties of Metal Nanoparticles on Peripheral Nerve Regeneration. ACS Biomater Sci Eng 2023; 9:106-138. [PMID: 36545927 DOI: 10.1021/acsbiomaterials.2c01216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the advances in the regeneration/rehabilitation field of damaged tissues, the functional recovery of peripheral nerves (PNs), especially in a long gap injury, is considered a great medical challenge. Recent progress in nanomedicine has provided great hope for PN regeneration through the strategy of controlling cell behavior by metal nanoparticles individually or loaded on scaffolds/conduits. Despite the confirmed toxicity of metal nanoparticles due to long-term accumulation in nontarget tissues, they play a role in the damaged PN regeneration based on the topography modification of scaffolds/conduits, enhancing neurotrophic factor secretion, the ion flow improvement, and the regulation of electrical signals. Determining the fate of neural progenitor cells would be a major achievement in PN regeneration, which seems to be achievable by metal nanoparticles through altering cell vital approaches and controlling their functions. Therefore, in this literature, an attempt was made to provide an overview of the effective activities of metal nanoparticles on the PN regeneration, until the vital clues of the PN regeneration and how they are changed by metal nanoparticles are revealed to the researcher.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Mohammad Kamalabadi Farahani
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Faculty of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Rasoul Kheradmandi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Sahar Molzemi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| |
Collapse
|
8
|
Jiang Y, Wei Y, Guo W, Du J, Jiang T, Ma H, Jin G, Chen T, Qin R, Tao S, Lu Q, Lv H, Han X, Zhou K, Xu B, Li Z, Li M, Lin Y, Xia Y, Hu Z. Prenatal titanium exposure and child neurodevelopment at 1 year of age: A longitudinal prospective birth cohort study. CHEMOSPHERE 2023; 311:137034. [PMID: 36342025 DOI: 10.1016/j.chemosphere.2022.137034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/25/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Previous animal studies provided the evidence that prenatal titanium exposure can cause neurotoxicity in their offspring, while human data is vacant. Our aim was to identify the associations of prenatal titanium exposure with the child neurodevelopment. Participants in present study were recruited during early pregnancy between 2014 and 2017. Urinary concentrations of titanium at first trimester were determined. We assessed child neurodevelopment using the Chinese version of Gesell Developmental Schedules at first year follow-up. The multivariable linear regressions and the robust modified Poisson regressions were used to estimate the associations of specific gravity corrected urinary titanium concentrations with the child neurodevelopment. In adjusted models, children's developmental quotient scores in the language domain were 2.03 points (95% CI: -3.66, -0.40) lower in the highest tertile of prenatal urinary titanium than in the lowest tertile. Also, children with prenatal urinary titanium in the highest tertile had 1.42 times (95% CI: 1.17, 1.72) increased risk of language development delay compared to those in the lowest tertile. No statistically significant associations were observed between titanium exposure and child development delay in motor, adaptive and social areas. The findings indicated that prenatal higher titanium exposure was associated with impaired language development, suggesting that titanium might act as developmental neurotoxicants.
Collapse
Affiliation(s)
- Yangqian Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yongyue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Wenhui Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jiangbo Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| | - Ting Chen
- Department of Science and Technology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Rui Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shiyao Tao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Qun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Hong Lv
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Zhi Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Mei Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| |
Collapse
|
9
|
Cho HJ, Lee WS, Jeong J, Lee JS. A review on the impacts of nanomaterials on neuromodulation and neurological dysfunction using a zebrafish animal model. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109428. [PMID: 35940544 DOI: 10.1016/j.cbpc.2022.109428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
Nanomaterials have been widely employed from industrial to medical fields due to their small sizes and versatile characteristics. However, nanomaterials can also induce unexpected adverse effects on health. In particular, exposure of the nervous system to nanomaterials can cause serious neurological dysfunctions and neurodegenerative diseases. A number of studies have adopted various animal models to evaluate the neurotoxic effects of nanomaterials. Among them, zebrafish has become an attractive animal model for neurotoxicological studies due to several advantages, including the well-characterized nervous system, efficient genome editing, convenient generation of transgenic lines, high-resolution in vivo imaging, and an array of behavioral assays. In this review, we summarize recent studies on the neurotoxicological effects of nanomaterials, particularly engineered nanomaterials and nanoplastics, using zebrafish and discuss key findings with advantages and limitations of the zebrafish model in neurotoxicological studies.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Wang Sik Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; KRIBB School, University of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; KRIBB School, University of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
10
|
Qiaorun Z, Honghong S, Yao L, Bing J, Xiao X, Julian McClements D, Chongjiang C, Biao Y. Investigation of the interactions between food plant carbohydrates and titanium dioxide nanoparticles. Food Res Int 2022; 159:111574. [DOI: 10.1016/j.foodres.2022.111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
|
11
|
Colnot E, Cardoit L, Cabirol MJ, Roudier L, Delville MH, Fayoux A, Thoby-Brisson M, Juvin L, Morin D. Chronic maternal exposure to titanium dioxide nanoparticles alters breathing in newborn offspring. Part Fibre Toxicol 2022; 19:57. [PMID: 35982496 PMCID: PMC9386967 DOI: 10.1186/s12989-022-00497-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022] Open
Abstract
Background Over the last two decades, nanotechnologies and the use of nanoparticles represent one of the greatest technological advances in many fields of human activity. Particles of titanium dioxide (TiO2) are one of the nanomaterials most frequently found in everyday consumer products. But, due in particular to their extremely small size, TiO2 nanoparticles (NPs) are prone to cross biological barriers and potentially lead to adverse health effects. The presence of TiO2 NPs found in human placentae and in the infant meconium has indicated unequivocally the capacity for a materno-fetal transfer of this nanomaterial. Although chronic exposure to TiO2 NPs during pregnancy is known to induce offspring cognitive deficits associated with neurotoxicity, the impact of a gestational exposure on a vital motor function such as respiration, whose functional emergence occurs during fetal development, remains unknown. Results Using in vivo whole-body plethysmographic recordings from neonatal mice, we show that a chronic exposure to TiO2 NPs during pregnancy alters the respiratory activity of offspring, characterized by an abnormally elevated rate of breathing. Correspondingly, using ex vivo electrophysiological recordings performed on isolated brainstem-spinal cord preparations of newborn mice and medullary slice preparations containing specific nuclei controlling breathing frequency, we show that the spontaneously generated respiratory-related rhythm is significantly and abnormally accelerated in animals prenatally exposed to TiO2 NPs. Moreover, such a chronic prenatal exposure was found to impair the capacity of respiratory neural circuitry to effectively adjust breathing rates in response to excitatory environmental stimuli such as an increase in ambient temperature. Conclusions Our findings thus demonstrate that a maternal exposure to TiO2 NPs during pregnancy affects the normal development and operation of the respiratory centers in progeny. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00497-4.
