1
|
Du D, Chen Y, Yang C, Jin Z, Teng H. One-Pot Synthesis of Chiral Succinate Dehydrogenase Inhibitors and Antifungal Activity Studies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416250. [PMID: 40387795 DOI: 10.1002/advs.202416250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/28/2025] [Indexed: 05/20/2025]
Abstract
In this work, a series of novel chiral succinate dehydrogenase inhibitors (SDHIs) are synthesized through a one-pot Rh-catalyzed asymmetric hydrogenation-condensation strategy. This method exhibits high efficiency (up to 1000 Ton, 94% yield over two steps), high stereoselectivity (up to 99% ee), and broad substrate scope (68 examples in total), providing a superior pathway for the synthesis of such chiral fungicides. Mechanistic studies indicate that the amino group at the 2-position of the phenyl ring acts as an activating group, enhancing the reactivity and stereoselectivity control of the reaction. Furthermore, these molecules exhibit broad-spectrum and highly effective antifungal biological activity. Notably, enantiomers show significant differences in both in vitro and in vivo fungi-inhibiting experiments. Especially, (S)-5f showcases an antifungal activity against Botrytis cinerea (EC50 = 0.48 µm) that is much higher than that of its R enantiomer (EC50 = 36.7 µm). Molecular docking calculations, molecular dynamic simulation, enzyme activity assays, and ligand-target interaction experiments demonstrate that (S)-5f (ΔGMM-PBSA = -18.86 kcal mol-1, KD = 6.04 µm) inhibits succinate dehydrogenase more effectively than its R enantiomer (ΔGMM-PBSA = -13.01 kcal mol-1, KD = 8.5 µm). Moreover, the two enantiomers have significantly different effects on spore germination and the destruction of fungal phenotype.
Collapse
Affiliation(s)
- Donghua Du
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yu Chen
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo, 315100, P. R. China
| | - Chengbing Yang
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zheng Jin
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Huailong Teng
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
2
|
Chen H, Jiang Z, Mai Z, Meng Y, Dai P, Zhang MZ, Wu L, Zhang W, Miao J, Zhu Y. Design, Synthesis, Antifungal Evaluation, and Action Mechanism of Novel l-Carvone-Based Derivatives as Potential Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10615-10626. [PMID: 40239064 DOI: 10.1021/acs.jafc.4c10500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Natural products serve as a crucial source of compounds for developing novel agricultural antifungals. In this work, we utilized the natural product l-carvone as a molecular scaffold to design and synthesize three series of novel l-carvone-based derivatives. The in vitro bioassay results indicated that most target compounds exhibited remarkable antifungal activity. Notably, compound C3 demonstrated broad-spectrum antifungal activity against Rhizoctonia solani, Botrytis cinerea, Sclerotinia sclerotiorum, Gibberella zeae, and Valsa mali, with EC50 values of 0.274, 0.985, 4.17, 5.71, and 2.29 μg/mL, respectively. The in vivo preventative efficacies of compounds C3 and C11 against R. solani and of compound C13 against B. cinerea revealed that they had potential as novel agricultural antifungals. In the antifungal mechanism study, the cell membrane permeability experiment showed that compound C3 significantly increased the permeability of the cell membrane, and microscopic observations revealed that compound C3 could significantly destroy the structural integrity of cells and reduce the number of mitochondria, thus affecting the normal growth of mycelia. Furthermore, the mitochondrial membrane potential detection, succinate dehydrogenase (SDH) enzyme assay, molecular dynamics (MD) simulations, and docking experiments further demonstrated that the mechanism of action and binding mode of compound C3 with the SDH may be similar to those of thifluzamide. The abovementioned results provided a valuable reference for the discovery of novel SDH inhibitor fungicides.
Collapse
Affiliation(s)
- Hongyi Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zunyun Jiang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyun Mai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Meng
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming-Zhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Shaik S, Sirigireddy RMR, Talari ST, Divi H, Mulakayala N, Vemula V, Nallagondu CGR. Optimizing the white light emission in the solid state isatin and thiazole based molecular hybrids by introduction of variety of substituents on isatin and thiazole ring systems. RSC Adv 2025; 15:7973-7986. [PMID: 40092142 PMCID: PMC11908639 DOI: 10.1039/d4ra09010a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
An efficient and practical 3-component reaction strategy has been developed for the synthesis of a series of multi-colour emissive isatin-thiazole based fluorophores, thiazolylhydrazonoindolin-2-ones (4) from readily available isatins (1), thiosemicarbazide (2) and α-bromoketones (3) in the presence of biodegradable citric acid (0.1 N) in ethanol at reflux temperature for 40-60 min. The reaction proceeds via condensation (C[double bond, length as m-dash]N) and subsequent heterocyclization (C-S & C-N) in one-pot. Nature-friendly reaction profile, easy to perform, wide substrate scope, use of non-hazardous solvents/catalysts, good functional group tolerance, excellent yields (91-98%) in short reaction times, scalability and products do not require column chromatography purification are the attractive features of the present MCR strategy. The photophysical properties of the titled compounds (4) in both solid and solution states have been evaluated. The study reveals that the prepared isatin-thiazole based molecular hybrids exhibited tunable photophysical properties by varying the substituents on both isatin and thiazole motifs. To our delight, the titled compounds, 4k, 4l, 4m, 4u and 4y displayed white light emission with mega Stokes shifts in the solid state.
Collapse
Affiliation(s)
- Sultana Shaik
- Green & Sustainable Synthetic Organic Chemistry and Optoelectronics Laboratory, Department of Chemistry, Yogi Vemana University Kadapa-516005 Andhra Pradesh India
| | - Rama Mohana Reddy Sirigireddy
- Green & Sustainable Synthetic Organic Chemistry and Optoelectronics Laboratory, Department of Chemistry, Yogi Vemana University Kadapa-516005 Andhra Pradesh India
| | - Sai Teja Talari
- Green & Sustainable Synthetic Organic Chemistry and Optoelectronics Laboratory, Department of Chemistry, Yogi Vemana University Kadapa-516005 Andhra Pradesh India
| | - Haranath Divi
- Department of Physics, National Institute of Technology Warangal-506004 Telangana India
| | - Naveen Mulakayala
- SVAK Lifesciences ALEAP Industrial Area, Pragathi Nagar Hyderabad 500090 India
| | - Venkatramu Vemula
- Department of Physics, Yogi Vemana University Kadapa-516 005 Andhra Pradesh India
| | - Chinna Gangi Reddy Nallagondu
- Green & Sustainable Synthetic Organic Chemistry and Optoelectronics Laboratory, Department of Chemistry, Yogi Vemana University Kadapa-516005 Andhra Pradesh India
| |
Collapse
|
4
|
Dai P, Ma Z, Yi G, Li Y, Xie K, Sun Y, Xia Q, Liu Z, Zhang W. Rational design and discovery of novel hydrazide derivatives as potent succinate dehydrogenase inhibitors inspired by natural d/l-camphor. PEST MANAGEMENT SCIENCE 2025; 81:786-797. [PMID: 39424965 DOI: 10.1002/ps.8481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Succinate dehydrogenase inhibitors (SDHIs) have rapidly become one of the fastest-growing categories of fungicides used against plant pathogenic fungi. Recent research advancements have emphasized that structural modifications of SDHIs using naturally sourced scaffolds represent an innovative strategy for developing new, highly effective, broad-spectrum fungicides. A novel series of d/l-camphorhydrazide derivatives potentially targeting fungal succinate dehydrogenase (SDH) were designed, synthesized and evaluated for their antifungal effects against Rhizoctonia solani, Fusarium graminearum, Valsa mali and Botrytis cinerea. RESULTS Amongst them, compounds A1-7 (d-camphor) and A2-7 (l-camphor) displayed excellent in vitro activity against R. solani with median effective concentration (EC50) values of 0.38 and 0.48 μg mL-1, which were obviously superior to that of boscalid (0.87 μg mL-1). A2-5 (l-camphor, EC50 = 3.27 μg mL-1) exhibited good activity against V. mali. A2-7 (2.13 μg mL-1), A2-21 (5.2 μg mL-1) and A1-5 (5.15 μg mL-1) showed good antifungal activity against F. graminearum with EC50 values below that of boscalid (5.85 μg mL-1). Preliminary mechanistic studies, using scanning and transmission electron microscopy, indicated that compound A1-7 induced disordered entanglement of hyphae, shrinkage of hyphal surfaces, and vacuole swelling and rupture, which disrupted normal hyphal growth. Additionally, compound A1-7 induced the production and accumulation of reactive oxygen species, disrupted mitochondrial membrane potential, and effectively inhibited the germination and formation of sclerotia in R. solani. Moreover, the molecular docking results and SDH enzyme assays yielded promising outcomes. CONCLUSION In this study, the designed and optimized compounds A1-7 and A2-7 emerged as promising candidates for SDH-targeting fungicides, demonstrating strong antifungal activity. These compounds hold potential as new antifungal agents for further research. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zihua Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guangfu Yi
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kaili Xie
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yafang Sun
- College of Economics and Management, Huaibei Institute of Technology, Huaibei, China
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Wang J, Liao A, Guo RJ, Ma X, Wu J. Thiazole and Isothiazole Chemistry in Crop Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:30-46. [PMID: 39727107 DOI: 10.1021/acs.jafc.4c08185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Thiazole and isothiazole are types of five-membered heterocycles that contain both sulfur and nitrogen atoms. They have gained attention in the field of green pesticide research due to their low toxicity, strong biological activity, and ability to undergo diverse structural modifications. By incorporating thiazole and isothiazole groups into various compounds, researchers have been able to create a wide range of pesticides with broad-spectrum effectiveness. Understanding the relationship between the structure of these compounds and their activities is crucial for the development of new and highly potent pesticides. This review highlights thiazole and isothiazole derivatives with various biological activities and aims to inspire the development of innovative pesticide based on these structures.
