1
|
Bai Z, Zhao Z, Wang S, Li H, Chen DDY. Ambient mass spectrometry imaging of food natural products by angled direct analysis in real time high-resolution mass spectrometry. Food Chem 2024; 454:139802. [PMID: 38797098 DOI: 10.1016/j.foodchem.2024.139802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Direct surface analysis in ambient conditions provides information on the position and chemical composition of an object at the time of investigation. An angled sampling probe is developed in this work for direct analysis in real time (DART) ionization high-resolution mass spectrometry. The DART ion source and the interface were modified for improved surface resolution, increased ion transfer efficiency, as well as enabling two-dimensional surface scanning. The angled probe DART-MS system was used for investigating a variety of food samples including fruit peels, ginseng root, plant leaves and sections of radish. Abundant signals and distinct chemical profiles are obtained in seconds, and spatial distribution of different molecules across the sample surfaces can be observed. In addition, the developed system can quickly identify the chemical changes when the surfaces were treated. The method is capable of directly evaluating food sample surfaces with different shapes, hardness, and conditions, without any sample pretreatments.
Collapse
Affiliation(s)
- Zhiru Bai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhengyan Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Saiting Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hongli Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - David Da Yong Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
2
|
Liu D, Shen Y, Di D, Cai S, Huang X, Lin H, Huang Y, Xue J, Liu L, Hu B. Direct mass spectrometry analysis of biological tissue for diagnosis of thyroid cancer using wooden-tip electrospray ionization. Front Chem 2023; 11:1134948. [PMID: 36846859 PMCID: PMC9947238 DOI: 10.3389/fchem.2023.1134948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Direct mass spectrometry (MS) analysis of human tissue at the molecular level could gain insight into biomarker discovery and disease diagnosis. Detecting metabolite profiles of tissue sample play an important role in understanding the pathological properties of disease development. Because the complex matrices in tissue samples, complicated and time-consuming sample preparation processes are usually required by conventional biological and clinical MS methods. Direct MS with ambient ionization technique is a new analytical strategy for direct sample analysis with little sample preparation, and has been proven to be a simple, rapid, and effective analytical tools for direct analysis of biological tissues. In this work, we applied a simple, low-cost, disposable wooden tip (WT) for loading tiny thyroid tissue, and then loading organic solvents to extract biomarkers under electrospray ionization (ESI) condition. Under such WT-ESI, the extract of thyroid was directly sprayed out from wooden tip to MS inlet. In this work, thyroid tissue from normal and cancer parts were analyzed by the established WT-ESI-MS, showing lipids were mainly detectable compounds in thyroid tissue. The MS data of lipids obtained from thyroid tissues were further analyzed with MS/MS experiment and multivariate variable analysis, and the biomarkers of thyroid cancer were also investigated.
Collapse
Affiliation(s)
- Dasheng Liu
- Department of Vascular Thyroid Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuejian Shen
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou, China,*Correspondence: Li Liu, ; Yuejian Shen, ; Bin Hu,
| | - Dandan Di
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, China,Guangdong MS Institute of Scientific Instrument Innovation, Guangzhou, China
| | - Shenhui Cai
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, China
| | - Xueyang Huang
- Department of Vascular Thyroid Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongguo Lin
- Department of Vascular Thyroid Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yalan Huang
- Department of Vascular Thyroid Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Xue
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Li Liu
- Health Management Center, The First Affiliated Hospital of Jinan University, Guangzhou, China,*Correspondence: Li Liu, ; Yuejian Shen, ; Bin Hu,
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, China,*Correspondence: Li Liu, ; Yuejian Shen, ; Bin Hu,
| |
Collapse
|
3
|
A consolidative synopsis of the MALDI-TOF MS accomplishments for the rapid diagnosis of microbial plant disease pathogens. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Yang J, Xiong W, Liu C, Li J, Zhu R, Xia J, Yin Z, Tian R, Tang S, Li Z, Li H, Han Y, Si X, Jiang W, He P, Zhang F, Xu Y, Liu Z. Direct adsorption sampling and ambient mass spectrometry analysis of tobacco smoke with porous paper strips. Front Chem 2022; 10:1037542. [PMID: 36386000 PMCID: PMC9643588 DOI: 10.3389/fchem.2022.1037542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Chemical analysis of atmospheric aerosols by conventional analytical methods is usually required to perform complicated and time-consuming sample preparation processes. In recent decades, ambient ionization mass spectrometry (AI-MS) methods have been proven to be simple, rapid, and effective analytical tools for direct analysis of various complex samples. In this work, we applied porous paper filters for direct adsorptive sampling of tobacco smoke, and then the sampled paper filters were performed the emitters of the paper spray ionization (PSI) device. An auto-sampling device was made to control the generation and collection of tobacco smoke. Nicotine, the typical compound of tobacco smoke, was used to optimize the key conditions of auto-sampling. Moreover, different types of tobacco smoke were also compared with multivariate variable analysis, and the makers of tobacco smoke from different sources of tobacco smoke were investigated. By using this method, direct sampling and analysis of a single tobacco sample can be completed within minutes. Overall, our results show that PSI-MS is a powerful tool that integrates collection, extraction, ionization, and identification analytes in smoke.
