1
|
Hao KX, Shen CY, Jiang JG. The flowers extracts of Citrus aurantium regulates fat metabolism in obese C57BL/6J mice by improving intestinal microbiota disorders. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3808-3818. [PMID: 39948729 DOI: 10.1002/jsfa.14139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/15/2024] [Accepted: 01/03/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Obesity can lead to many diseases such as diabetes, hypertension, cancer and cardiovascular diseases, which seriously affect people's quality of life and health. AIMS OF THE STUDY To investigate the main components and potential of n-butanol extract from Citrus aurantium L. var. amara Engl to reduce lipid accumulation and to explore its modulatory effects on the gut microbiota. METHODS The main components of n-butanol extract were analyzed using liquid chromatography quadrupole trap mass spectrometry (LC-QTRAP-MS) and a high-fat diet-induced obese mouse model was established to analyze its effects on the determination of gene expression levels and intestinal microbiota using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and 16S rRNA gene sequence method. RESULTS The n-butanol extract mainly consists of 15 components, and it could significantly inhibit weight gain, reduce liver coefficient and improve oxidative damage. By regulating the expression of related genes, it inhibited hepatic steatosis and hypertrophy of epididymal tissue. The n-butanol extract increased the diversity of intestinal microbiota, improved the composition and structure of the flora, and reversed the high-fat diet-induced disturbance of intestinal microbiota in mice. CONCLUSION These results indicated that the n-butanol extract of C. aurantium could inhibit lipid accumulation and provide a more comprehensive basis for the development and utilization of C. aurantium in anti-obesity activity. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ke-Xin Hao
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
- Southern Medical University, School of Traditional Chinese Medicine, Guangzhou, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Wang Z, Yang T, Zeng M, Wang Z, Chen Q, Chen J, Christian M, He Z. Mitophagy suppression by miquelianin-rich lotus leaf extract induces 'beiging' of white fat via AMPK/DRP1-PINK1/PARKIN signaling axis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2597-2609. [PMID: 37991930 DOI: 10.1002/jsfa.13143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Lotus (Nelumbo nucifera) leaf has been described to have anti-obesity activity, but the role of white fat 'browning' or 'beiging' in its beneficial metabolic actions remains unclear. Here, 3T3-L1 cells and high-fat-diet (HFD)-fed mice were used to evaluate the effects of miquelianin-rich lotus leaf extract (LLE) on white-to-beige fat conversion and its regulatory mechanisms. RESULTS Treatment with LLE increased mitochondrial abundance, mitochondrial membrane potential and NAD+ /NADH ratio in 3T3-L1 cells, suggesting its potential in promoting mitochondrial activity. qPCR and/or western blotting analysis confirmed that LLE induced the expression of beige fat-enriched gene signatures (e.g. Sirt1, Cidea, Dio2, Prdm16, Ucp1, Cd40, Cd137, Cited1) and mitochondrial biogenesis-related markers (e.g. Nrf1, Cox2, Cox7a, Tfam) in 3T3-L1 cells and inguinal white adipose tissue of HFD-fed mice. Furthermore, we found that LLE treatment inhibited mitochondrial fission protein DRP1 and blocked mitophagy markers such as PINK1, PARKIN, BECLIN1 and LC-3B. Chemical inhibition experiments revealed that AMPK/DRP1 signaling was required for LLE-induced beige fat formation via suppressing PINK1/PARKIN/mitophagy. CONCLUSION Our data reveal a novel mechanism underlying the anti-obesity effect of LLE, namely the induction of white fat beiging via AMPK/DRP1/mitophagy signaling. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Tian Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Tanisha, Venkategowda S, Majumdar M. Response surface methodology based development of an optimized polyherbal formulation and evaluation of its anti-diabetic and anti-obesity potential in high-fat diet-induced obese mice. J Tradit Complement Med 2024; 14:70-81. [PMID: 38223811 PMCID: PMC10785265 DOI: 10.1016/j.jtcme.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/06/2023] [Accepted: 07/06/2023] [Indexed: 01/16/2024] Open
Abstract