Collapse
Affiliation(s)
- Jiaxin Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Anjing Liao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ren Jiang Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xining Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
6
|
Bąchor U, Brożyna M, Junka A, Chmielarz MR, Gorczyca D, Mączyński M. Novel Isoxazole-Based Antifungal Drug Candidates. Int J Mol Sci 2024; 25:13618. [PMID: 39769380 PMCID: PMC11728180 DOI: 10.3390/ijms252413618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Microbiological communities have a significant impact on health and disease. Candida are ubiquitous fungal pathogens that colonize the mucosal surfaces of the genital, urinary, respiratory, and gastrointestinal tracts, as well as the oral cavity. If the immune system is inadequate, then Candida infections may pose a significant threat. Due to the limited number of clinically approved drugs for the treatment of Candida albicans-based infections and the rapid emergence of resistance to the existing antifungals, a novel series of isoxazole-based derivatives was synthesized and evaluated in vitro for their anti-Candida potential. Two compounds, PUB14 and PUB17, displayed selective antifungal activity without negatively affecting beneficial microbiota, such as Lactobacillus sp., at the same time. Moreover, these compounds exhibited significantly lower cytotoxicity in comparison to conventionally applied local antimicrobial (octenidine dihydrochloride), indicating their potential for safe and effective clinical application in conditions such as vulvovaginal candidiasis. The selective antifungal activity of PUB14 and PUB17 against C. albicans, coupled with its absence of antibacterial effects and minimal cytotoxicity towards HeLa cells, suggests a targeted mechanism of action that warrants further investigation. Consideration of the need to search for new antifungal agents and the discovery of an antifungal potential drug that does not inhibit lactobacilli growth could be a potential strategy to prevent and combat vulvovaginal candidiasis. This striking capacity to eradicate biofilm formed by Candida reveals a new approach to eradicating biofilms and sheds light on isoxazole-based derivatives as promising anti-biofilm drugs.
Collapse
Affiliation(s)
- Urszula Bąchor
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Malwina Brożyna
- Unique Application Model Laboratory, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Adam Junka
- Unique Application Model Laboratory, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Mateusz Ramires Chmielarz
- Department of Clinical Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland
| | - Damian Gorczyca
- Faculty of Medicine, Lazarski University, 02-662 Warszawa, Poland
| | - Marcin Mączyński
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| |
Collapse
|
7
|
Zeng LQ, Chen Q, Wei G, Chen W, Zhu XL, Yang GF. Comprehensive Overview of the Amide Linker Modification in the Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26027-26039. [PMID: 39540453 DOI: 10.1021/acs.jafc.4c05854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) have become one of the most important classes of agrochemical fungicides. According to the data from FRAC, the resistance risk for SDHIs had reached up to medium and even to high. In general, the chemical structure of SDHIs mainly contained three fragments: an acid core, a hydrophobic tail, and an amide linker, corresponding to three modification directions for each fragment. Among them, amide linker modification (ALM) has become a research hotspot for the design of novel SDHIs fungicides in recent years. We presented here a detailed review on the ALM strategy in the past decade, and some of them had entered the market. According to their chemical structures, ALM strategy were classified into four parts: (1) linked aliphatic chain between amide bond and hydrophobic tail, (2) introducing substituents to replacing hydrogen atom in the amide bond, (3) reverse extending the amide linker, and (4) changed with other bioisosteres. Moreover, the structure-activity relationship and the interaction mechanism of ALM-SDHI with SDH were discussed. This review aims to provide a global perspective on research and development of novel SDHIs, as well as suggestions for food safety management.
Collapse
Affiliation(s)
- Ling-Qiang Zeng
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Qi Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Ge Wei
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Wei Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiao-Lei Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
8
|
Liu N, Wan Y, Bai Z, Han J, Bai H, Li H, Wang Y, Bai L, Luo D, Li Z. Design, Synthesis, and Herbicidal Activities of N-(5-(3,5-Methoxyphenyl)-(thiazole-2-yl))phenoxyacetamide Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23097-23107. [PMID: 39137321 DOI: 10.1021/acs.jafc.4c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Thiazole and phenoxyacetic acid are key moieties in many natural and synthetic biologically active agents. A series of N-(5-(3,5-methoxyphenyl)-(thiazole-2-yl))phenoxyacetamide derivatives 6an-6bd were designed and synthesized, and their structures were confirmed by NMR and HRMS. Most of derivatives exhibited superior inhibition of Echinochloa crusgalli (E.c.) and Lactuca sativa (L.s.) seed germination by the Petri dish bioassay. Indeed, herbicidal bioassays indicated that 6an (2-(2,4-dichlorophenoxy)-N-(5-(3,5-dimethoxyphenyl)-1,3,4-thiadiazol-2-yl)acetamide) had the best inhibition against L.s. (IC50 = 42.7 g/ha, 375 g/ha at field experiments). 6an also had no harmful effect on Zea mays at 2- to 4-fold field usage. Moreover, transcriptomics and metabolomics analysis showed that 6an significantly influenced cell metabolism, including galactose metabolism and ascorbate and aldarate metabolism. These discoveries highlight that 6an shows promise to be developed as a potential herbicide.
Collapse
Affiliation(s)
- Na Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Yuanhui Wan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Zhendong Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jincai Han
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haodong Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hao Li
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yingying Wang
- Yuelushan Laboratory, Changsha 410082, China
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lianyang Bai
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Yuelushan Laboratory, Changsha 410082, China
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Dingfeng Luo
- Yuelushan Laboratory, Changsha 410082, China
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zuren Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Yuelushan Laboratory, Changsha 410082, China
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
9
|
Yin YM, Zhang XM, Shang XY, Gao ZH, Liang ZB, Wang DW, Xi Z. Discovery of Benzothiazol-2-ylthiophenylpyrazole-4-carboxamides as Novel Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17802-17812. [PMID: 39092526 DOI: 10.1021/acs.jafc.4c01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Succinate dehydrogenase (SDH) has been considered an ideal target for discovering fungicides. To develop novel SDH inhibitors, in this work, 31 novel benzothiazol-2-ylthiophenylpyrazole-4-carboxamides were designed and synthesized using active fragment exchange and a link approach as promising SDH inhibitors. The findings from the tests on antifungal activity indicated that most of the synthesized compounds displayed remarkable inhibition against the fungi tested. Compound Ig N-(2-(((5-chlorobenzo[d]thiazol-2-yl)thio)methyl)phenyl)-3-(difluoromethyl)-1-methyl-1H-yrazole-4-carboxamide, with EC50 values against four kinds of fungi tested below 10 μg/mL and against Cercospora arachidicola even below 2 μg/mL, showed superior antifungal activity than that of commercial fungicide thifluzamide, and specifically compounds Ig and Im were found to show preventative potency of 90.6% and 81.3% against Rhizoctonia solani Kühn, respectively, similar to the positive fungicide thifluzamide. The molecular simulation studies suggested that hydrophobic interactions were the main driving forces between ligands and SDH. Encouragingly, we found that compound Ig can effectively promote the wheat seedlings and the growth of Arabidopsis thaliana. Our further studies indicated that compound Ig could stimulate nitrate reductase activity in planta and increase the biomass of plants.