Collapse
Affiliation(s)
- Eloïse Colnot
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Laura Cardoit
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | | | - Lydia Roudier
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33608, Pessac, France
| | | | - Anne Fayoux
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | | | - Laurent Juvin
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Didier Morin
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France. .,Univ. Bordeaux, Department of Health, Safety and Environment, Bordeaux Institute of Technology, F-33175, Gradignan, France.
| |
Collapse
|
12
|
Sun J, Mao B, Wu Z, Jiao X, Wang Y, Lu Y, Ma X, Liu X, Xu X, Cui H, Lin X, Yi B, Qiu J, Liu Q. Relationship between maternal exposure to heavy metal titanium and offspring congenital heart defects in Lanzhou, China: A nested case-control study. Front Public Health 2022; 10:946439. [PMID: 35991008 PMCID: PMC9381958 DOI: 10.3389/fpubh.2022.946439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background Previous studies have found that exposure to heavy metals increased the incidence of congenital heart defects (CHDs). However, there is a paucity of information about the connection between exposure to titanium and CHDs. This study sought to examine the relationship between prenatal titanium exposure and the risk of CHDs in offspring. Methods We looked back on a birth cohort study that was carried out in our hospital between 2010 and 2012. The associations between titanium exposure and the risk of CHDs were analyzed by using logistic regression analysis to investigate titanium concentrations in maternal whole blood and fetal umbilical cord blood. Results A total of 97 case groups and 194 control groups were included for a nested case-control study. The [P50 (P25, P75)] of titanium were 371.91 (188.85, 659.15) μg/L and 370.43 (264.86, 459.76) μg/L in serum titanium levels in pregnant women and in umbilical cord serum titanium content in the CHDs group, respectively. There was a moderate positive correlation between the concentration of titanium in pregnant women's blood and that in umbilical cord blood. A higher concentrations of maternal blood titanium level was associated with a greater risk of CHDs (OR 2.706, 95% CI 1.547–4.734), the multiple CHDs (OR 2.382, 95% CI 1.219–4.655), atrial septal defects (OR 2.367, 95% CI 1.215–4.609), and patent ductus arteriosus (OR 2.412, 95% CI 1.336–4.357). Dramatically higher concentrations of umbilical cord blood levels had an increased risk of CHDs and different heart defects. Conclusion Titanium can cross the placental barrier and the occurrence of CHDs may be related to titanium exposure.
Collapse
Affiliation(s)
- Jianhao Sun
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Baohong Mao
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Zhenzhen Wu
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Xinjuan Jiao
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yanxia Wang
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Yongli Lu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuejing Ma
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaohui Liu
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Xiaoying Xu
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Hongmei Cui
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Xiaojuan Lin
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Bin Yi
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Jie Qiu
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Qing Liu
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Qing Liu
| |
Collapse
|
13
|
Vellingiri B, Suriyanarayanan A, Abraham KS, Venkatesan D, Iyer M, Raj N, Gopalakrishnan AV. Influence of heavy metals in Parkinson's disease: an overview. J Neurol 2022; 269:5798-5811. [PMID: 35900586 DOI: 10.1007/s00415-022-11282-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/27/2022]
Abstract
Parkinson's disease (PD) is an ageing disorder with deterioration of dopamine neurons which leads to motor complications like tremor, stiffness, slow movement and postural disturbances. In PD, both genetics as well as environmental factors both play a major role in causing the pathogenesis. Though there are surfeit of risk factors involved in PD occurrence, till now there is lack of an exact causative agent as a risk for PD with confirmative findings. The role of heavy metals reported to be a significant factor in PD pathogenesis. Heavy metal functions in cell maintenance but growing pieces of evidences reported to cause dyshomeostasis with increased PD rate. Metals disturb the molecular processes and results in oxidative stress, DNA damage, mitochondrial dysfunction, and apoptosis. The present review elucidates the role of cobalt, nickel, mercury, chromium, thallium metals in α-synuclein aggregation and its involvement in blood brain barrier flux. Also, the review explains the plausible role of aforementioned metals with a mechanistic approach and therapeutic recommendations in PD.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Atchaya Suriyanarayanan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Kripa Susan Abraham
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Tamil Nadu, India
| | - Neethu Raj
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| |
Collapse
|
14
|
Targeting Cancer by Using Nanoparticles to Modulate RHO GTPase Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:115-127. [DOI: 10.1007/978-3-030-88071-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Abiega-Franyutti P, Freyre-Fonseca V. Chronic consumption of food-additives lead to changes via microbiota gut-brain axis. Toxicology 2021; 464:153001. [PMID: 34710536 DOI: 10.1016/j.tox.2021.153001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/03/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022]
Abstract
Some food additives have demonstrated to induce dysbiosis leading to the development gut and gastrointestinal diseases. In order to clarify how this dysbiosis affects the microbiota gut-brain axis, a systematic interpretative literature review is carried out in this work. This review was made in seven academic search engines using the keywords shown below. The main finding of this work is a clear link between the changes in the gut microbiota promoted by food additives and the causes that lead to many reported diseases related to chronic food additives consumption. Despite the findings, studies on the effects of food additives on microbiota are still insufficient. Therefore, this work should serve as a motivation for future research on this subject.