Background and aim The seeds of Nelumbo nucifera, Chenopodium quinoa and Salvia hispanica are known as super foods due to their various therapeutic properties. The present study aimed to develop an optimized polyherbal formulation from edible seeds aqueous extract and to evaluate its anti-diabetic and lipase inhibitory effect on diet-induced obese diabetic mice. Experimental procedure Response surface methodology based various formulations were evaluated for their potent anti-diabetic, lipase-inhibitory and antioxidant activities. Acute toxicity of the best optimized formulation was conducted. The mice were fed a high fat diet for 10 weeks resulting in hyperglycemia and obesity. Oral tolerance tests (sucrose, starch and lipid) of the formulation were performed. The mice were supplemented with different doses (125, 250 and 500 mg/kg) of the formulation for 6 weeks. The body weight and blood glucose level were monitored on a weekly basis. Finally, histological alterations and lipid profiles were analysed. Results and conclusion The formulation containing equal concentration (1.5 mg/ml) of each seed extract showed maximum bioactivities. The formulation was found to be safe during toxicity assay. The tolerance tests supported the anti-diabetic and anti-obesity effect. Higher dose (500 mg/kg) of the formulation significantly (p < 0.01) lowered elevated fasting blood glucose, lipid indices and ameliorated the histological alterations in liver, kidney and pancreas caused by high fat diet. We demonstrated for the first time that the developed aqueous extract optimized formulation possess anti-diabetic and anti-obesity potential and thus could be used as adjuvant therapy for holistic management of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Tanisha
- School of Sciences, Jain (Deemed-to-be University), #18/3, Jayanagar 3rd Block, Bangalore, 560 011, India
| | - Sunil Venkategowda
- School of Sciences, Jain (Deemed-to-be University), #18/3, Jayanagar 3rd Block, Bangalore, 560 011, India
| | - Mala Majumdar
- School of Sciences, Jain (Deemed-to-be University), #18/3, Jayanagar 3rd Block, Bangalore, 560 011, India
| |
Collapse
|
4
|
Samad N, Manzoor N, Batool A, Noor A, Khaliq S, Aurangzeb S, Bhatti SA, Imran I. Protective effects of niacin following high fat rich diet: an in-vivo and in-silico study. Sci Rep 2023; 13:21343. [PMID: 38049514 PMCID: PMC10696033 DOI: 10.1038/s41598-023-48566-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
Niacin had long been understood as an antioxidant. There were reports that high fat diet (HFD) may cause psychological and physical impairments. The present study was aimed to experience the effect of Niacin on % growth rate, cumulative food intake, motor activity and anxiety profile, redox status, 5-HT metabolism and brain histopathology in rats. Rats were administered with Niacin at a dose of 50 mg/ml/kg body weight for 4 weeks following normal diet (ND) and HFD. Behavioral tests were performed after 4 weeks. Animals were sacrificed to collect brain samples. Biochemical, neurochemical and histopathological studies were performed. HFD increased food intake and body weight. The exploratory activity was reduced and anxiety like behavior was observed in HFD treated animals. Activity of antioxidant enzymes was decreased while oxidative stress marker and serotonin metabolism in the brain of rat were increased in HFD treated animals than ND fed rats. Morphology of the brain was also altered by HFD administration. Conversely, Niacin treated animals decreased food intake and % growth rate, increased exploratory activity, produced anxiolytic effects, decreased oxidative stress and increased antioxidant enzyme and 5-HT levels following HFD. Morphology of brain is also normalized by the treatment of Niacin following HFD. In-silico studies showed that Niacin has a potential binding affinity with degradative enzyme of 5-HT i.e. monoamine oxidase (MAO) A and B with an energy of ~ - 4.5 and - 5.0 kcal/mol respectively. In conclusion, the present study showed that Niacin enhanced motor activity, produced anxiolytic effect, and reduced oxidative stress, appetite, growth rate, increased antioxidant enzymes and normalized serotonin system and brain morphology following HFD intake. In-silico studies suggested that increase 5-HT was associated with the binding of MAO with Niacin subsequentially an inhibition of the degradation of monoamine. It is suggested that Niacin has a great antioxidant potential and could be a good therapy for the treatment of HFD induced obesity.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Natasha Manzoor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Ammara Batool
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Aqsa Noor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Saima Khaliq
- Department of Biochemistry, Faculty of Science, Science and Technology, Federal Urdu University of Arts, Karachi, 75270, Pakistan
| | - Sana Aurangzeb
- Department of Biochemistry, Faculty of Science, University of Karachi, Karachi, 75270, Pakistan
| | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
5
|
Liu S, Jiang W, Liu C, Guo S, Wang H, Chang X. Chinese chestnut shell polyphenol extract regulates the JAK2/STAT3 pathway to alleviate high-fat diet-induced, leptin-resistant obesity in mice. Food Funct 2023; 14:4807-4823. [PMID: 37128963 DOI: 10.1039/d3fo00604b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chinese chestnut shell is a by-product of chestnut food processing and is rich in polyphenols. This study sought to investigate the effect of chestnut shell polyphenol extract (CSP) on weight loss and lipid reduction in a 12-week high-fat diet (HFD)-induced murine obesity model. CSP (300 mg per kg body weight) was administered intragastrically daily. AG490, a JAK2 protein tyrosine kinase inhibitor, was also intraperitoneally injected. The results showed that an HFD induced leptin resistance (LR). Compared to corresponding values in the HFD group, CSP treatment improved blood lipid levels, weight, and leptin levels in obese mice (p < 0.01). Additionally, CSP treatment enhanced enzyme activity by improving total antioxidant capacity, attenuating oxidative stress, and reducing fat droplet accumulation and inflammation in the liver, epididymal, and retroperitoneal adipose tissue. CSP also activated the LEPR-JAK2/STAT3-PTP1B-SOCS-3 signal transduction pathway in hypothalamus tissue and improved LR while regulating the expression of proteins related to lipid metabolism (PPARγ, FAS, and LPL) in white adipose tissue in the retroperitoneal cavity. However, the amelioration of lipid metabolism by CSP was dependent on JAK2. Molecular docking simulation further demonstrated the strong binding affinity of procyanidin C1 (-10.3983297 kcal mol-1) and procyanidin B1 (-9.12686729 kcal mol-1) to the crystal structure of JAK2. These results suggest that CSP may be used to reduce HFD-induced obesity with potential application as a functional food additive.
Collapse
Affiliation(s)
- Suwen Liu
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
- Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China
| | - Wenhong Jiang
- Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China
- Cofco Great Wall Wine (Ningxia) Co., Ltd, Yinchuan, Ningxia, 750100, China
| | - Chang Liu
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
| | - Shuo Guo
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Xuedong Chang
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
- Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China
| |
Collapse
|
6
|
Wang Z, Xue C, Wang X, Zeng M, Wang Z, Chen Q, Chen J, Christian M, He Z. Quercetin 3-O-glucuronide-rich lotus leaf extract promotes a Brown-fat-phenotype in C 3H 10T 1/2 mesenchymal stem cells. Food Res Int 2023; 163:112198. [PMID: 36596137 DOI: 10.1016/j.foodres.2022.112198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Lotus (Nelumbo nucifera Gaertn.) is an aquatic perennial crop planted worldwide and its leaf (also called "He-Ye") has therapeutic effects on obesity. However, whether the underlying mechanism leads to increased energy expenditure by activation of brown adipocytes has not been clarified. Here, murine C3H10T1/2 mesenchymal stem cells (MSCs) were employed to investigate the effects of ethanol extracts from lotus leaf (LLE) on brown adipocytes formation and the underlying molecular mechanisms. The results showed LLE was rich in polyphenols (383.7 mg/g) and flavonoids (178.3 mg/g), with quercetin 3-O-glucuronide (Q3G) the most abundant (128.2 μg/mg). In LLE-treated C3H10T1/2 MSCs, the expressions of lipolytic factors (e.g., ATGL, HSL, and ABHD5) and brown regulators (e.g., Sirt1, PGC-1α, Cidea, and UCP1) were significantly upregulated compared to that in the untreated MSCs. Furthermore, LLE promoted mitochondrial biogenesis and fatty acid β-oxidation, as evidenced by increases in the expression of Tfam, Cox7A, CoxIV, Cox2, Pparα, and Adrb3. Likewise, enhanced browning and mitochondrial biogenesis were also observed in Q3G-stimulated cells. Importantly, LLE and Q3G induced phosphorylation of AMPK accompanied by a remarkable increase in the brown fat marker UCP1, while pretreatment with Compound C (an AMPK inhibitor) reversed these changes. Moreover, stimulating LLE or Q3G-treated cells with CL316243 (a beta3-AR agonist) increased p-AMPKα/AMPKα ratio and UCP1 protein expression, indicating β3-AR/AMPK signaling may involve in this process. Collectively, these observations suggested that LLE, especially the component Q3G, stimulates thermogenesis by activating brown adipocytes, which may involve the β3-AR/AMPK signaling pathway.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chaoyi Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom.