Collapse
|
5
|
Shi L, Habib A, Bi L, Hong H, Begum R, Wen L. Ambient Ionization Mass Spectrometry: Application and Prospective. Crit Rev Anal Chem 2022; 54:1584-1633. [PMID: 36206159 DOI: 10.1080/10408347.2022.2124840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Mass spectrometry (MS) is a formidable analytical tool for the analysis of non-polar to polar compounds individually and/or from mixtures, providing information on the molecular weights and chemical structures of the analytes. During the last more than one-decade, ambient ionization mass spectrometry (AIMS) has developed quickly, producing a wide range of platforms and proving scientific improvements in a variety of domains, from biological imaging to quick quality control. These methods have made it possible to detect target analytes in real time without sample preparation in an open environment, and they can be connected to any MS system with an atmospheric pressure interface. They also have the ability to analyze explosives, illicit drugs, disease diagnostics, drugs in biological samples, adulterants in food and agricultural products, reaction progress, and environmental monitoring. The development of novel ambient ionization techniques, such as probe electrospray ionization, paper spray ionization, and fiber spray ionization, employed even at picolitre to femtolitre solution levels to provide femtogram to attogram levels of the target analytes. The special characteristic of this ambient ion source, which has been extensively used, is the noninvasive property of PESI of examination of biological real samples. The results in the current review supports the idea that AIMS has emerged as a pioneer in MS-based approaches and that methods will continue to be developed along with improvements to existing ones in the near future.
Collapse
Affiliation(s)
- Lulu Shi
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Lei Bi
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| | - Huanhuan Hong
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| | - Rockshana Begum
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Luhong Wen
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Zhang J, Zhang J, Kaliaperumal K, Zhong B. Variations of the chemical composition of Citrus sinensis Osbeck cv. Newhall fruit in relation to the symptom severity of Huanglongbing. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Hu B, Rao MJ, Deng X, Pandey SS, Hendrich C, Ding F, Wang N, Xu Q. Molecular signatures between citrus and Candidatus Liberibacter asiaticus. PLoS Pathog 2021; 17:e1010071. [PMID: 34882744 PMCID: PMC8659345 DOI: 10.1371/journal.ppat.1010071] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Citrus Huanglongbing (HLB), also known as citrus greening, is one of the most devastating citrus diseases worldwide. Candidatus Liberibacter asiaticus (CLas) is the most prevalent strain associated with HLB, which is yet to be cultured in vitro. None of the commercial citrus cultivars are resistant to HLB. The pathosystem of Ca. Liberibacter is complex and remains a mystery. In this review, we focus on the recent progress in genomic research on the pathogen, the interaction of host and CLas, and the influence of CLas infection on the transcripts, proteins, and metabolism of the host. We have also focused on the identification of candidate genes for CLas pathogenicity or the improvements of HLB tolerance in citrus. In the end, we propose potentially promising areas for mechanistic studies of CLas pathogenicity, defense regulators, and genetic improvement for HLB tolerance/resistance in the future.