Collapse
Affiliation(s)
- Pilar Abiega-Franyutti
- Facultad de Ciencias de la Salud, Universidad Anahuac Mexico, Av. Universidad Anahuac 46, Naucalpan de Juarez, 52786, Mexico, Mexico
| | - Veronica Freyre-Fonseca
- Facultad de Ciencias de la Salud, Universidad Anahuac Mexico, Av. de las Torres 131, colonia Olivar de los Padres, Ciudad de Mexico, 01780, CDMX, Mexico.
| |
Collapse
|
16
|
Hu J, Qin X, Zhang J, Zhu Y, Zeng W, Lin Y, Liu X. Polystyrene microplastics disturb maternal-fetal immune balance and cause reproductive toxicity in pregnant mice. Reprod Toxicol 2021; 106:42-50. [PMID: 34626775 DOI: 10.1016/j.reprotox.2021.10.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
Microplastics (MPs), which are emerging as a new type of environmental pollutants, have raised great concerns regarding their threats to human health. A successful pregnancy depends on the sophisticated regulation of the maternal-fetal immune balance, but the risks of polystyrene MP (PS-MP) exposure in early pregnancy remain unclear. In this study, we exposed the C57BL/6-mated BALB/c mice to PS-MP particles and used the flow cytometry to explore threats towards the immune system. Herein, the allogeneic mating murine model showed an elevated embryo resorption rate with a 10 μm PS-MP particle exposure during the peri-implantation period. Both the number and diameter of uterine arterioles decreased, which might reduce the uterine blood supply. Moreover, the percentage of decidual natural killer cells was reduced, whereas the helper T cells in the placenta increased. In addition, the M1/M2 ratio in macrophages reversed significantly to a dominant M2-subtype. Lastly, the cytokine secretion shifted towards an immunosuppressive state. Overall, our results demonstrated that PS-MPs have the potential to cause adverse effects on pregnancy outcomes via immune disturbance, providing new insights into the study of reproductive toxicity of MP particles in the human body.
Collapse
Affiliation(s)
- Jianing Hu
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaoli Qin
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jinwen Zhang
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yueyue Zhu
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Weihong Zeng
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yi Lin
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Xiaorui Liu
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
17
|
Su J, Duan X, Qiu Y, Zhou L, Zhang H, Gao M, Liu Y, Zou Z, Qiu J, Chen C. Pregnancy exposure of titanium dioxide nanoparticles causes intestinal dysbiosis and neurobehavioral impairments that are not significant postnatally but emerge in adulthood of offspring. J Nanobiotechnology 2021; 19:234. [PMID: 34362405 PMCID: PMC8349049 DOI: 10.1186/s12951-021-00967-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pregnancy exposure to titanium dioxide nanoparticles (TiO2NPs) is a vital consideration due to their inadvertent ingestion from environmental contamination. The potential health effects of TiO2NPs on the neurodevelopmental process should be seriously concerned in health risk assessment, especially for the pregnant women who are susceptible to the neurodevelopmental toxicity of nano-sized particles. However, the available evidence of neurodevelopmental toxicity of TiO2NPs remains very limited. METHODS In the present study, the pregnant mice were intragastric administered with 150 mg/kg TiO2NPs from gestational day (GD) 8 to 21, the maternal behaviors and neurodevelopment-related indicators in offspring were all assessed at different time points after delivery. The gut microbial community in both dams and their offspring were detected by using 16S ribosomal RNA (rRNA) gene sequencing. The gut-brain axis related indicators were also determined in the offspring. RESULTS The results clearly demonstrated that exposure to TiO2NPs did not affect the maternal behaviors of pregnant mice, or cause the deficits on the developmental milestones and perturbations in the early postnatal development of offspring. Intriguingly, our data revealed that pregnancy exposure of TiO2NPs did not affect locomotor function, learning and memory ability and anxiety-like behavior in offspring at postnatal day (PD) 21, but resulted in obvious impairments on these neurobehaviors at PD49. Similar phenomena were obtained in the composition of gut microbial community, intestinal and brain pathological damage in offspring in adulthood. Moreover, the intestinal dysbiosis induced by TiO2NPs might be highly associated with the delayed appearance of neurobehavioral impairments in offspring, possibly occurring through disruption of gut-brain axis. CONCLUSIONS This is the first report elucidated that pregnancy exposure to TiO2NPs caused delayed appearance of neurobehavioral impairments in offspring when they reached adulthood, although these perturbations did not happen at early life after delivery. These findings will provide valuable insights about neurodevelopmental toxicity of TiO2NPs, and call for comprehensive health risk assessment of TiO2NPs on the susceptible population, such as pregnant women.