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Tanisha, Venkategowda S, Majumdar M. Amelioration of hyperglycemia and hyperlipidemia in a high-fat diet-fed mice by supplementation of a developed optimized polyherbal formulation. 3 Biotech 2022; 12:251. [PMID: 36060893 PMCID: PMC9428098 DOI: 10.1007/s13205-022-03309-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/12/2022] [Indexed: 11/01/2022] Open
Abstract
This study evaluated in vivo anti-diabetic and anti-obesity activity of a polyherbal formulation's methanolic extract containing an optimized ratio of edible seeds (Salvia hispanica, Chenopodium quinoa, Nelumbo nucifera). Diet-induced obese mice model (C57BL/6) was developed by feeding the mice a high-fat diet for 10 weeks resulting in hyperglycemia and obesity. Different doses (125, 250 and 500 mg/kg of body weight) of formulation were administered orally daily for 6 weeks. Fasting blood glucose and body weight were monitored throughout the study. At the end of the study, serum parameters were analyzed and histological examinations were performed. There was a significant reduction in fasting blood glucose levels and body weight in animal groups receiving polyherbal formulation. Lipid profile was improved as revealed by a reduction in serum triglycerides and total cholesterol. Histological study showed an improvement in liver, kidney and pancreatic sections of treated mice. High-performance thin layer chromatography was performed to identify the phytochemicals responsible for the above-mentioned bioactivities. The results revealed the presence of flavonoid (rutin) in seeds of N.nucifera and in the polyherbal formulation. For the first time, this study demonstrated the anti-diabetic and anti-obesity potential of the optimized formulation. The formulation can be used as a potential therapy for management of diabesity.
Collapse
Affiliation(s)
- Tanisha
- Jain (Deemed-to-be University), School of Sciences, #18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011 India
| | - Sunil Venkategowda
- Jain (Deemed-to-be University), School of Sciences, #18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011 India
| | - Mala Majumdar
- Jain (Deemed-to-be University), School of Sciences, #18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011 India
| |
Collapse
|
8
|
Men X, Han X, Lee SJ, Oh G, Park KT, Han JK, Choi SI, Lee OH. Anti-Obesogenic Effects of Sulforaphane-Rich Broccoli (Brassica oleracea var. italica) Sprouts and Myrosinase-Rich Mustard (Sinapis alba L.) Seeds in Vitro and in Vivo. Nutrients 2022; 14:nu14183814. [PMID: 36145190 PMCID: PMC9505190 DOI: 10.3390/nu14183814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Glucoraphanin (GRA), a glucosinolate particularly abundant in broccoli (Brassica oleracea var. italica) sprouts, can be converted to sulforaphane (SFN) by the enzyme myrosinase. Herein, we investigated the anti-obesogenic effects of broccoli sprout powder (BSP), mustard (Sinapis alba L.) seed powder (MSP), and sulforaphane-rich MSP-BSP mixture powder (MBP) in bisphenol A (BPA)-induced 3T3-L1 cells and obese C57BL/6J mice. In vitro experiments showed that MBP, BSP, and MSP have no cytotoxic effects. Moreover, MBP and BSP inhibited the lipid accumulation in BPA-induced 3T3-L1 cells. In BPA-induced obese mice, BSP and MBP treatment inhibited body weight gain and ameliorated dyslipidemia. Furthermore, our results showed that BSP and MBP could activate AMPK, which increases ACC phosphorylation, accompanied by the upregulation of lipolysis-associated proteins (UCP-1 and CPT-1) and downregulation of adipogenesis-related proteins (C/EBP-α, FAS, aP2, PPAR-γ, and SREBP-1c), both in vitro and in vivo. Interestingly, MBP exerted a greater anti-obesogenic effect than BSP. Taken together, these findings indicate that BSP and MBP could inhibit BPA-induced adipocyte differentiation and adipogenesis by increasing the expression of the proteins related to lipid metabolism and lipolysis, effectively treating BPA-induced obesity. Thus, BSP and MBP can be developed as effective anti-obesogenic drugs.
Collapse
Affiliation(s)
- Xiao Men
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Xionggao Han
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Se-Jeong Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Geon Oh
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Keun-Tae Park
- Research and Development Center, Milae Bioresourece Co., Ltd., Seoul 05542, Korea
| | - Jong-Kwon Han
- Research and Development Center, Milae Bioresourece Co., Ltd., Seoul 05542, Korea
| | - Sun-Il Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (S.-I.C.); (O.-H.L.); Tel.: +82-33-250-6454 (S.-I.C.); +82-33-250-6454 (O.-H.L.); Fax: +82-33-259-5561 (S.-I.C.); +82-33-259-5561 (O.-H.L.)