Collapse
Affiliation(s)
- Bin Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Junaid Rao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Connor Hendrich
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Wu L, Yuan ZC, Yang BC, Huang Z, Hu B. In vivo solid-phase microextraction swab-mass spectrometry for multidimensional analysis of human saliva. Anal Chim Acta 2021; 1164:338510. [PMID: 33992222 DOI: 10.1016/j.aca.2021.338510] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Solid phase microextraction (SPME) is one of the most powerful sample preparation techniques for analyte extraction and enrichment from complex matrices. SPME fibers are commonly used to extract analytes from collected samples. Following our recent work on development of in vivo SPME swab that integrates an SPME fiber and a medical swab (Anal Chim Acta, 2020, 1124, 71-77), the multiple SPME fibers inserted into a medical swab (multiple-SPME swab) is further developed to couple with different mass spectrometry (MS) approaches for multidimensional analysis of human saliva in this work. The new features of cotton ball and SPME fiber of multiple-SPME swab are investigated. Biomarker discovery and disease diagnosis using multiple-SPME swab are also demonstrated. The present study shows that direct coupling multiple-SPME swab with different MS-based approaches could be simple and versatile in vivo method to expand the classes of analytes extracted simultaneously from human saliva.
Collapse
Affiliation(s)
- Lin Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Zi-Cheng Yuan
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Bi-Cheng Yang
- Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, China.
| | - Zhengxu Huang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China.
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
9
|
Li W, Yao YN, Wu L, Wang L, Hu B. Contactless electrospray ionization mass spectrometry for direct detection of analytes in living organisms. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4539. [PMID: 32677755 DOI: 10.1002/jms.4539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/26/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
In this study, we developed contactless electrospray ionization mass spectrometry (ESI-MS) for in vivo analysis of living organisms in different applications. The in vivo sampling and direct analysis processess of living organisms were integrated into an operation that only requires the organism close to MS inlet that was applied to a high voltage. Living plants and animals were directly induced to generate spray ionization. Direct detection and in vivo monitoring of metabolites and chemical residues in various living organisms were successfully demonstrated. Analysis of a single sample could be completed within 30 s. Overall, contactless ESI-MS provides an attractive in vivo method to straightforward investigation of living organisms.
Collapse
Affiliation(s)
- Wen Li
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Ya-Nan Yao
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, China
| | - Lin Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, China
| | - Lei Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Mass spectrometry imaging as a potential technique for diagnostic of Huanglongbing disease using fast and simple sample preparation. Sci Rep 2020; 10:13457. [PMID: 32778716 PMCID: PMC7417563 DOI: 10.1038/s41598-020-70385-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Huanglongbing (HLB) is a disease of worldwide incidence that affects orange trees, among other commercial varieties, implicating in great losses to the citrus industry. The disease is transmitted through Diaphorina citri vector, which inoculates Candidatus Liberibacter spp. in the plant sap. HLB disease lead to blotchy mottle and fruit deformation, among other characteristic symptoms, which induce fruit drop and affect negatively the juice quality. Nowadays, the disease is controlled by eradication of sick, symptomatic plants, coupled with psyllid control. Polymerase chain reaction (PCR) is the technique most used to diagnose the disease; however, this methodology involves high cost and extensive sample preparation. Mass spectrometry imaging (MSI) technique is a fast and easily handled sample analysis that, in the case of Huanglongbing allows the detection of increased concentration of metabolites associated to the disease, including quinic acid, phenylalanine, nobiletin and sucrose. The metabolites abieta-8,11,13-trien-18-oic acid, suggested by global natural product social molecular networking (GNPS) analysis, and 4-acetyl-1-methylcyclohexene showed a higher distribution in symptomatic leaves and have been directly associated to HLB disease. Desorption electrospray ionization coupled to mass spectrometry imaging (DESI-MSI) allows the rapid and efficient detection of biomarkers in sweet oranges infected with Candidatus Liberibacter asiaticus and can be developed into a real-time, fast-diagnostic technique.