Collapse
Affiliation(s)
- Junhao Su
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xinhao Duan
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yu Qiu
- Department of Neurology, The Affiliated University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People's Republic of China
| | - Lixiao Zhou
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hongyang Zhang
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Min Gao
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yijun Liu
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Chengzhi Chen
- Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
18
|
Hong F, Mu X, Ze Y, Li W, Zhou Y, Ji J. Damage to the Blood Brain Barrier Structure and Function from Nano Titanium Dioxide Exposure Involves the Destruction of Key Tight Junction Proteins in the Mouse Brain. J Biomed Nanotechnol 2021; 17:1068-1078. [PMID: 34167621 DOI: 10.1166/jbn.2021.3083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Numerous studies have proven that nano titanium dioxide (nano TiO₂) can accumulate in animal brains, where it damages the blood brain barrier (BBB); however, whether this process involves destruction of tight junction proteins in the mouse brain has not been adequately investigated. In this study, mice were exposed to nano TiO₂ for 30 consecutive days, and then we used transmission electron microscopy to observe the BBB ultrastructure and the Evans blue assay to evaluate the permeability of the BBB. Our data suggested that nano TiO₂ damaged the BBB ultrastructure and increased BBB permeability. Furthermore, we used immunofluorescence and Western blotting to examine the expression of key tight junction proteins, including Occludin, ZO-1, and Claudin-5 in the mouse brain. Our data showed that nano TiO₂ reduced Occludin, ZO-1 and Claudin-5 expression. Taken together, nano TiO₂-induced damage to the BBB structure and function may involve the destruction of key tight junction proteins.
Collapse
Affiliation(s)
- Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China
| | - Xu Mu
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yuguan Ze
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Wuyan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yingjun Zhou
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
| | - Jianhui Ji
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, 223300, China
| |
Collapse
|
19
|
Pereira MC, Adewale OB, Roux S, Cairncross L, Davids H. Biochemical assessment of the neurotoxicity of gold nanoparticles functionalized with colorectal cancer-targeting peptides in a rat model. Hum Exp Toxicol 2021; 40:1962-1973. [PMID: 34002645 DOI: 10.1177/09603271211017611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The application of gold nanoparticle-peptide conjugates as theranostic agents for colorectal cancer shows much promise. This study aimed at determining the neurotoxic impact of 14 nm gold nanoparticles (AuNPs) functionalized with colorectal cancer-targeting peptides (namely p.C, p.L or p.14) in a rat model. Brain tissue samples, obtained from Wistar rats that received a single injection of citrate-capped AuNPs, polyethylene glycol-coated (PEG) AuNPs, p.C-PEG-AuNPs, p.L-PEG-AuNPs or p.14-PEG-AuNPs, and sacrificed after 2- and 12-weeks, respectively, were analysed. Inflammation marker (tumour necrosis factor-α, interleukin-6, interleukin-1β), oxidative stress (superoxide dismutase, catalase, glutathione peroxidase) and apoptotic biomarker (cytochrome c, caspase-3) levels were measured. Gold nanoparticle-treated groups sacrificed after 2-weeks did not exhibit any significant inflammatory, oxidative stress or apoptotic effects in brain tissue compared to the untreated control group. In brain tissue from rats that were exposed to citrate-capped AuNPs for 12-weeks, tumour necrosis factor-α and interleukin-6 levels were significantly increased compared to the untreated control. Exposure to PEG-AuNP, p.C-PEG-AuNP, p.L-PEG-AuNP and p.14-PEG-AuNP did not elicit significant toxic effects compared to the control after 12-weeks, as evidenced by the absence of inflammatory, oxidative stress and apoptotic effects in brain tissue. We thus report on the safety of PEG-coated AuNP-peptide conjugates for potential application in the diagnosis of colorectal cancer; however, exposure to citrate-capped AuNPs could induce delayed neuro-inflammation, and as such, warrants further investigation.
Collapse
Affiliation(s)
- M C Pereira
- Department of Human Physiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - O B Adewale
- Department of Chemical Sciences, Biochemistry, Afe Babalola University, Ado-Ekiti, Nigeria.,Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - S Roux
- Department of Human Physiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - L Cairncross
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - H Davids
- Department of Human Physiology, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
20
|
Teng C, Jiang C, Gao S, Liu X, Zhai S. Fetotoxicity of Nanoparticles: Causes and Mechanisms. NANOMATERIALS 2021; 11:nano11030791. [PMID: 33808794 PMCID: PMC8003602 DOI: 10.3390/nano11030791] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
The application of nanoparticles in consumer products and nanomedicines has increased dramatically in the last decade. Concerns for the nano-safety of susceptible populations are growing. Due to the small size, nanoparticles have the potential to cross the placental barrier and cause toxicity in the fetus. This review aims to identify factors associated with nanoparticle-induced fetotoxicity and the mechanisms involved, providing a better understanding of nanotoxicity at the maternal–fetal interface. The contribution of the physicochemical properties of nanoparticles (NPs), maternal physiological, and pathological conditions to the fetotoxicity is highlighted. The underlying molecular mechanisms, including oxidative stress, DNA damage, apoptosis, and autophagy are summarized. Finally, perspectives and challenges related to nanoparticle-induced fetotoxicity are also discussed.