| | - Ok-Hwan Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (S.-I.C.); (O.-H.L.); Tel.: +82-33-250-6454 (S.-I.C.); +82-33-250-6454 (O.-H.L.); Fax: +82-33-259-5561 (S.-I.C.); +82-33-259-5561 (O.-H.L.)
| |
Collapse
|
9
|
Yang Y, Ge S, Chen Q, Lin S, Zeng S, Tan BK, Hu J. Chlorella unsaturated fatty acids suppress high-fat diet-induced obesity in C57/BL6J mice. J Food Sci 2022; 87:3644-3658. [PMID: 35822300 DOI: 10.1111/1750-3841.16246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022]
Abstract
Chlorella has been identified as a rich source of unsaturated fatty acids. Since the antiobesity effects of unsaturated fatty acids have been well documented; therefore, we explored the antiobesity actions of chlorella unsaturated fatty acids (C.UFAs) in the current study. The obtained results demonstrated C.UFAs, which contain abundant linoleic acid, could retard body weight gain (reducing body weigh by 13.93% after 16 weeks of treatment), improve blood glucose (19.29% lower) and lipid profile (23.45% lower in TG, 8.76% lower in TC) compared to high-fat diet-fed C57BL/6J mice. The possible underlying mechanisms might involve reducing hepatic lipid accumulation via down-regulation of lipogenic genes (PPARγ, C/EBPα, LPL, aP2, FAS, and SREBP-1c) and up-regulation of lipolytic gene (adiponectin). We also demonstrate C.UFAs could reduce HFD-induced adipocyte hypertrophy via activation of AMPK signaling pathway in adipose tissue and liver. In summary, our study highlights the potential of C.UFAs as a functional food for obesity management. PRACTICAL APPLICATION: Chlorella has already been commercialized as a functional food antiobesity function. In the current study, the unsaturated fatty acids isolated from chlorella were found to exert beneficial effects on hyperglycemia, hyperlipidemia, hepatic steatosis, and adipocyte hypertrophy in high-fat diet-fed mice. This may provide theoretical foundation for developing novel chlorella-based functional foods.
Collapse
Affiliation(s)
- Yang Yang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Shenhan Ge
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Qingyan Chen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Shaoling Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoxiao Zeng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Bee K Tan
- Department of Cardiovascular Sciences and Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| |
Collapse
|
10
|
Li X, Zhang Y, Wang S, Shi C, Wang S, Wang X, Lü X. A review on the potential use of natural products in overweight and obesity. Phytother Res 2022; 36:1990-2015. [DOI: 10.1002/ptr.7426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/21/2022] [Accepted: 02/05/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Xin Li
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Yu Zhang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Shuxuan Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Caihong Shi
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Shuang Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Xin Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Xin Lü
- College of Food Science and Engineering Northwest A&F University Yangling China
| |
Collapse
|
11
|
Wang Z, Li Y, Ma D, Zeng M, Wang Z, Qin F, Chen J, Christian M, He Z. Alkaloids from lotus ( Nelumbo nucifera): recent advances in biosynthesis, pharmacokinetics, bioactivity, safety, and industrial applications. Crit Rev Food Sci Nutr 2021:1-34. [PMID: 34845950 DOI: 10.1080/10408398.2021.2009436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Different parts of lotus (Nelumbo nucifera Gaertn.) including the seeds, rhizomes, leaves, and flowers, are used for medicinal purposes with health promoting and illness preventing benefits. The presence of active chemicals such as alkaloids, phenolic acids, flavonoids, and terpenoids (particularly alkaloids) may account for this plant's pharmacological effects. In this review, we provide a comprehensive overview and summarize up-to-date research on the biosynthesis, pharmacokinetics, and bioactivity of lotus alkaloids as well as their safety. Moreover, the potential uses of lotus alkaloids in the food, pharmaceutical, and cosmetic sectors are explored. Current evidence shows that alkaloids, mainly consisting of aporphines, 1-benzylisoquinolines, and bisbenzylisoquinolines, are present in different parts of lotus. The bioavailability of these alkaloids is relatively low in vivo but can be enhanced by technological modification using nanoliposomes, liposomes, microcapsules, and emulsions. Available data highlights their therapeutic and preventive effects on obesity, diabetes, neurodegeneration, cancer, cardiovascular disease, etc. Additionally, industrial applications of lotus alkaloids include their use as food, medical, and cosmetic ingredients in tea, other beverages, and healthcare products; as lipid-lowering, anticancer, and antipsychotic drugs; and in facial masks, toothpastes, and shower gels. However, their clinical efficacy and safety remains unclear; hence, larger and longer human trials are needed to achieve their safe and effective use with minimal side effects.