Collapse
Affiliation(s)
- Yan-Ming Yin
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao-Ming Zhang
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao-Yue Shang
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zi-Han Gao
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zheng-Bei Liang
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Da-Wei Wang
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhen Xi
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
10
|
Dai P, Ma Z, Yu X, Chen W, Teng P, Li Y, Xu Z, Xia Q, Liu Z, Zhang W. 3D-QSAR-Directed Synthesis of Halogenated Coumarin-3-Hydrazide Derivatives: Unveiling Their Potential as SDHI Antifungal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11938-11948. [PMID: 38752540 DOI: 10.1021/acs.jafc.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The pursuit of new succinate dehydrogenase (SDH) inhibitors is a leading edge in fungicide research and development. The use of 3D quantitative structure-activity relationship (3D-QSAR) models significantly enhances the development of compounds with potent antifungal properties. In this study, we leveraged the natural product coumarin as a molecular scaffold to synthesize 74 novel 3-coumarin hydrazide derivatives. Notably, compounds 4ap (0.28 μg/mL), 6ae (0.32 μg/mL), and 6ah (0.48 μg/mL) exhibited exceptional in vitro effectiveness against Rhizoctonia solani, outperforming the commonly used fungicide boscalid (0.52 μg/mL). Furthermore, compounds 4ak (0.88 μg/mL), 6ae (0.61 μg/mL), 6ah (0.65 μg/mL), and 6ak (1.11 μg/mL) showed significant activity against Colletotrichum orbiculare, surpassing both the SDHI fungicide boscalid (43.45 μg/mL) and the broad-spectrum fungicide carbendazim (2.15 μg/mL). Molecular docking studies and SDH enzyme assays indicate that compound 4ah may serve as a promising SDHI fungicide. Our ongoing research aims to refine this 3D-QSAR model further, enhance molecular design, and conduct additional bioactivity assays.
Collapse
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zihua Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang Yu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Teng
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojun Xu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zewen Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Xie Q, Zhang S, Zhang Y, Zhang B, Wan F, Li Y, Jiang L. Synthesis, fungicidal activity and molecular docking of novel pyrazole-carboxamides bearing a branched alkyl ether moiety. Bioorg Med Chem Lett 2024; 108:129813. [PMID: 38788964 DOI: 10.1016/j.bmcl.2024.129813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Succinate dehydrogenase inhibitors are essential fungicides used in agriculture. To explore new pyrazole-carboxamides with high fungicidal activity, a series of N-substitutedphenyl-3-di/trifluoromethyl-1-methyl-1H-pyrazole-4-carboxamides bearing a branched alkyl ether moiety were designed and synthesized. The in vitro bioassay indicated that some target compounds displayed appreciable fungicidal activity. For example, compounds 5d and 5e showed high efficacy against S. sclerotiorum with EC50 values of 3.26 and 1.52 μg/mL respectively, and also exhibited excellent efficacy against R. solani with EC50 values of 0.27 and 0.06 μg/mL respectively, which were comparable or superior to penflufen. The further in vivo bioassay on cucumber leaves demonstrated that 5e provided strong protective activity of 94.3 % against S. sclerotiorum at 100 μg/mL, comparable to penflufen (99.1 %). Cytotoxicity assessment against human renal cell lines (239A cell) revealed that 5e had low cytotoxicity within the median effective concentrations. Docking study of 5e with succinate dehydrogenase illustrated that R-5e formed one hydrogen bond and two π-π stacking interactions with amino acid residues of target enzyme, while S-5e formed only one π-π stacking interaction with amino acid residue. This study provides a valuable reference for the design of new succinate dehydrogenase inhibitor.
Collapse
Affiliation(s)
- Qingyang Xie
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| | - Shuai Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| | - Yuanhong Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| | - Bowen Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| | - Fuxian Wan
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| | - Ying Li
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| | - Lin Jiang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
12
|
Agili F. Novel Thiazole Derivatives Containing Imidazole and Furan Scaffold: Design, Synthesis, Molecular Docking, Antibacterial, and Antioxidant Evaluation. Molecules 2024; 29:1491. [PMID: 38611769 PMCID: PMC11013646 DOI: 10.3390/molecules29071491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Carbothioamides 3a,b were generated in high yield by reacting furan imidazolyl ketone 1 with N-arylthiosemicarbazide in EtOH with a catalytic amount of conc. HCl. The reaction of carbothioamides 3a,b with hydrazonyl chlorides 4a-c in EtOH with triethylamine at reflux produced 1,3-thiazole derivatives 6a-f. In a different approach, the 1,3-thiazole derivatives 6b and 6e were produced by reacting 3a and 3b with chloroacetone to afford 8a and 8b, respectively, followed by diazotization with 4-methylbenzenediazonium chloride. The thiourea derivatives 3a and 3b then reacted with ethyl chloroacetate in ethanol with AcONa at reflux to give the thiazolidinone derivatives 10a and 10b. The produced compounds were tested for antioxidant and antibacterial properties. Using phosphomolybdate, promising thiazoles 3a and 6a showed the best antioxidant activities at 1962.48 and 2007.67 µgAAE/g dry samples, respectively. Thiazoles 3a and 8a had the highest antibacterial activity against S. aureus and E. coli with 28, 25 and 27, 28 mm, respectively. Thiazoles 3a and 6d had the best activity against C. albicans with 26 mm and 37 mm, respectively. Thiazole 6c had the highest activity against A. niger, surpassing cyclohexamide. Most compounds demonstrated lower MIC values than neomycin against E. coli, S. aureus and C. albicans. A molecular docking study examined how antimicrobial compounds interact with DNA gyrase B crystal structures. The study found that all of the compounds had good binding energy to the enzymes and reacted similarly to the native inhibitor with the target DNA gyrase B enzymes' key amino acids.
Collapse
Affiliation(s)
- Fatimah Agili
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| |
Collapse
|
13
|
Yin YM, Sun ZY, Wang DW, Xi Z. Discovery of Benzothiazolylpyrazole-4-Carboxamides as Potent Succinate Dehydrogenase Inhibitors through Active Fragment Exchange and Link Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14471-14482. [PMID: 37775473 DOI: 10.1021/acs.jafc.3c03646] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Succinate dehydrogenase (SDH) is an attractive target for developing green fungicides to manage agricultural pathogens in modern agriculture research. Herein, in this work, we report the discovery of benzothiazolylpyrazole-4-carboxamides I-III as potent SDH inhibitors using active fragment exchange and link approach. The results of the fungicidal activity assays showed that some of the synthesized compounds exhibited excellent inhibition against the tested fungi. Systematic structure-activity relationship studies led to the discovery of compound Ip, N-(1-((4,6-difluorobenzo[d]thiazol-2-yl)thio)propan-2-yl)-3-(difluoromethyl)-N-methoxy-1-methyl-1H-pyrazole-4-carboxamide, which showed higher fungicidal activity against Fusarium graminearum Schw (EC50 = 0.93 μg/mL) than the commercial fungicides thifluzamide (EC50 > 50 μg/mL) and boscalid (EC50 > 50 μg/mL). The molecular simulation studies suggested that hydrophobic interactions were the primary driving forces between ligands and SDH. Promisingly, we found that Ip could stimulate the growth of wheat seedlings and Arabidopsis thaliana and increase the biomass of the treated plants. Preliminary studies on the plant growth promoter mechanism of Ip indicated that it could increase nitrate reductase activity in planta, that, in turn, stimulates the growth of plants.
Collapse
Affiliation(s)
- Yan-Ming Yin
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zong-Yue Sun
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
14
|
Li Z, Yang B, Ding Y, Zhou X, Fang Z, Liu S, Yang J, Yang S. Discovery of phosphonate derivatives containing different substituted 1,2,3-triazole motif as promising tobacco mosaic virus (TMV) helicase inhibitors for controlling plant viral diseases. PEST MANAGEMENT SCIENCE 2023; 79:3979-3992. [PMID: 37271938 DOI: 10.1002/ps.7592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The discovery and identification of targets is of far-reaching significance for developing novel pesticide candidates and increasing the probability of success. To explore and identify highly effective tobacco mosaic virus (TMV) helicase-targeted lead structures, a series of novel phosphonate derivatives containing a 1,2,3-triazole motif were rationally engineered and their antiviral activity was assessed. RESULTS Bioassay results showed that the optimized B17 exhibited more potent curative activity (EC50 = 271.5 μg mL-1 ) against TMV in vivo, which was superior to that of commercial Ribavirin (EC50 = 689.3 μg mL-1 ). B17 presented a stronger binding capacity through binding analysis with helicase, affording a corresponding value of 12.7 μM. Enzyme activity assay showed B17 exhibited excellent inhibitory activity on TMV helicase (39.2% at 300 μM). Furthermore, molecular docking simulations demonstrated that B17 displayed strong hydrogen-bond interactions (2.1, 2.1, 2.2, and 3.2 Å) with Ala-33, Gly-10, Gly-8, and Glu-217 of TMV helicase. Encouragingly, transmission electron microscopy analysis revealed that B17 could remarkably disrupt surface morphology and inhibit TMV proliferation. Additionally, these compounds also displayed potential anti-CMV (cucumber mosaic virus) and antipathogens (Xanthomonas oryzae pv. oryzae and Xanthomonas axonopodis pv. citri) by expanding their applications in agriculture. CONCLUSION Current research demonstrated that B17 could be considered as a potential antiviral agent alternative though targeting TMV helicase. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenxing Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Binxin Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Yue Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Zimian Fang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - ShuaiShuai Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Jie Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
15
|
Yang C, Sun S, Li W, Mao Y, Wang Q, Duan Y, Csuk R, Li S. Bioactivity-Guided Subtraction of MIQOX for Easily Available Isoquinoline Hydrazides as Novel Antifungal Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11341-11349. [PMID: 37462275 DOI: 10.1021/acs.jafc.3c02096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The discovery of novel and easily available leads provides a convincing solution to agrochemical innovation. A bioassay-guided scaffold subtraction of the previous "Chem-Bio Model" isoquinoline-3-oxazoline MIQOX was conducted for identifying the easily available isoquinoline-3-hydrazide as a novel antifungal scaffold. The special and practical potential of this model was demonstrated by a phenotypic antifungal bioassay, molecular docking, and cross-resistance evaluation. A panel of antifungal leads (LW2, LW3, and LW11) was acquired, showing much better antifungal performance than the positive controls. Specifically, compound LW3 exhibited a broad antifungal spectrum holding EC50 values as low as 0.54, 0.09, 1.52, and 2.65 mg/L against B. cinerea, R. solani, S. sclerotiorum , and F. graminearum, respectively. It demonstrated a curative efficacy better than that of boscalid in controlling the plant disease caused by B. cinerea. The candidate LW3 did not show cross-resistance to the extensively used succinate dehydrogenase inhibitor (SDHI) fungicides and can efficiently inhibit resistant B. cinerea strains. The molecular docking of compound LW3 is quite different from that of the positive controls boscalid and fluopyram. This progress highlights the practicality of isoquinoline hydrazide as a novel model in fungicide innovation.