Collapse
|
11
|
Ramsey JS, Chin EL, Chavez JD, Saha S, Mischuk D, Mahoney J, Mohr J, Robison FM, Mitrovic E, Xu Y, Strickler SR, Fernandez N, Zhong X, Polek M, Godfrey KE, Giovannoni JJ, Mueller LA, Slupsky CM, Bruce JE, Heck M. Longitudinal Transcriptomic, Proteomic, and Metabolomic Analysis of Citrus limon Response to Graft Inoculation by Candidatus Liberibacter asiaticus. J Proteome Res 2020; 19:2247-2263. [PMID: 32338516 PMCID: PMC7970439 DOI: 10.1021/acs.jproteome.9b00802] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Presymptomatic detection of citrus trees infected with Candidatus Liberibacter asiaticus (CLas), the bacterial pathogen associated with Huanglongbing (HLB; citrus greening disease), is critical to controlling the spread of the disease. To test whether infected citrus trees produce systemic signals that may be used for indirect disease detection, lemon (Citrus limon) plants were graft-inoculated with either CLas-infected or control (CLas-) budwood, and leaf samples were longitudinally collected over 46 weeks and analyzed for plant changes associated with CLas infection. RNA, protein, and metabolite samples extracted from leaves were analyzed using RNA-Seq, mass spectrometry, and 1H NMR spectroscopy, respectively. Significant differences in specific transcripts, proteins, and metabolites were observed between CLas-infected and control plants as early as 2 weeks post graft (wpg). The most dramatic differences between the transcriptome and proteome of CLas-infected and control plants were observed at 10 wpg, including coordinated increases in transcripts and proteins of citrus orthologs of known plant defense genes. This integrated approach to quantifying plant molecular changes in leaves of CLas-infected plants supports the development of diagnostic technology for presymptomatic or early disease detection as part of efforts to control the spread of HLB into uninfected citrus groves.
Collapse
Affiliation(s)
- John S Ramsey
- USDA Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, New York 14853, United States
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
| | - Elizabeth L Chin
- Department of Food Science and Technology, University of California, 392 Old Davis Road, Davis, California 95616, United States
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Avenue NE, Seattle, Washington 98195, United States
| | - Surya Saha
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
| | - Darya Mischuk
- Department of Food Science and Technology, University of California, 392 Old Davis Road, Davis, California 95616, United States
| | - Jaclyn Mahoney
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
| | - Jared Mohr
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Avenue NE, Seattle, Washington 98195, United States
| | - Faith M Robison
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
| | - Elizabeth Mitrovic
- Contained Research Facility, University of California, 555 Hopkins Road, Davis, California 95616, United States
| | - Yimin Xu
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
| | - Susan R Strickler
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
| | - Noe Fernandez
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
| | - Xuefei Zhong
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Avenue NE, Seattle, Washington 98195, United States
| | - MaryLou Polek
- Citrus Research Board, 217 N Encina Street, Visalia, California 93291, United States
- National Clonal Germplasm Repository for Citrus, 1060 Martin Luther King Blvd., Riverside, California 92507, United States
| | - Kris E Godfrey
- Contained Research Facility, University of California, 555 Hopkins Road, Davis, California 95616, United States
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
- USDA Plant, Soil, and Nutrition Research Unit, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, New York 14853, United States
- Plant Biology Section, School of Integrative Plant Science, Cornell University, 236 Tower Road, Ithaca, New York 14853, United States
| | - Lukas A Mueller
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California, 392 Old Davis Road, Davis, California 95616, United States
| | - James E Bruce
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Avenue NE, Seattle, Washington 98195, United States
| | - Michelle Heck
- USDA Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, New York 14853, United States
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 236 Tower Road, Ithaca, New York 14853, United States
| |
Collapse
|
12
|
Yao YN, Di D, Yuan ZC, Wu L, Hu B. Schirmer Paper Noninvasive Microsampling for Direct Mass Spectrometry Analysis of Human Tears. Anal Chem 2020; 92:6207-6212. [PMID: 32250596 DOI: 10.1021/acs.analchem.9b05078] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid and sensitive detection of metabolites and chemical residues in human tears is highly beneficial for understanding eye health. In this study, Schirmer paper was used for noninvasive microsampling of human tears, and then paper spray mass spectrometry (PSMS) was performed for direct analysis of human tears. Schirmer PSMS was successfully used for rapid diagnosis of dry-eye syndrome by detecting the volume and metabolites of human tears. Drugs of abuse, therapeutic drugs, and pharmacodynamics in human tears were also investigated by Schirmer PSMS. Furthermore, specific markers of environmental exposures in the air to human eyes, including volatile organic compounds, aerosol, and smoke, were unambiguously sampled and detected in human tears using Schirmer PSMS. Excellent analytical performances were achieved, including single-use, low-sample consumption (1.0 μL), rapid analysis (the whole analytical procedure completed within 3 min), high sensitivity (absolute limit of detection less than or equal to 0.5 pg, signal-to-noise ratio greater than or equal to 3), good reproducibility (relative standard deviation less than 10%, n = 3), and accurate quantitation (average deviation less than 3%, n = 3). Overall, our results showed that Schirmer PSMS is a highly effective method for direct tear analysis and is expected to be a convenient tool for human tear analysis in significant clinical applications.