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Yong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Dandan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Li J, Deng ZY, He Y, Fan Y, Dong H, Chen R, Liu R, Tsao R, Liu X. Differential specificities of polyphenol oxidase from lotus seeds (Nelumbo nucifera Gaertn.) toward stereoisomers, (−)-epicatechin and (+)-catechin: Insights from comparative molecular docking studies. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Wang Z, Cheng Y, Zeng M, Wang Z, Qin F, Wang Y, Chen J, He Z. Lotus (Nelumbo nucifera Gaertn.) leaf: A narrative review of its Phytoconstituents, health benefits and food industry applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Kong L, Xu M, Qiu Y, Liao M, Zhang Q, Yang L, Zheng G. Chlorogenic acid and caffeine combination attenuates adipogenesis by regulating fat metabolism and inhibiting adipocyte differentiation in 3T3-L1 cells. J Food Biochem 2021; 45:e13795. [PMID: 34036605 DOI: 10.1111/jfbc.13795] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 12/14/2022]
Abstract
Obesity is a complex disease spreading in the world. In our previous studies, chlorogenic acid (CGA) and caffeine had ever been reported to reduce the body weight gain and fat accumulation in mice. This study investigated the anti-obesity effect of CGA and caffeine on 3T3-L1 cells. According to triglyceride (TG) assay and Oil-Red O staining, 40 μg/ml CGA and 160 μg/ml caffeine reduced TG content. Moreover, CGA + caffeine inhibited the mRNA expression of major adipogenic markers, PPAR-γ2, and C/EBPα in the metaphase and anaphase stages of differentiation induction (Day 2 and 4). CGA + caffeine improved P-AMPK/AMPK accompanied by decreasing the expression of GPDH and FAS to depress the lipid synthesis, increasing the mRNA expression of ACO and CAT to promote fatty acid oxidation and up-regulated the expression of hydrolysis-related enzyme adipose TG lipase (ATGL) and P-HSL/HSL. Furthermore, CGA + caffeine improved the expression of Glut4 which promoted the glucose transport. Taken together, these data demonstrated CGA + caffeine inhibited 3T3-L1 cells differentiation in the middle and late stages and reduced the fat accumulation through AMPK pathway by regulating the fat metabolism-related enzyme in 3T3-L1 cells to attenuates adipogenesis. PRACTICAL APPLICATIONS: The aim of this study was to elucidate the potential role of chlorogenic acid and caffeine in the treatment of obesity.
Collapse
Affiliation(s)
- Li Kong
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Meng Xu
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Yangyang Qiu
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Mingfu Liao
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Qingfeng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Licong Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| |
Collapse
|
15
|
Pei H, Su W, Gui M, Dou M, Zhang Y, Wang C, Lu D. Comparative Analysis of Chemical Constituents in Different Parts of Lotus by UPLC and QToF-MS. Molecules 2021; 26:molecules26071855. [PMID: 33806084 PMCID: PMC8036816 DOI: 10.3390/molecules26071855] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Six parts of lotus (seeds, leaves, plumule, stamens, receptacles and rhizome nodes) are herbal medicines that are listed in the Chinese Pharmacopoeia. Their indications and functions have been confirmed by a long history of clinical practice. To fully understand the material basis of clinical applications, UPLC-QToF-MS combined with the UNIFI platform and multivariate statistical analysis was used in this study. As a result, a total of 171 compounds were detected and characterized from the six parts, and 23 robust biomarkers were discovered. The method can be used as a standard protocol for the direct identification and prediction of the six parts of lotus. Meanwhile, these discoveries are valuable for improving the quality control method of herbal medicines. Most importantly, this was the first time that alkaloids were detected in the stamen, and terpenoids were detected in the cored seed. The stamen is a noteworthy part because it contains the greatest diversity of flavonoids and terpenoids, but research on the stamen is rather limited.