Collapse
Affiliation(s)
- Chen Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengxin Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wei Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Yushuai Mao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Qiao Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Yabing Duan
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, Halle (Saale) D-06120, Germany
| | - Shengkun Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
16
|
Zhou F, Cui YX, Zhou YD, Duan ST, Wang ZY, Xia ZH, Hu HY, Liu RQ, Li CW. Baseline Pydiflumetofen Sensitivity of Fusarium pseudograminearum Isolates Collected from Henan, China, and Potential Resistance Mechanisms. PLANT DISEASE 2023; 107:2417-2423. [PMID: 36691280 DOI: 10.1094/pdis-08-22-1852-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fusarium crown rot (FCR), caused by Fusarium pseudograminearum, is one of the most important diseases impacting wheat production in the Huanghuai region, the most important wheat-growing region of China. The current study found that the SDHI fungicide pydiflumetofen, which was recently developed by Syngenta Crop Protection, provided effective control of 67 wild-type F. pseudograminearum isolates in potato dextrose agar, with an average EC50 value of 0.060 ± 0.0098 μg/ml (SE). Further investigation revealed that the risk of fungicide resistance in pydiflumetofen was medium to high. Four F. pseudograminearum mutants generated by repeated exposure to pydiflumetofen under laboratory conditions indicated that pydiflumetofen resistance was associated with fitness penalties. Mutants exhibited significantly (P < 0.05) reduced sporulation in mung bean broth and significantly (P < 0.05) reduced pathogenicity in wheat seedlings. Sequence analysis indicated that the observed pydiflumetofen resistance of the mutants was likely associated with amino acid changes in the different subunits of the succinate dehydrogenase target protein, including R18L and V160M substitutions in the FpSdhA sequence; D69V, D147G, and C257R in FpSdhB; and W78R in FpSdhC. This study found no evidence of cross-resistance between pydiflumetofen and the alternative fungicides tebuconazole, fludioxonil, carbendazim, or fluazinam, which all have distinct modes of action and could therefore be used in combination or rotation with pydiflumetofen to reduce the risk of resistance emerging in the field. Taken together, these results indicate that pydiflumetofen has potential as a novel fungicide for the control of FCR caused by F. pseudograminearum and could therefore be of great significance in ensuring high and stable wheat yields in China.
Collapse
Affiliation(s)
- Feng Zhou
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Ye-Xian Cui
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yu-Dong Zhou
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Si-Tong Duan
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zi-Yi Wang
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhi-Hao Xia
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hai-Yan Hu
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Run-Qiang Liu
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Cheng-Wei Li
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
17
|
Li M, Wang W, Cheng X, Wang Y, Chen Y, Gong J, Chang X, Lv X. Design, Synthesis, and Evaluation of Antifungal Bioactivity of Novel Pyrazole Carboxamide Thiazole Derivatives as SDH Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37463492 DOI: 10.1021/acs.jafc.3c02671] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Agricultural production is seriously threatened by plant pathogens. The development of new fungicides with high efficacy and low toxicity is urgently needed. In this study, a series of pyrazole carboxamide thiazole derivatives were designed, synthesized, and evaluated for their antifungal activities against nine plant pathogens in vitro. Bioassay results showed that most compounds (3i, 5i, 6i, 7i, 9i, 12i, 16i, 19i, and 23i) exhibited good antifungal activities against Valsa mali. In particular, compounds 6i and 19i exhibited better antifungal activities against Valsa mali with EC50 values of 1.77 and 1.97 mg/L, respectively, than the control drug boscalid (EC50 = 9.19 mg/L). Additionally, compound 23i exhibited excellent inhibitory activity against Rhizoctonia solani, with an EC50 value of 3.79 mg/L. Compound 6i at 40 mg/L showed a satisfactory in vivo protective effect against Valsa mali. Scanning electron microscopy analyses revealed that compound 6i could significantly damage the surface morphology to interfere with the growth of Valsa mali. In molecular docking, the results showed that compound 6i interacts with TRP O: 173, SER P: 39, TYR Q: 58, and ARG P: 43 of succinate dehydrogenase (SDH) through hydrogen bonding and σ-π interaction, and its binding mode is similar to that of boscalid and SDH. The enzyme activity experiment also further verified its action mode. Our studies suggested that pyrazole carboxamide thiazole derivative 6i provided a valuable reference for the further development of succinate dehydrogenase inhibitors.
Collapse
Affiliation(s)
- Meng Li
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Weiwei Wang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiang Cheng
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Yunxiao Wang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Yao Chen
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Jiexiu Gong
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xihao Chang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
18
|
Marek L, Váňa J, Svoboda J, Hanusek J. Eschenmoser coupling reactions starting from primary thioamides. When do they work and when not? Beilstein J Org Chem 2023; 19:808-819. [PMID: 37346496 PMCID: PMC10280059 DOI: 10.3762/bjoc.19.61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Reactions of thiobenzamide or thioacetamide with 4-bromo-1,1-dimethyl-1,4-dihydroisoquinoline-3(2H)-one, 4-bromoisoquinoline-1,3(2H,4H)-dione and two α-bromo(phenyl)acetamides were examined under various conditions (base, solvent, thiophile, temperature) and structure/medium features that influence product distribution (Eschenmoser coupling reaction, Hantzsch thiazole synthesis and elimination to nitriles) were identified. The key factor that enables the successful Eschenmoser coupling reaction involves the optimum balance in acidity of nitrogen and carbon atoms of the intermediary α-thioiminium salts.
Collapse
Affiliation(s)
- Lukáš Marek
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ532 10 Pardubice, Czech Republic
| | - Jiří Váňa
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ532 10 Pardubice, Czech Republic
| | - Jan Svoboda
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ532 10 Pardubice, Czech Republic
| | - Jiří Hanusek
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ532 10 Pardubice, Czech Republic
| |
Collapse
|
19
|
Zhang C, Zhao C, Zheng H, Li L, Zheng Y, Wu Z. Design, Synthesis, and Study of the Dual Action Mode of Novel N-Thienyl-1,5-disubstituted-4-pyrazole Carboxamides against Nigrospora oryzae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7210-7220. [PMID: 37141153 DOI: 10.1021/acs.jafc.3c00269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Due to the single target but extensive application of commercialized succinate dehydrogenase inhibitors (SDHIs), resistance problems have gradually become apparent in recent years. To solve this problem, a series of novel N-thienyl-1,5-disubstituted-1H-4-pyrazole carboxamide derivatives were designed and synthesized in this work based on the active skeleton 5-trifluoromethyl-4-pyrazole carboxamide. The bioassay results indicated that some target compounds exhibited excellent in vitro antifungal activities against the eight phytopathogenic fungi tested. Among them, the EC50 values of T4, T6, and T9 against Nigrospora oryzae were 5.8, 1.9, and 5.5 mg/L, respectively. The in vivo protective and curative activities of 40 mg/L T6 against rice infected with N. oryzae were 81.5% and 43.0%, respectively. Further studies revealed that T6 not only significantly inhibited the growth of N. oryzae mycelia but also effectively hindered spore germination and germ tube elongation. Morphological studies using scanning electron microscopy (SEM), fluorescence microscopy (FM), and transmission electron microscopy (TEM) found that T6 could affect the mycelium membrane integrity by increasing cell membrane permeability and causing peroxidation of cellular lipids, and these results were further verified by measuring the malondialdehyde (MDA) content. The IC50 value of T6 against succinate dehydrogenase (SDH) was 7.2 mg/L, lower than that of the commercialized SDHI penthiopyrad (3.4 mg/L). Further, ATP content detection and the results after docking T6 and penthiopyrad suggested that T6 was a potential SDHI. These studies demonstrated that active compound T6 could both inhibit the activity of SDH and affect the integrity of the cell membrane at the same time via a dual action mode, which is different from the mode of action of penthiopyrad. Thus, this study provides a new idea for a strategy to delay resistance and diversify the structures of SDHIs.