Collapse
Affiliation(s)
- Ya-Nan Yao
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Dandan Di
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Zi-Cheng Yuan
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Lin Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Wu L, Yao YN, Yuan ZC, DI D, Li L, Hu B. Direct Detection of Lysozyme in Viscous Raw Hen Egg White Binding to Sodium Dodecyl Sulfonate by Reactive Wooden-tip Electrospray Ionization Mass Spectrometry. ANAL SCI 2020; 36:341-346. [PMID: 31656247 DOI: 10.2116/analsci.19p288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Direct characterization of native protein binding to ligands in raw biological samples is a challenging task, because the ligand solution might induce proteins to aggregation, flocculation and denaturation. In this work, we developed a reactive wooden-tip electrospray ionization mass spectrometry (ESI-MS) for formation and characterization of protein-ligand complexes upon rapid mixing in electrospray droplets. Raw viscous hen egg white (HEW) was directly loaded onto a wooden tip to induce spray ionization, and sodium dodecyl sulfonate (SDS) solution was directly loaded into the HEW spray by a pipette tip, and thus lysozyme-DS complexes were then formed in the electrospray droplets and were detected subsequently by mass spectrometry. The new approach was successfully applied to investigate interaction of SDS and native lysozyme in electrospray droplets of standard solution and raw egg white. Our results showed that wooden-tip ESI-MS is a promising method to form and characterize protein-ligand complexes.
Collapse
Affiliation(s)
- Lin Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University
| | - Ya-Nan Yao
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University
| | - Zi-Cheng Yuan
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University
| | - Dandan DI
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University
| | - Lei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University.,Guangzhou Hexin Instrument Co., Ltd
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University
| |
Collapse
|
14
|
Yao YN, Wu L, Sun WY, Luo ZH, Di D, Yuan ZC, Huang Z, Hu B. Fast-switching high-voltage porous-tip electrospray ionization mass spectrometry for rapid detection of antirheumatic drugs in adulterated herbal dietary supplements. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1877-1883. [PMID: 31429145 DOI: 10.1002/rcm.8559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Herbal dietary supplements (HDSs) adulterated with undeclared synthetic drugs can lead to serious health problems METHODS: A fast-switching positive/negative high-voltage (+/- HV) was developed to apply on electrospray ionization mass spectrometry (ESI-MS) with porous tips for rapid screening of five antirheumatic drugs in antirheumatic HDSs. The fast-switching (switch-time: 100 ms) negative and positive ions were alternately generated to perform full-MS and tandem-MS analysis, providing an effective method for rapid detection of analytes in whichever mode of detection was most suitable (negative or positive ion mode). The use of different tips and solvents was also optimized in this work. RESULTS The limits of detection of the five antirheumatic drugs were found to be less than 0.1 ng/g (S/N > 3). The reproducibility of the five drugs was measured to be 10.0-23.3% (n = 5). A single sample analysis could be completed within 1 min. Rapid screening of a total of 28 real HDS samples collected from the market was examined by the fast-switching HV substrate-tip ESI-MS method, and the screening result was further validated by conventional liquid chromatography/mass spectrometry. CONCLUSIONS Overall, our results demonstrated that fast-switching HV substrate-tip ESI-MS is a rapid, reliable, and effective method for simultaneous screening of various analytes in complex samples.