Collapse
|
16
|
Ferulic acid ameliorates intrahepatic triglyceride accumulation in vitro but not in high fat diet-fed C57BL/6 mice. Food Chem Toxicol 2021; 149:111978. [PMID: 33428987 DOI: 10.1016/j.fct.2021.111978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/26/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Phenolic acids can improve obesity-related and metabolic syndrome-related conditions including non-alcoholic fatty liver disease (NAFLD). In this study, the effects of ferulic acid (FA) on the metabolic changes related to NAFLD were investigated in oleic acid (OA)-treated HepG2 cells and C57BL/6 mice fed a high fat diet (HFD). In vitro, FA (25 and 50 μg/mL) treatment significantly reduced cellular lipid accumulation with no obvious cytotoxicity, in-part mediated by the suppression of ERK1/2, JNK1/2/3, and HGMB1 expression. However, in vivo administration of FA (20 mg/kg bw·day) for 17 weeks led to no obvious effects on body weight and liver weight gain, blood lipid profiles, or histological abnormalities in obese C57BL/6 mice induced by HFD. Taken together, the positive effects of FA on the reduction of hepatic triglyceride accumulation were therefore demonstrated in cellular model, while its hepatic protective effects might need to be further explored in rodent models and clinical trials.
Collapse
|
17
|
Un Nisa K, Reza MI. Key Relevance of Epigenetic Programming of Adiponectin Gene in Pathogenesis of Metabolic Disorders. Endocr Metab Immune Disord Drug Targets 2020; 20:506-517. [DOI: 10.2174/1871530319666190801142637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
Abstract
Background & Objective::
Significant health and social burdens have been created by the
growth of metabolic disorders like type 2 diabetes mellitus (T2DM), atherosclerosis, and non-alcoholic
steatohepatitis, worldwide. The number of the affected population is as yet rising, and it is assessed
that until 2030, 4−5 million individuals will acquire diabetes. A blend of environmental, genetic, epigenetic,
and other factors, such as diet, are accountable for the initiation and progression of metabolic
disorders. Several researches have shown strong relevance of adiponectin gene and metabolic disorders.
In this review, the potential influence of epigenetic mechanisms of adiponectin gene “ADIPOQ”
on increasing the risk of developing metabolic disorders and their potential in treating this major disorder
are discussed.
Results & Conclusion::
Various studies have postulated that a series of factors such as maternal High
fat diet (HFD), oxidative stress, pro-inflammatory mediators, sleep fragmentation throughout lifetime,
from gestation to old age, could accumulate epigenetic marks, including histone remodeling, DNA
methylation, and microRNAs (miRNAs) that, in turn, alter the expression of ADIPOQ gene and result
in hypoadiponectinemia which precipitates insulin resistance (IR) that in turn might induce or accelerate
the onset and development of metabolic disorder. A better understanding of global patterns of epigenetic
modifications and further their alterations in metabolic disorders will bestow better treatment
strategies design.
Collapse
Affiliation(s)
- Kaiser Un Nisa
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education & Research, SAS Nagar, India
| | - Mohammad Irshad Reza
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education & Research, SAS Nagar, India
| |
Collapse
|
18
|
Wang Z, Li S, Ge S, Lin S. Review of Distribution, Extraction Methods, and Health Benefits of Bound Phenolics in Food Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3330-3343. [PMID: 32092268 DOI: 10.1021/acs.jafc.9b06574] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phenolic compounds are important functional bioactive substances distributed in various food plants. They have gained wide interest from researchers due to their multiple health benefits. There are two forms of phenolic compounds: free form and bound form. The latter is also called bound phenolics (BPs), which are found mainly in the cell wall and distributed in various tissues/organs of the plant body. They can either chemically bind to macromolecules and food matrixes or be physically entrapped in food matrixes and intact cells. Various isolation methods, including chemical, biological, and physical methods, have been employed to extract BPs from plants. BPs have been shown to have strong biological activities, including antioxidant, probiotic, anticancer, anti-inflammation, antiobesity, and antidiabetic effects as well as beneficial effects on central nervous system diseases. This review summarizes research findings on these topics to help in better understanding of BPs and provide comprehensive information on their health effects.