Collapse
Affiliation(s)
- Chengzhi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Cailong Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Huanlin Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Longju Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Ya Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhibing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
20
|
Bharath kumar M, Hariprasad V, Joshi SD, Jayaprakash GK, L. P, Pani AS, Babu DD, Naik P. Bis(azolyl)pyridine‐2,6‐dicarboxamide Derivatives: Synthesis, Bioassay Analysis and Molecular Docking Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202204927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
21
|
Zhang YH, Yang SS, Zhang Q, Zhang TT, Zhang TY, Zhou BH, Zhou L. Discovery of N-Phenylpropiolamide as a Novel Succinate Dehydrogenase Inhibitor Scaffold with Broad-Spectrum Antifungal Activity on Phytopathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3681-3693. [PMID: 36790098 DOI: 10.1021/acs.jafc.2c07712] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Based on the structural features of both succinate dehydrogenase inhibitors (SDHIs) and targeted covalent inhibitors, a series of N-phenylpropiolamides containing a Michael acceptor moiety were designed to find new antifungal compounds. Nineteen compounds showed potent inhibition activity in vitro on nine species of plant pathogenic fungi. Compounds 9 and 13 showed higher activity on most of the fungi than the standard drug azoxystrobin. Compound 13 could completely inhibit Physalospora piricola infection on apples at 200 μg/mL concentration over 7 days and showed high safety to seed germination and seedling growth of plants at ≤100 μg/mL concentration. The action mechanism showed that 13 is an SDH inhibitor with a median inhibitory concentration, IC50, value of 0.55 μg/mL, comparable with that of the positive drug boscalid. Molecular docking studies revealed that 13 can bind well to the ubiquinone-binding region of SDH by hydrogen bonds and undergoes π-alkyl interaction and π-cation interaction. At the cellular level, 1 as the parent compound could destruct the mycelial structure of P. piricola and partly dissolve the cell wall and/or membrane. Structure-activity relationship analysis showed that the acetenyl group should be a structure determinant for the activity, and the substitution pattern of the phenyl ring can significantly impact the activity. Thus, N-phenylpropiolamide emerged as a novel and promising lead scaffold for the development of new SDHIs for plant protection.
Collapse
Affiliation(s)
- Yu-Hao Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| | - Shan-Shan Yang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
- Taizhou Polytechnic College, 8 Tianxing Road, Taizhou, 225300 Jiangsu, China
| | - Qi Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| | - Tian-Tian Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| | - Tian-Yi Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| | - Bo-Hang Zhou
- Bio-Agriculture Institute of Shaanxi, Xi'an, 710043 Shaanxi, China
| | - Le Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| |
Collapse
|
22
|
Li H, Liu Z, Dong Y, Wang YX, Zhu XL. Design, Synthesis, and Fungicidal Evaluation of Novel N-Methoxy Pyrazole-4-Carboxamides as Potent Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2610-2615. [PMID: 36696251 DOI: 10.1021/acs.jafc.2c07031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Succinate dehydrogenase (SDH, EC 1.3.5.1, also known as complex II) has been recognized as one of the most promising targets of fungicides. Here, based on the binding mode of pydiflumetofen with SDH, the carbon-carbon double bond was introduced into the chemical of pydiflumetofen and then produced the target compounds 6a-6o. The enzymatic inhibitory activity and structure-activity relationship (SAR) study showed that the 2-position and 4-position in terminal benzene were positive to increasing activity. Furthermore, fungicidal activity results in greenhouses indicated that compound 6o showed good control effects against wheat powdery mildew (WPM), cucumber powdery mildew (CPM), and southern corn rust (SCR), showing its broad-spectrum property. Especially, compound 6o exhibited 95 and 75% control effects against CPM and SCR at 6.25 mg/L, respectively, which are better than pydiflumetofen (80% control effects against CPM and 15% against SCR), indicating its potency that is worthy of further development.
Collapse
Affiliation(s)
- Hua Li
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan 455000, P.R. China
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Zheng Liu
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Ying Dong
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Yu-Xia Wang
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
23
|
Yang Z, Sun X, Jin D, Qiu Y, Chen L, Sun L, Gu W. Novel Camphor Sulfonohydrazide and Sulfonamide Derivatives as Potential Succinate Dehydrogenase Inhibitors against Phytopathogenic Fungi/Oomycetes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:174-185. [PMID: 36562624 DOI: 10.1021/acs.jafc.2c05628] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To discover novel fungicidal agrochemicals for treating wheat scab, 39 novel camphor sulfonohydrazide/sulfonamide derivatives 4a-4t and 6a-6s were designed and synthesized. In the in vitro antifungal/antioomycete assay, compounds 4g, 4n, and 4o displayed significant inhibitory activities against Fusarium graminearum, Botryosphaeria dothidea, and Phytophthora capsici. Among them, 4n exhibited the best antifungal activity against F. graminearum with an EC50 value of 0.41 mg/L, which was at the same level as that of pydiflumetofen. The in vivo experiment revealed that 4n presented excellent protective and curative efficacy toward F. graminearum. In the antifungal mechanism study, 4n could increase the cell membrane permeability and reduce the exopolysaccharide and ergosterol content of F. graminearum. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed that 4n could significantly damage the surface morphology and the cell ultrastructure of mycelia to interfere with the growth of F. graminearum. Furthermore, 4n exhibited potent succinate dehydrogenase (SDH) inhibitory activity in vitro with an IC50 value of 3.94 μM, which was equipotent to pydiflumetofen (IC50 = 4.07 μM). The molecular dynamics simulation and docking study suggested that compound 4n could well occupy the active site and form strong interactions with the key residues of SDH. The above-mentioned results demonstrated that the title camphor sulfonohydrazide/sulfonamide derivatives could be promising lead compounds for further succinate dehydrogenase inhibitor (SDHI) fungicide development.
Collapse
Affiliation(s)
- Zihui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuebao Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Daojun Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yigui Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Linlin Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wen Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
24
|
Design, Synthesis, Fungicidal and Insecticidal Activities of Novel Diamide Compounds Combining Pyrazolyl and Polyfluoro-Substituted Phenyl into Alanine or 2-Aminobutyric Acid Skeletons. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020561. [PMID: 36677619 PMCID: PMC9861274 DOI: 10.3390/molecules28020561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023]
Abstract
Thirty novel diamide compounds combining pyrazolyl and polyfluoro-substituted phenyl groups into alanine or 2-aminobutyric acid skeletons were designed and synthesized with pyflubumide as the lead compound to develop potent and environmentally friendly pesticides. The preliminary bioassay results indicated that the new compounds containing the para-hexa/heptafluoroisopropylphenyl moiety exhibit fungicidal, insecticidal, and acaricidal activities. This is the first time that the para-hexa/heptafluoroisopropylphenyl group is a key fragment of the fungicidal activity of new N-phenyl amide compounds. Most of the target compounds exhibited moderate to good insecticidal activity against Aphis craccivora at a concentration of 400 μg/mL, and some showed moderate activity at a concentration of 200 μg/mL; in particular, compounds I-4, II-a-10, and III-26 displayed higher than 78% lethal rates at 200 μg/mL. Compound II-a-14 exhibited a 61.1% inhibition at 200 μg/mL for Tetranychus cinnabarinus. In addition, some of the target compounds exhibited good insecticidal activities against Plutella xylostella at a concentration of 200 μg/mL; the mortalities of compounds I-1, and II-a-15 were 76.7% and 70.0%, respectively. Preliminary analysis of the structure-activity relationship (SAR) indicated that the insecticidal and acaricidal activities varied significantly depending on the type of substituent and substitution pattern. The fungicidal activity results showed that compounds I-1, II-a-10, II-a-17, and III-26 exhibited good antifungal effects. Enzymatic activity experiments and in vivo efficacy of compound II-a-10 were conducted and discussed.