Collapse
Affiliation(s)
- Ya-Nan Yao
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Lin Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Wan-Yang Sun
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhi-Hui Luo
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Dandan Di
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Zi-Cheng Yuan
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Zhengxu Huang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
15
|
Li L, Wang Q, Li W, Yao YN, Wu L, Hu B. Comprehensive comparison of ambient mass spectrometry with desorption electrospray ionization and direct analysis in real time for direct sample analysis. Talanta 2019; 203:140-146. [DOI: 10.1016/j.talanta.2019.05.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022]
|
16
|
Yao YN, Wu L, Di D, Yuan ZC, Hu B. Vibrating tip spray ionization mass spectrometry for direct sample analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:772-779. [PMID: 31426121 DOI: 10.1002/jms.4429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
In this work, a vibrating tip spray ionization source was developed for direct mass spectrometric analysis of raw samples under voltage-free condition. A solid tip was mounted on a vibrator, and the solid tip was placed on the front of MS inlet. Liquid, viscous, and bulk solid samples could be directly loaded on the tip-end surface, and then a drop of solvent at microliter level was subsequently loaded on the tip for dissolution and extraction of analytes, and a vibrator was then started to atomize and ionize the analytes under ambient condition. We demonstrated vibrating tip spray mass spectrometry in various applications, including food safety, pharmaceutical analysis, and forensic science. Furthermore, in situ analysis of biological tissues and in vivo analysis of living plants were conveniently performed, due to voltage-free. Different vibration frequencies and solvent compositions were investigated. The analytical performances, including sensitivity, reproducibility, and linear range, were investigated. The ionization process and mechanism were also discussed in this work.
Collapse
Affiliation(s)
- Ya-Nan Yao
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Lin Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Dandan Di
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Zi-Cheng Yuan
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
17
|
So PK, Yang BC, Li W, Zheng J, Hu B. Development of tip-desorption electrospray ionization coupled with ion mobility-mass spectrometry for fast screening of carbapenemase-producing bacteria. Talanta 2019; 201:237-244. [DOI: 10.1016/j.talanta.2019.03.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 02/03/2023]
|
18
|
Shen Q, Feng J, Wang J, Li S, Wang Y, Ma J, Wang H. Laser irradiation desorption of microcystins from protein complex in fish tissue and liquid chromatography-tandem mass spectrometry analysis. Electrophoresis 2019; 40:1805-1811. [PMID: 31106441 DOI: 10.1002/elps.201900141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/07/2022]
Abstract
Microcystins are a group of cyanotoxins which interact with the C-terminal region of PP1 and PP2A proteins, so denaturation and inactivation are necessary for breaking covalent binding to release microcystins. In this study, a novel extraction method was developed by laser irradiation desorption of microcystins from fish protein. The sample was mixed with aqueous methanol and irradiated by a 450 nm laser, with an optimized value of laser power density at 8 W and exposure time at 5 min. ThenLC-MS/MS was applied for the determination of microcystins in fish extracts. The ionization behaviors of microcystins were investigated firstly, and doubly charged microcystins were selected as precursor ions in multiple reaction monitoring scan for quantification. This proposed quantitative method was well validated in terms of selectivity, linearity, sensitivity, accuracy, recovery, and stability. The successful application of this LC-MS/MS method showed its ability for the analysis of microcystins in low concentration, and it would be of significant interest for environmental and food safety applications to ensure the safety of fish and related products.
Collapse
Affiliation(s)
- Qing Shen
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P. R. China.,Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Junli Feng
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Jie Wang
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Shiyan Li
- Aquatic Products Quality Inspection Center of Zhejiang Province, Hangzhou, P. R. China
| | - Yang Wang
- Aquatic Products Quality Inspection Center of Zhejiang Province, Hangzhou, P. R. China
| | - Jianfeng Ma
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P. R. China
| | - Haixing Wang
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P. R. China
| |
Collapse
|