Collapse
Affiliation(s)
- Chuanfeng Teng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China;
| | - Sulian Gao
- Jinan Eco-Environmental Monitoring Center of Shandong Province, Jinan 250101, China;
| | - Xiaojing Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
- Correspondence: ; Tel.: +86-531-8836-4464
| |
Collapse
|
21
|
Mohamadzadeh N, Zirak Javanmard M, Karimipour M, Farjah G. Developmental Toxicity of the Neural Tube Induced by Titanium Dioxide Nanoparticles in Mouse Embryos. Avicenna J Med Biotechnol 2021; 13:74-80. [PMID: 34012522 PMCID: PMC8112145 DOI: 10.18502/ajmb.v13i2.5524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background: This study investigated the potential effects of Titanium dioxide nanoparticles (Tio2NPs) followed by maternal gavage on fetal development and neural tube formation during pregnancy in mice. Methods: Thirty pregnant mice were randomly divided into five main study groups including the untreated control and 4 experimental groups (n=6 per group). The control group was treated with normal saline and the experimental groups were orally treated with doses of 30, 150, 300, and 500 mg/kg Body Weight (BW) of Tio2NPs during pregnancy. On gestational day 16 and 19 (n=3 per group), pregnant mice were euthanized and then examined for neural tube defects and compared with control. Serial transverse sections were prepared in both cranial region and in lumbar region of spinal cord. Results: Treatment with Tio2NPs resulted in low fetal weight and short length, dilation of lateral ventricle, thinning of cerebral cortex and spinal cord, spina bifida occulta and an increase in the number of apoptotic neurons in exposed embryos at doses of 300 and 500 mg/kg (p<0.05). Conclusion: It seems that exposure to nanoparticles of Tio2 during pregnancy induces growth retardation and for the first time, teratogenicity of this nanomaterial in neural tube development and induction of defects such as spinal bifida, reduction in cortical thickness and dilatation of lateral ventricles were verified which can be related to incidence of apoptosis in central nervous system.
Collapse
Affiliation(s)
- Nahid Mohamadzadeh
- Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Masoumeh Zirak Javanmard
- Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Gholamhosain Farjah
- Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
22
|
Arsenijevic N, Selakovic D, Katanic Stankovic JS, Mihailovic V, Mitrovic S, Milenkovic J, Milanovic P, Vasovic M, Markovic SD, Zivanovic M, Grujic J, Jovicic N, Rosic G. The Beneficial Role of Filipendula ulmaria Extract in Prevention of Prodepressant Effect and Cognitive Impairment Induced by Nanoparticles of Calcium Phosphates in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6670135. [PMID: 33628375 PMCID: PMC7895592 DOI: 10.1155/2021/6670135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Mineral components of dental composites are used in many medical and dental applications, including preventive, restorative, and regenerative dentistry. To evaluate the behavioural alterations induced by nanosized particles of novel dental composites, by means of depressive level and cognitive functions, experimental groups of rats were chronically administered with nanosized hydroxyapatite (HA), tricalcium phosphate (TCP), and amorphous calcium phosphate (ACP) with or without simultaneous application of Filipendula ulmaria L. (FU) methanolic extract. The significant prodepressant action was observed in groups solely treated with HA and ACP. Besides, prolonged treatment with ACP also resulted in a significant decline in cognitive functions estimated in the novel object recognition test. The adverse impact of calcium phosphates on estimated behavioural functions was accompanied by increased oxidative damage and apoptotic markers in the prefrontal cortex, as well as diminished specific neurotrophin (BDNF) and gabaergic expression. The results of our investigation showed that simultaneous antioxidant supplementation with FU extract prevented calcium phosphate-induced behavioural disturbances, as well as prooxidative and apoptotic actions, with the simultaneous restoration of BDNF and GABA-A receptors in the prefrontal cortex. These findings suggest that FU may be useful in the prevention of prodepressant impact and cognitive decline as early as the manifestation of calcium phosphate-induced neurotoxicity.