Collapse
|
25
|
Yan Y, Li M, Shi Q, Huang M, Li W, Cao L, Zhang X. Atropoenantioselective Arylation of 5‐Amino‐Isothiazoles with Methyl
p
‐Quinone Carboxylate. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yingkun Yan
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Min Li
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Quan Shi
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
| | - Min Huang
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenzhe Li
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lianyi Cao
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaomei Zhang
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
| |
Collapse
|
26
|
Li M, Xia D, Wang Y, Cheng X, Gong J, Chen Y, Lü X. Design, Synthesis and Antifungal Bioactivity Evaluation of Thiazole Benzoate Derivatives. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
27
|
Zhou F, Zhou HH, Han AH, Guo KY, Liu TC, Wu YB, Hu HY, Li CW. Mechanism of Pydiflumetofen Resistance in Fusarium graminearum in China. J Fungi (Basel) 2022; 9:jof9010062. [PMID: 36675883 PMCID: PMC9866472 DOI: 10.3390/jof9010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Fusarium head blight (FHB), which is primarily caused by Fusarium graminearum, is a widespread and devastating disease of wheat. In the absence of resistant varieties, the control of FHB relies heavily on the application of fungicides, and the new generation SDHI fungicide, pydiflumetofen, has recently been registered in China for the control of FHB in wheat. The current study explored three genetically stable, highly resistant laboratory mutants (S2-4-2R, S27-3R, and S28-2R, with EC50 values of 25.10, 28.57, and 19.22 μg/mL, respectively) to investigate the potential risks associated with pydiflumetofen resistance. Although the mycelial growth of the mutants differed little compared to their parental isolates, the study found that the resistant mutants exhibited significantly reduced (p < 0.05) levels of sporulation and pathogenicity, which suggests a significant fitness cost associated with pydiflumetofen resistance in F. graminearum. Sequence analysis of the Sdh target protein identified numerous amino acid substitutions in the predicted sequences of the four subunits: FgSdhA, FgSdhB, FgSdhC, and FgSdhD. Indeed, the mutants were found to have a series of substitution in multiple subunits such that all three exhibited five identical changes, including Y182F in the FgSdhA subunit; H53Q, C90S, and A94V in FgSdhB; and S31F in FgSdhC. In addition, gene expression analysis revealed that all of the FgSdh genes had significantly altered expression (p < 0.05), particularly FgSdhA and FgdhC, which exhibited remarkably low levels of expression. However, the study found no evidence of cross-resistance between pydiflumetofen and tebuconazole, fludioxonil, prochloraz, fluazinam, carbendazim, pyraclostrobin, or difenoconazole, which indicates that these fungicides, either in rotation or combination with pydiflumetofen, could mitigate the risk of resistance emerging and provide ongoing control of FHB to ensure high and stable wheat yields.
Collapse
Affiliation(s)
- Feng Zhou
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Huan-Huan Zhou
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Ao-Hui Han
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Kou-Yun Guo
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Tian-Cheng Liu
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yan-Bing Wu
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Correspondence: (Y.-B.W.); (H.-Y.H.); (C.-W.L.)
| | - Hai-Yan Hu
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
- Correspondence: (Y.-B.W.); (H.-Y.H.); (C.-W.L.)
| | - Cheng-Wei Li
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Correspondence: (Y.-B.W.); (H.-Y.H.); (C.-W.L.)
| |
Collapse
|
28
|
Novel aromatic carboxamides from dehydroabietylamine as potential fungicides: Design, synthesis and antifungal evaluation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Yang Z, Sun X, Jin D, Qiu Y, Wang S, Gu W. Synthesis and antifungal/anti-oomycete activity of novel camphor-based sulfonate derivatives as potential SDH inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
30
|
Cheng X, Xu Z, Luo H, Chang X, Lv X. Design, Synthesis, and Biological Evaluation of Novel Pyrazol-5-yl-benzamide Derivatives Containing Oxazole Group as Potential Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13839-13848. [PMID: 36270026 DOI: 10.1021/acs.jafc.2c04708] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A series of pyrazol-5-yl-benzamide derivatives containing the oxazole group were designed and synthesized as potential SDH inhibitors. According to the results of the bioassays, most target compounds displayed moderate-to-excellent in vitro antifungal activities against Valsa mali, Sclerotinia scleotiorum, Alternaria alternata, and Botrytis cinerea. Among them, compounds C13, C14, and C16 exhibited more excellently inhibitory activities against S. sclerotiorum than boscalid (EC50 = 0.96 mg/L), with EC50 values of 0.69, 0.26, and 0.95 mg/L, respectively. In vivo experiments on rape leaves and cucumber leaves showed that compounds C13 and C14 exhibited considerable protective effects against S. sclerotiorum than boscalid. SEM analysis indicated that compounds C13 and C14 significantly destroyed the typical structure and morphology of S. scleotiorum hyphae. In the respiratory inhibition effect assays, compounds C13 (28.0%) and C14 (33.9%) exhibited a strong inhibitory effect on the respiration rate of S. sclerotiorum mycelia, which was close to boscalid (30.6%). The results of molecular docking indicated that compounds C13 and C14 could form strong interactions with the key residues TRP O:173, ARG P:43, TYR Q:58, and MET P:43 of the SDH. Furthermore, the antifungal mechanism of these derivatives was demonstrated by the SDH enzymatic inhibition assay. These results demonstrate that compounds C13 and C14 can be developed into novel SDH inhibitors for crop protection.
Collapse
Affiliation(s)
- Xiang Cheng
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Zonghan Xu
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Huisheng Luo
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xihao Chang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
31
|
Zhao Y, Zhang A, Wang X, Tao K, Jin H, Hou T. Novel Pyrazole Carboxamide Containing a Diarylamine Scaffold Potentially Targeting Fungal Succinate Dehydrogenase: Antifungal Activity and Mechanism of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13464-13472. [PMID: 36250688 DOI: 10.1021/acs.jafc.2c00748] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Succinate dehydrogenase (SDH) is known as an ideal target for the development of novel fungicides. Over the years, a series of novel pyrazole carboxamides containing a diarylamine scaffold have been reported as potent SDH inhibitors (SDHIs) in our laboratory. Among them, compound SCU3038 (EC50 = 0.016 mg/L) against in vitro Rhizoctonia solani was better than fluxapyroxad (EC50 = 0.033 mg/L). However, its mechanism of action is still unclear. In this paper, in pot tests, bioactivity evaluation indicated that in vivo antifungal activity of compound SCU3038 (EC50 = 0.95 mg/L) against R. solani was better than that of fluxapyroxad (EC50 = 2.29 mg/L) and thifluzamide (EC50 = 1.88 mg/L). In field trials, control efficacy of compound SCU3038 (74.10%) at 200 g ai/ha against rice sheath blight was better than that of thifluzamide (71.40%). Furthermore, target evaluation showed that compound SCU3038 could inhibit the fungal SDH from R. solani and fix in the binding site of SDH by molecular docking, thereby it could dissolve and reduce mitochondria of R. solani as observed by electron microscopy. In addition, transcriptome results showed that compound SCU3038 affected the TCA cycle pathway in mitochondria, and this was manifested in the downregulation of eight genes and upregulation of one gene. The most important phenomenon was the repressed expression of SDH2 confirmed by qRT-PCR. It was observed that compound SCU3038 was a potent SDHI, and these results afforded further research on pyrazole carboxamides.