Collapse
Affiliation(s)
- Zhenyu Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiyang Li
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shenghan Ge
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoling Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
19
|
Hu J, Wang Z, Tan BK, Christian M. Dietary polyphenols turn fat “brown”: A narrative review of the possible mechanisms. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Kojima-Yuasa A, Matsui-Yuasa I. Pharmacological Effects of 1'-Acetoxychavicol Acetate, a Major Constituent in the Rhizomes of Alpinia galanga and Alpinia conchigera. J Med Food 2020; 23:465-475. [PMID: 32069429 DOI: 10.1089/jmf.2019.4490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
1'-Acetoxychavicol acetate (ACA) is found in the rhizomes or seeds of Alpinia galanga and Alpinia conchigera, which are used as traditional spices in cooking and traditional medicines in Southeast Asia. ACA possesses numerous medicinal properties. Those include anticancer, antiobesity, antiallergy, antimicrobial, antidiabetic, gastroprotective, and anti-inflammatory activities. ACA is also observed to exhibit antidementia activity. Recent studies have demonstrated that combining ACA with other substances results in synergistic anticancer effects. The structural factors that regulate the activity of ACA include (1) the acetyl group at position 1', (2) the acetyl group at position 4, and (3) the unsaturated double bond between positions 2' and 3'. ACA induces the activation of AMP-activated protein kinase (AMPK), which regulates the signal transduction pathways, and has an important role in the prevention of diseases, including cancer, obesity, hyperlipidemia, diabetes, and neurodegenerative disorders. Such findings suggest that AMPK has a central role in different pharmacological functions of ACA, and ACA is useful for the prevention of life-threatening diseases. However, more studies should be performed to evaluate the clinical effects of ACA and to better understand its potential.
Collapse
Affiliation(s)
- Akiko Kojima-Yuasa
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Isao Matsui-Yuasa
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| |
Collapse
|
21
|
Wang Z, Ge S, Li S, Lin H, Lin S. Anti-obesity effect of trans-cinnamic acid on HepG2 cells and HFD-fed mice. Food Chem Toxicol 2020; 137:111148. [PMID: 31982449 DOI: 10.1016/j.fct.2020.111148] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Trans-cinnamic acid (tCA) is a phenylpropenoic acid, which occurs naturally in a number of plants. In this study, the anti-obese effects of tCA were evaluated in oleic acid (OA)-induced HepG2 cells and high fat diet (HFD)-fed mice. The results showed tCA treatment significantly decreased lipid accumulation in HepG2 cells exposed to OA. Furthermore, administration of tCA (40 mg/kg/day) curbed body weight gains, reduced liver and adipose tissue weight, and ameliorated hepatic steatosis and adipose hypertrophy in mice fed with HFD. In addition, significant decrease in plasma levels of TG, TC and LDL-C were also observed in HFD-fed mice with tCA treatment. Collectively, tCA may play a vital role in preventing and treating diet induced obesity.
Collapse
Affiliation(s)
- Zhenyu Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shenghan Ge
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shiyang Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State Key Laboratory of Food Safety Technology for Meat Products, Xiamen, Fujian, 361100, China
| | - Huiting Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaoling Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
22
|
Qi J, Yu J, Li Y, Luo J, Zhang C, Ou S, Zhang G, Yang X, Peng X. Alternating consumption of β-glucan and quercetin reduces mortality in mice with colorectal cancer. Food Sci Nutr 2019; 7:3273-3285. [PMID: 31660141 PMCID: PMC6804767 DOI: 10.1002/fsn3.1187] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/17/2019] [Accepted: 07/27/2019] [Indexed: 12/30/2022] Open
Abstract
The current dietary recommendations for disease prevention and management are scarce and are not well supported. Beta-glucan or quercetin in a diet can alleviate colorectal cancer (CRC) by regulating the gut microbiota and related genes, but the effects of alternating their consumption for routine ingestion during CRC occurrence remain unknown. This study investigated the effects of alternating the consumption of β-glucan and quercetin for routine ingestion on CRC development in mice. The mortality rate, colonic length, inflammatory cytokines, gut microbiota, and colonic epithelial gene expression in healthy and CRC mice that consumed normal and alternate diets were compared and studied. The results showed that alternating the consumption of β-glucan and quercetin (alternating among a β-glucan diet, a normal diet and a normal diet that was supplemented with quercetin) alleviated colon damage and reduced the mortality rate in CRC mice, with a reduction in mortality of 12.5%. Alternating the consumption of β-glucan and quercetin significantly decreased the TNF-α level, increased the relative abundance of Parabacteroides, and downregulated three genes (Hmgcs2, Fabp2, and Gpt) that are associated with inflammation and cancer. Alternating the consumption of some bioactive compounds, such as β-glucan and quercetin, in food can contribute to human health. This experiment provided some experimental evidence for the dietary recommendations for disease prevention and management.
Collapse
Affiliation(s)
- Jiamei Qi
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
| | - Juntong Yu
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
| | - Yuetong Li
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
| | - Jianming Luo
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
| | - Cheng Zhang
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
| | - Shiyi Ou
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
| | - Guangwen Zhang
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
| | - Xinquan Yang
- School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Xichun Peng
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
| |
Collapse
|