Collapse
Affiliation(s)
- Natalija Arsenijevic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena S. Katanic Stankovic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Vladimir Mihailovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jovana Milenkovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Pavle Milanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Miroslav Vasovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Snezana D. Markovic
- Department for Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marko Zivanovic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia
- BioIRC, Bioengineering R&D Center, 34000 Kragujevac, Serbia
| | - Jelena Grujic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
23
|
Fournier SB, D'Errico JN, Adler DS, Kollontzi S, Goedken MJ, Fabris L, Yurkow EJ, Stapleton PA. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part Fibre Toxicol 2020; 17:55. [PMID: 33099312 PMCID: PMC7585297 DOI: 10.1186/s12989-020-00385-9] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Plastic is everywhere. It is used in food packaging, storage containers, electronics, furniture, clothing, and common single-use disposable items. Microplastic and nanoplastic particulates are formed from bulk fragmentation and disintegration of plastic pollution. Plastic particulates have recently been detected in indoor air and remote atmospheric fallout. Due to their small size, microplastic and nanoplastic particulate in the atmosphere can be inhaled and may pose a risk for human health, specifically in susceptible populations. When inhaled, nanosized particles have been shown to translocate across pulmonary cell barriers to secondary organs, including the placenta. However, the potential for maternal-to-fetal translocation of nanosized-plastic particles and the impact of nanoplastic deposition or accumulation on fetal health remain unknown. In this study we investigated whether nanopolystyrene particles can cross the placental barrier and deposit in fetal tissues after maternal pulmonary exposure. RESULTS Pregnant Sprague Dawley rats were exposed to 20 nm rhodamine-labeled nanopolystyrene beads (2.64 × 1014 particles) via intratracheal instillation on gestational day (GD) 19. Twenty-four hours later on GD 20, maternal and fetal tissues were evaluated using fluorescent optical imaging. Fetal tissues were fixed for particle visualization with hyperspectral microscopy. Using isolated placental perfusion, a known concentration of nanopolystyrene was injected into the uterine artery. Maternal and fetal effluents were collected for 180 min and assessed for polystyrene particle concentration. Twenty-four hours after maternal exposure, fetal and placental weights were significantly lower (7 and 8%, respectively) compared with controls. Nanopolystyrene particles were detected in the maternal lung, heart, and spleen. Polystyrene nanoparticles were also observed in the placenta, fetal liver, lungs, heart, kidney, and brain suggesting maternal lung-to-fetal tissue nanoparticle translocation in late stage pregnancy. CONCLUSION These studies confirm that maternal pulmonary exposure to nanopolystyrene results in the translocation of plastic particles to placental and fetal tissues and renders the fetoplacental unit vulnerable to adverse effects. These data are vital to the understanding of plastic particulate toxicology and the developmental origins of health and disease.
Collapse
Affiliation(s)
- Sara B Fournier
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Jeanine N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Derek S Adler
- Molecular Imaging Center, Rutgers University, 41 Gordon Rd, Piscataway, NJ, 08854, USA
| | - Stamatina Kollontzi
- Department of Material Science and Engineering, School of Engineering, Rutgers University, 607 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Michael J Goedken
- Research Pathology Services, Rutgers University, Piscataway, NJ, 08854, USA
| | - Laura Fabris
- Department of Material Science and Engineering, School of Engineering, Rutgers University, 607 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Edward J Yurkow
- Molecular Imaging Center, Rutgers University, 41 Gordon Rd, Piscataway, NJ, 08854, USA
| | - Phoebe A Stapleton
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
24
|
Wu Y, Chen L, Chen F, Zou H, Wang Z. A key moment for TiO 2: Prenatal exposure to TiO 2 nanoparticles may inhibit the development of offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110911. [PMID: 32800246 DOI: 10.1016/j.ecoenv.2020.110911] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 05/12/2023]
Abstract
Applications of TiO2 nanoparticles (NPs) in food, personal care products and industries pose risks on human health, particularly on vulnerable populations including pregnant women and infants. Fetus, deficient in mature defense system, is more susceptible to NPs. Publications on the developmental toxicity of TiO2 NPs on the maternal-exposed progeny have emerged. This review presents the main exposure routes of TiO2 NPs during pregnancy, including skin penetration, ingestion and inhalation, followed by transport of TiO2 NPs to the placenta. Accumulation of TiO2 NPs in placenta may cause dysfunction in nutrient transfer. TiO2 NPs can be even transported to the fetus and generate toxicities, such as impairments of nervous and reproductive system, and failure in lung and cardiovascular development. The toxicities rely on the crystalline phase and concentrations, and the main mechanisms include the accumulation of excessive reactive oxygen species, DNA damage, and over-activation of signaling pathways such as MAPK which impairs neurotransmission. Finally, this review remarks on the significance for identifying TiO2 NPs dosage safe for both mother and fetus, and particular attention should be paid at TiO2 NPs concentrations safe for mother but toxic to fetus. Importantly, research on the epigenetic trans-generational inheritance of TiO2 NPs is urgently needed to provide insights for deciding the prospects of TiO2 NPs applications.
Collapse
Affiliation(s)
- Yi Wu
- Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Limei Chen
- Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
25
|
Luo Z, Li Z, Xie Z, Sokolova IM, Song L, Peijnenburg WJGM, Hu M, Wang Y. Rethinking Nano-TiO 2 Safety: Overview of Toxic Effects in Humans and Aquatic Animals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002019. [PMID: 32761797 DOI: 10.1002/smll.202002019] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Titanium dioxide nanoparticles (nano-TiO2 ) are widely used in consumer products, raising environmental and health concerns. An overview of the toxic effects of nano-TiO2 on human and environmental health is provided. A meta-analysis is conducted to analyze the toxicity of nano-TiO2 to the liver, circulatory system, and DNA in humans. To assess the environmental impacts of nano-TiO2 , aquatic environments that receive high nano-TiO2 inputs are focused on, and the toxicity of nano-TiO2 to aquatic organisms is discussed with regard to the present and predicted environmental concentrations. Genotoxicity, damage to membranes, inflammation and oxidative stress emerge as the main mechanisms of nano-TiO2 toxicity. Furthermore, nano-TiO2 can bind with free radicals and signal molecules, and interfere with the biochemical reactions on plasmalemma. At the higher organizational level, nano-TiO2 toxicity is manifested as the negative effects on fitness-related organismal traits including feeding, reproduction and immunity in aquatic organisms. Bibliometric analysis reveals two major research hot spots including the molecular mechanisms of toxicity of nano-TiO2 and the combined effects of nano-TiO2 and other environmental factors such as light and pH. The possible measures to reduce the harmful effects of nano-TiO2 on humans and non-target organisms has emerged as an underexplored topic requiring further investigation.