Collapse
Affiliation(s)
- Yongtian Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
- College of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou 558000, China
| | - Aigui Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xinge Wang
- College of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou 558000, China
| | - Ke Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hong Jin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Taiping Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
32
|
Meng F, Yan Z, Lu Y, Wang X. Design, synthesis, and antifungal activity of flavonoid derivatives containing thiazole moiety. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Singh A, Malhotra D, Singh K, Chadha R, Bedi PMS. Thiazole derivatives in medicinal chemistry: Recent advancements in synthetic strategies, structure activity relationship and pharmacological outcomes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Liu S, Ma J, Jiang B, Yang G, Guo M. Functional characterization of MoSdhB in conferring resistance to pydiflumetofen in blast fungus Magnaporthe oryzae. PEST MANAGEMENT SCIENCE 2022; 78:4018-4027. [PMID: 35645253 DOI: 10.1002/ps.7020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/16/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Rice (Oryza sativa) is an important cereal crop around the world, and has constantly been threaten by the most destructive fungus Magnaporthe oryzae. Pydiflumetofen, a novel succinate dehydrogenase inhibitor (SDHI), is currently being used for controlling various fungal diseases. However, the potential resistance risk of M. oryzae to pydiflumetofen has remained unclear to date, and finding the resistance mechanism is critical for the usage of this fungicide. RESULTS The M. oryzae strain Guy11 is sensitive to pydiflumetofen, with EC50 value of 1.24 μg mL-1 . 58 pydiflumetofen-resistant (PR) mutants were obtained through pydiflumetofen-induced spontaneous mutation, with a mean EC50 value >500 μg mL -1 , and the resistance factor (RF) >400. The PR mutants displayed positive cross-resistance to carboxin, but were more sensitive to fluopyram. Sequencing analysis showed that all PR mutants presented a cytosine-to-thymine transition at nucleotide position +1218, resulting in a replacement of histidine 245 by tyrosine (H245Y) on MoSdhB. The mutation of MoSdhB exhibited strong resistant phenotype, but no detectable growth deficits in fungal development, including vegetative growth and pathogenicity of M. oryzae. An allele-specific PCR for rapid detection of the H245Y mutants was established in M. oryzae. CONCLUSION The M. oryzae is sensitive to pydiflumetofen, and shows a medium to high resistance risk to pydiflumetofen. A point mutation of MoSdhB (H245Y) is responsible for the fungal resistance to pydiflumetofen in M. oryzae. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiyi Liu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ji Ma
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Bingxin Jiang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Guogen Yang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Min Guo
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
35
|
Synthesis and Anti‐Fungal/Oomycete Activity of Novel Sulfonamide Derivatives Containing Camphor Scaffold. Chem Biodivers 2022; 19:e202200608. [DOI: 10.1002/cbdv.202200608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/25/2022] [Indexed: 11/07/2022]
|
36
|
Yan Z, Yang Z, Qiu L, Chen Y, Li A, Chang T, Niu X, Zhu J, Wu S, Jin F. Discovery of novel pyridine carboxamides with antifungal activity as potential succinate dehydrogenase inhibitors. JOURNAL OF PESTICIDE SCIENCE 2022; 47:118-124. [PMID: 36479455 PMCID: PMC9706280 DOI: 10.1584/jpestics.d22-017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 06/17/2023]
Abstract
Fifteen novel pyridine carboxamide derivatives bearing a diarylamine-modified scaffold were designed, synthesized, and their antifungal activity was evaluated. Preliminary bioassay results showed that some of the synthesized compounds exhibited moderate to good in vitro antifungal activity. Further, compound 6-chloro-N-(2-(phenylamino)phenyl)nicotinamide (3f) displayed good in vivo antifungal activity against Botrytis cinerea. The enzymatic test on B. cinerea succinate dehydrogenase (SDH) showed that the inhibitory activity possessed by compound 3f equally matches that of thifluzamide. Molecular docking results demonstrated that compound 3f could commendably dock with the active site of SDH via stable hydrogen bonds and hydrophobic interactions, suggesting the possible binding modes of the title compounds with SDH. The results above revealed that the target compounds would be the leading fungicide compound for further investigation.
Collapse
Affiliation(s)
- Zhongzhong Yan
- Medical College, Anhui University of Science and Technology
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology
| | | | - Longjian Qiu
- Medical College, Anhui University of Science and Technology
| | - Yan Chen
- Medical College, Anhui University of Science and Technology
| | - Aijun Li
- Medical College, Anhui University of Science and Technology
| | - Taopeng Chang
- Medical College, Anhui University of Science and Technology
| | - Xinzhe Niu
- Medical College, Anhui University of Science and Technology
| | - Jingyan Zhu
- Medical College, Anhui University of Science and Technology
| | - Shihao Wu
- Medical College, Anhui University of Science and Technology
| | - Feng Jin
- Medical College, Anhui University of Science and Technology
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology
| |
Collapse
|
37
|
Wang Y, Kou S, Huo J, Sun S, Wang Y, Yang H, Zhao S, Tang L, Han L, Zhang J, Chen L. Design, Synthesis, and Evaluation of Novel 4-Chloropyrazole-Based Pyridines as Potent Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9327-9336. [PMID: 35856648 DOI: 10.1021/acs.jafc.2c02350] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A rational molecular design approach was developed in our laboratory to guide the discovery of novel sterol biosynthesis inhibitors. Based on the application of bioactivities of heterocyclic rings and molecular docking targeting the sterol biosynthesis 14α-demethylase, a series of 4-chloropyrazole-based pyridine derivatives were rationally designed, synthesized, and characterized and their fungicidal activities were also evaluated. Bioassay results showed that 7e, 7f, and 7m exhibited commendable, diverse antifungal actions that are comparable to those of the positive controls imazalil and triadimefon. The active compounds' mode of action was further studied by microscopy observations, Q-PCR, and enzyme inhibition assay and discovered that target compounds affect fungal sterol biosynthesis via disturbing RcCYP51 enzyme system. These findings support that their fungicidal mode of action still targets the cytochrome P450-dependent 14α-demethylase as the molecular design did at first. The above results strongly suggest that our rational molecular design protocol is not only practical but also efficient.
Collapse
Affiliation(s)
- Ying Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Song Kou
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Susu Sun
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Yanen Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Hongwei Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Shiyong Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lijun Han
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
- Biological Control Center of Plant Diseases and Plant Pests of Hebei Province, Baoding 071001, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|
38
|
Wang B, He B, Chen T, Li H, Chen L, Chen Y, Tian K, Yang K, Shen D, Yan W, Ye Y. Discovery of Tropolone Stipitaldehyde as a Potential Agent for Controlling Phytophthora Blight and Its Action Mechanism Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8693-8703. [PMID: 35793537 DOI: 10.1021/acs.jafc.2c03163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fermentation of endophytic Nigrospora chinensis GGY-3 resulted in the isolation of tropolone stipitaldehyde (1), which exhibited broad-spectrum inhibition activity against fungi and bacteria, especially against Phytophthora capsici, with an EC50 value of 0.83 μg/mL and Xanthomonas oryzae pv. oryzicola, with a minimum inhibitory concentration value of 4.0 μg/mL. The in vitro and in vivo assays demonstrated that 1 had a significant protective effect on P. capsici. Furthermore, 1 inhibited the spore germination of P. capsici and damaged the plasma membrane structure. As observed by SEM and TEM, after exposure to 1, mycelia exhibited swelling, shrunken, branch-increasing phenomena, cell wall and membrane damage, and disordered content. Transcriptome analysis revealed that 1 might affect starch and sucrose metabolism and fatty acid biosynthesis by suppressing the expression of genes relevant to cell wall synthetases and cell membrane-associated genes. These findings indicate that 1 may be a potential agrochemical fungicide for controlling phytophthora blight.
Collapse
Affiliation(s)
- Biao Wang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Bo He
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Tianyu Chen
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Hao Li
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Liyifan Chen
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Yiliang Chen
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Kailin Tian
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Kun Yang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Danyu Shen
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Wei Yan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572000, P. R. China
| | - Yonghao Ye
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572000, P. R. China
| |
Collapse
|
39
|
Wram CL, Hesse CN, Zasada IA. Transcriptional changes of biochemical pathways in Meloidogyne incognita in response to non-fumigant nematicides. Sci Rep 2022; 12:9875. [PMID: 35701527 PMCID: PMC9197979 DOI: 10.1038/s41598-022-14091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/17/2022] [Indexed: 11/09/2022] Open
Abstract
Meloidogyne incognita is a destructive and economically important agricultural pest. Similar to other plant-parasitic nematodes, management of M. incognita relies heavily on chemical controls. As old, broad spectrum, and toxic nematicides leave the market, replacements have entered including fluensulfone, fluazaindolizine, and fluopyram that are plant-parasitic nematode specific in target and less toxic to applicators. However, there is limited research into their modes-of-action and other off-target cellular effects caused by these nematicides in plant-parasitic nematodes. This study aimed to broaden the knowledge about these new nematicides by examining the transcriptional changes in M. incognita second-stage juveniles (J2) after 24-h exposure to fluensulfone, fluazaindolizine, and fluopyram as well as oxamyl, an older non-fumigant nematicide. Total RNA was extracted and sequenced using Illumina HiSeq to investigate transcriptional changes in the citric acid cycle, the glyoxylate pathway, [Formula: see text]-fatty acid oxidation pathway, oxidative phosphorylation, and acetylcholine neuron components. Observed transcriptional changes in M. incognita exposed to fluopyram and oxamyl corresponded to their respective modes-of-action. Potential targets for fluensulfone and fluazaindolizine were identified in the [Formula: see text]-fatty acid oxidation pathway and 2-oxoglutarate dehydrogenase of the citric acid cycle, respectively. This study provides a foundation for understanding how potential nematicide resistance could develop, identifies cellular pathways as potential nematicide targets, and determines targets for confirming unknown modes-of-action.
Collapse
Affiliation(s)
- Catherine L Wram
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Cedar N Hesse
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, 97330, USA
| | - Inga A Zasada
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, 97330, USA
| |
Collapse
|
40
|
Wang W, Liu XJ, Lin GT, Wu JP, Xu G, Xu D. Novel N-(1H-Pyrazol-5-yl)nicotinamide Derivatives: Design, Synthesis and Antifungal Activity. Chem Biodivers 2022; 19:e202101032. [PMID: 35275425 DOI: 10.1002/cbdv.202101032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/11/2022] [Indexed: 11/03/2022]
Abstract
To discover more effective antifungal agents, twenty N-(1H-pyrazol-5-yl)nicotinamide derivatives were designed, synthesized, and structurally confirmed by 1 H-NMR, 13 C-NMR, and ESI-MS. All target compounds were evaluated for their antifungal activities by mycelia growth inhibition. Preliminary screening results displayed that many of these compounds had good fungicidal activity to S. sclerotiorum and V. mali. Compound B4 exhibited antifungal activity against S. sclerotiorum and V. mali with EC50 values of 10.35 and 17.01 mg/L, respectively. The experiment in vivo identified that compound B4 was effective for suppressing rape sclerotinia rot caused by S. sclerotiorum at 50 mg/L. The molecular docking study and scanning electron microscopy preliminary clarified the possible antifungal mechanism of compound B4.