Collapse
Affiliation(s)
- Zhen Luo
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhuoqing Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhe Xie
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, 18051, Germany
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, 18051, Germany
| | - Lan Song
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, Leiden, RA, 2300, The Netherlands
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, BA, 3720, The Netherlands
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
26
|
Arzaghi H, Adel B, Jafari H, Askarian-Amiri S, Shiralizadeh Dezfuli A, Akbarzadeh A, Pazoki-Toroudi H. Nanomaterial integration into the scaffolding materials for nerve tissue engineering: a review. Rev Neurosci 2020; 31:/j/revneuro.ahead-of-print/revneuro-2020-0008/revneuro-2020-0008.xml. [PMID: 32776904 DOI: 10.1515/revneuro-2020-0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
The nervous system, which consists of a complex network of millions of neurons, is one of the most highly intricate systems in the body. This complex network is responsible for the physiological and cognitive functions of the human body. Following injuries or degenerative diseases, damage to the nervous system is overwhelming because of its complexity and its limited regeneration capacity. However, neural tissue engineering currently has some capacities for repairing nerve deficits and promoting neural regeneration, with more developments in the future. Nevertheless, controlling the guidance of stem cell proliferation and differentiation is a challenging step towards this goal. Nanomaterials have the potential for the guidance of the stem cells towards the neural lineage which can overcome the pitfalls of the classical methods since they provide a unique microenvironment that facilitates cell-matrix and cell-cell interaction, and they can manipulate the cell signaling mechanisms to control stem cells' fate. In this article, the suitable cell sources and microenvironment cues for neuronal tissue engineering were examined. Afterward, the nanomaterials that impact stem cell proliferation and differentiation towards neuronal lineage were reviewed.
Collapse
Affiliation(s)
- Hamidreza Arzaghi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| | - Bashir Adel
- Department of Biology, Faculty of Sciences, The University of Guilan, Rasht 4199613776, Islamic Republic of Iran
| | - Hossein Jafari
- Institute for Research in Fundamental Sciences (IPM), Artesh Highway, Tehran 1956836681, Islamic Reitutionpublic of Iran
| | - Shaghayegh Askarian-Amiri
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| | - Amin Shiralizadeh Dezfuli
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| | - Abolfazl Akbarzadeh
- Tuberculosis and Lung Disease Research Center of Tabriz, Tabriz University of Medical Sciences, Tabriz 5165665811, Islamic Republic of Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5165665811, Islamic Republic of Iran
- Iran Universal Scientific and Education Network (USERN), Tabriz 5165665811, Islamic Republic of Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| |
Collapse
|
27
|
Mu X, Li W, Ze X, Li L, Wang G, Hong F, Ze Y. Molecular mechanism of nanoparticulate TiO 2 induction of axonal development inhibition in rat primary cultured hippocampal neurons. ENVIRONMENTAL TOXICOLOGY 2020; 35:895-905. [PMID: 32329576 DOI: 10.1002/tox.22926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Numerous studies have demonstrated the in vitro and in vivo neurotoxicity of nanoparticulate titanium dioxide (nano-TiO2 ), a mass-produced material for a large number of commercial and industrial applications. The mechanism of nano-TiO2 -induced inhibition of axonal development, however, is still unclear. In our study, primary cultured hippocampal neurons of 24-hour-old fetal Sprague-Dawley rats were exposed to 5, 15, or 30 μg/mL nano-TiO2 for 6, 12, and 24 hours, and the toxic effects of nano-TiO2 exposure on the axons development were detected and its molecular mechanism investigated. Nano-TiO2 accumulated in hippocampal neurons and inhibited the development of axons as nano-TiO2 concentrations increased. Increasing time in culture resulted in decreasing axon length by 32.5%, 36.6%, and 53.8% at 6 hours, by 49.4%, 53.8%, and 69.5% at 12 hours, and by 44.5%, 58.2%, and 63.6% at 24 hours, for 5, 15, and 30 μg/mL nano-TiO2 , respectively. Furthermore, nano-TiO2 downregulated expression of Netrin-1, growth-associated protein-43, and Neuropilin-1, and promoted an increase of semaphorin type 3A and Nogo-A. These studies suggest that nano-TiO2 inhibited axonal development in rat primary cultured hippocampal neurons and this phenomenon is related to changes in the expression of axon growth-related factors.
Collapse
Affiliation(s)
- Xu Mu
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, China
| | - Wuyan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, China
| | - Xiao Ze
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingjuan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, China
| | - Guoqing Wang
- Department of Physiology and Neurobiology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China
- Department of Biotechnology, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Yuguan Ze
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, China
| |
Collapse
|
28
|
Abstract
The remarkable advances coming about through nanotechnology promise to revolutionize many aspects of modern life; however, these advances come with a responsibility for due diligence to ensure that they are not accompanied by adverse consequences for human health or the environment. Many novel nanomaterials (having at least one dimension <100 nm) could be highly mobile if released into the environment and are also very reactive, which has raised concerns for potential adverse impacts including, among others, the potential for neurotoxicity. Several lines of evidence led to concerns for neurotoxicity, but perhaps none more than observations that inhaled nanoparticles impinging on the mucosal surface of the nasal epithelium could be internalized into olfactory receptor neurons and transported by axoplasmic transport into the olfactory bulbs without crossing the blood-brain barrier. From the olfactory bulb, there is concern that nanomaterials may be transported deeper into the brain and affect other brain structures. Of course, people will not be exposed to only engineered nanomaterials, but rather such exposures will occur in a complex mixture of environmental materials, some of which are incidentally generated particles of a similar inhalable size range to engineered nanomaterials. To date, most experimental studies of potential neurotoxicity of nanomaterials have not considered the potential exposure sources and pathways that could lead to exposure, and most studies of nanomaterial exposure have not considered potential neurotoxicity. Here, we present a review of potential sources of exposures to nanoparticles, along with a review of the literature on potential neurotoxicity of nanomaterials. We employ the linked concepts of an aggregate exposure pathway (AEP) and an adverse outcome pathway (AOP) to organize and present the material. The AEP includes a sequence of key events progressing from material sources, release to environmental media, external exposure, internal exposure, and distribution to the target site. The AOP begins with toxicant at the target site causing a molecular initiating event and, like the AEP, progress sequentially to actions at the level of the cell, organ, individual, and population. Reports of nanomaterial actions are described at every key event along the AEP and AOP, except for changes in exposed populations that have not yet been observed. At this last stage, however, there is ample evidence of population level effects from exposure to ambient air particles that may act similarly to engineered nanomaterials. The data give an overall impression that current exposure levels may be considerably lower than those reported experimentally to be neurotoxic. This impression, however, is tempered by the absence of long-term exposure studies with realistic routes and levels of exposure to address concerns for chronic accumulation of materials or damage. Further, missing across the board are "key event relationships", which are quantitative expressions linking the key events of either the AEP or the AOP, making it impossible to quantitatively project the likelihood of adverse neurotoxic effects from exposure to nanomaterials or to estimate margins of exposure for such relationships.
Collapse
Affiliation(s)
- William K. Boyes
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC USA 27711
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| |
Collapse
|
29
|
Zhou Y, Ji J, Chen C, Hong F. Retardation of Axonal and Dendritic Outgrowth Is Associated with the MAPK Signaling Pathway in Offspring Mice Following Maternal Exposure to Nanosized Titanium Dioxide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2709-2715. [PMID: 30701967 DOI: 10.1021/acs.jafc.8b06992] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exposure to nanosized titanium oxide (nano-TiO2) has been proven to suppress brain growth in mouse offspring; however, whether retardation of axonal or dendritic outgrowth is associated with activation of the mitogen-activated protein kinase (MAPK) pathway remains unclear. In the present study, pregnant mice were exposed to nano-TiO2 at 1.25, 2.5, and 5 mg/kg body weight, and the molecular mechanism of axonal or dendritic outgrowth retardation was investigated. The results suggested that nano-TiO2 crossed the blood-fetal barrier and blood-brain barrier and deposited in the brain of offspring, which retarded axonal and dendritic outgrowth, including the absence of axonal outgrowth, and decreased dendritic filament length, dendritic branching number, and dendritic spine density. Importantly, maternal exposure to nano-TiO2 increased phosphorylated (p)-extracellular signal-regulated kinase1/2 (ERK1/2, +24.35% to +59.4%), p-p38 (+60.82% to 181.85%), and p-c-jun N-terminal kinase (JNK, +28.28% to 97.28%) expression in the hippocampus of the offspring. These findings suggested that retardation of axonal and dendritic outgrowth in mouse offspring caused by maternal exposure to nano-TiO2 may be related to excessive activation of the ERK1/2/MAPK signaling pathway. Therefore, the potential toxicity of nano-TiO2 is a concern, especially in pregnant woman or children who are exposed to nano-TiO2.
Collapse
Affiliation(s)
- Yingjun Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
- School of Life Sciences , Huaiyin Normal University , Huaian 223300 , China
| | - Jianhui Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
- School of Life Sciences , Huaiyin Normal University , Huaian 223300 , China
| | - Chunmei Chen
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
- School of Life Sciences , Huaiyin Normal University , Huaian 223300 , China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
- School of Life Sciences , Huaiyin Normal University , Huaian 223300 , China
| |
Collapse
|
30
|
Toxic Effects of TiO₂ NPs on Zebrafish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16040523. [PMID: 30781732 PMCID: PMC6406522 DOI: 10.3390/ijerph16040523] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have become a widely used nanomaterial due to the photocatalytic activity and absorption of ultraviolet light of specific wavelengths. This study investigated the toxic effects of rutile TiO2 NPs on zebrafish by examining its embryos and adults. In the embryo acute toxicity test, exposure to 100 mg/L TiO2 NPs didn’t affect the hatching rate of zebrafish embryos, and there was no sign of deformity. In the adult toxicity test, the effects of TiO2 NPs on oxidative damage in liver, intestine and gill tissue were studied. Enzyme linked immunosorbent assay (ELISA) and fluorescence-based quantitative real-time reverse transcription PCR (qRT-PCR) were used to detect the three antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT) and glutathione S transferase (GSTs) in the above mentioned zebrafish organs at protein and gene levels. The results showed that long-term exposure to TiO2 NPs can cause oxidative damage to organisms; and compared with the control group, the activity of the three kinds of enzyme declined somewhat at the protein level. In addition, long-term exposure to TiO2 NPs could cause high expression of CAT, SOD and GSTs in three organs of adult zebrafish in order to counter the adverse reaction. The effects of long-term exposure to TiO2 NPs to adult zebrafish were more obvious in the liver and gill.
Collapse
|