Collapse
Affiliation(s)
- Wei Wang
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiang-Jia Liu
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guo-Tai Lin
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ji-Peng Wu
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gong Xu
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China.,College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
41
|
Al-Otaibi JS, Costa RA, Costa EV, Tananta VL, Mary YS, Mary YS. Insights into solvation, chemical reactivity, structural, vibrational and anti-hypertensive properties of a thiazolopyrimidine derivative by DFT and MD simulations. Struct Chem 2022. [DOI: 10.1007/s11224-022-01931-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Zhu JJ, Wang PY, Long ZQ, Xiang SZ, Zhang JR, Li ZX, Wu YY, Shao WB, Zhou X, Liu LW, Yang S. Design, Synthesis, and Biological Profiles of Novel 1,3,4-Oxadiazole-2-carbohydrazides with Molecular Diversity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2825-2838. [PMID: 35201749 DOI: 10.1021/acs.jafc.1c07190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To unceasingly expand the molecular diversity of 1,3,4-oxadiazole-2-carbohydrazides, herein, small fragments (including -CH2-, -OCH2-, and -SCH2-) were incorporated into the target compounds to screen out the potential succinate dehydrogenase inhibitors (SDHIs). The bioassay results showed that the antifungal effects (expressed by EC50) against Sclerotinia sclerotiorum, Botryosphaeria dothidea, Fusarium oxysporum, and Colletotrichun higginsianum could reach 1.29 (10a), 0.63 (8h), 1.50 (10i), and 2.09 (10i) μg/mL, respectively, which were slightly lower than those of carbendazim (EC50 were 0.69, 0.13, 0.55, and 0.80 μg/mL, respectively). Especially, compound 10h was extremely bioactive against Gibberella zeae (G. z.) with an EC50 value of 0.45 μg/mL. This outcome was better than that of fluopyram (3.76 μg/mL) and was similar to prochloraz (0.47 μg/mL). In vivo trials against the corn scab (infected by G. z.) showed that compound 10h had control activity of 86.8% at 200 μg/mL, which was better than that of boscalid (79.6%). Further investigations found that compound 10h could inhibit the enzymatic activity of SDH in the G. z. strain with an IC50 value of 3.67 μM, indicating that potential SDHIs might be developed. Additionally, the other biological activities of these molecules were screened simultaneously. The anti-oomycete activity toward Phytophthora infestans afforded a minimal EC50 value of 3.22 μg/mL (10h); compound 4d could strongly suppress the growth of bacterial strains Xanthomonas axonopodis pv. citri and Xanthomonas oryzae pv. oryzae with EC50 values of 3.79 and 11.4 μg/mL, respectively; and compound 10a displayed some insecticidal activity toward Plutella xylostella. Given their multipurpose features, these frameworks could be actively studied as potential pesticide leads.
Collapse
Affiliation(s)
- Jian-Jun Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhou-Qing Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shu-Zhen Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jun-Rong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhen-Xing Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yuan-Yuan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
43
|
Yang L, Liu Q, Liu H, Chen D, Li H, Chen Z, Xu W. Synthesis and antimicrobial bioassays of 1,3,4-thiadiazole sulfone derivatives containing amide moiety: A study based on molecular dynamics (MD) simulations, MM/GBSA, and molecular docking. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2021.101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Luo B, Ning Y. Comprehensive Overview of Carboxamide Derivatives as Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:957-975. [PMID: 35041423 DOI: 10.1021/acs.jafc.1c06654] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Up to now, a total of 24 succinate dehydrogenase inhibitors (SDHIs) fungicides have been commercialized, and SDHIs fungicides were also one of the most active fungicides developed in recent years. Carboxamide derivatives represented an important class of SDHIs with broad spectrum of antifungal activities. In this review, the development of carboxamide derivatives as SDHIs with great significances were summarized. In addition, the structure-activity relationships (SARs) of antifungal activities of carboxamide derivatives as SDHIs was also summarized based on the analysis of the structures of the commercial SDHIs and lead compounds. Moreover, the cause of resistance of SDHIs and some solutions were also introduced. Finally, the development trend of SDHIs fungicides was prospected. We hope this review will give a guide for the development of novel SDHIs fungicides in the future.
Collapse
Affiliation(s)
- Bo Luo
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Yuli Ning
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| |
Collapse
|
45
|
Wang W, Wu F, Ma Y, Xu D, Xu G. Study on Synthesis and Antifungal Activity of Novel Benzamides Containing Substituted Pyrazole Unit. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Yucheng C, Meihua C, Guishan L, Wengui D, Qingmin L, Renxuan Z, Bo C. Synthesis, Antifungal Activity and Molecular Docking Study of 1,3,4-Thiadiazole-Urea Compounds Containing gem-Dimethylcyclopropane Ring Structure. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Yang Z, Sun Y, Liu Q, Li A, Wang W, Gu W. Design, Synthesis, and Antifungal Activity of Novel Thiophene/Furan-1,3,4-Oxadiazole Carboxamides as Potent Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13373-13385. [PMID: 34735146 DOI: 10.1021/acs.jafc.1c03857] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Succinate dehydrogenase (SDH) is known as an ideal target for the investigations of fungicides. To develop novel SDH inhibitors, 30 novel thiophene/furan-1,3,4-oxadiazole carboxamide derivatives were designed and synthesized. In the in vitro antifungal assay, a majority of the target compounds demonstrated fair to potent antifungal activity against seven tested phytopathogenic fungi. Compounds 4b, 4g, 4h, 4i, and 5j showed remarkable antifungal activity against Sclerotinia sclerotiorum, affording EC50 values ranging from 0.1∼1.1 mg/L. In particular, compound 4i displayed the most potent activity against S. sclerotiorum (EC50 = 0.140 ± 0.034 mg/L), which was superior to that of boscalid (EC50 = 0.645 ± 0.023 mg/L). A further morphological investigation revealed the abnormal mycelia and damaged cell structures of compound 4i-treated S. sclerotiorum by scanning electron microscopy. Furthermore, the in vivo antifungal assay against S. sclerotiorum revealed that compounds 4g and 4i were effective for suppressing rape Sclerotinia rot at a dosage of 200 mg/L. In the SDH inhibition assay, compounds 4g and 4i also presented significant inhibitory activity with IC50 values of 1.01 ± 0.21 and 4.53 ± 0.19 μM, respectively, which were superior or equivalent to that of boscalid (3.51 ± 2.02 μM). Molecular docking and molecular dynamics simulation of compound 4g with SDH revealed that compound 4g could form strong interactions with the key residues of the SDH. These results indicated that this class of derivatives could be a promising scaffold for the discovery and development of novel SDH inhibitors.
Collapse
Affiliation(s)
- Zihui Yang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Yue Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Qingsong Liu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Aliang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Wenyan Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| |
Collapse
|
48
|
Li S, Li X, Zhang H, Wang Z, Xu H. The research progress in and perspective of potential fungicides: Succinate dehydrogenase inhibitors. Bioorg Med Chem 2021; 50:116476. [PMID: 34757244 DOI: 10.1016/j.bmc.2021.116476] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) have become one of the fastest growing classes of new fungicides since entering the market, and have attracted increasing attention as a result of their unique structure, high activity and broad fungicidal spectrum. The mechanism of SDHIs is to inhibit the activity of succinate dehydrogenase, thereby affecting mitochondrial respiration and ultimately killing pathogenic fungi. At present, they have become popular varieties researched and developed by major pesticide companies in the world. In the review, we focused on the mechanism, the history, the representative varieties, structure-activity relationship and resistance of SDHIs. Finally, the potential directions for the development of SDHIs were discussed. It is hoped that this review can strengthen the individuals' understanding of SDHIs and provide some inspiration for the development of new fungicides.
Collapse
Affiliation(s)
- Shuqi Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Xiangshuai Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Hongmei Zhang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Zishi Wang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China.
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China.
| |
Collapse
|
49
|
Dong C, Gao W, Li X, Sun S, Huo J, Wang Y, Ren D, Zhang J, Chen L. Synthesis of pyrazole-4-carboxamides as potential fungicide candidates. Mol Divers 2021; 25:2379-2388. [PMID: 32734588 DOI: 10.1007/s11030-020-10127-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023]
Abstract
A series of novel pyrazole-4-carboxamides were rationally designed, synthesized, and their structures were characterized by 1H NMR, 13C NMR and HRMS. Preliminary bioassay showed that four compounds 8g, 8j, 8o and 8s exhibited more than 90% and even completed inhibition against Alternaria solani at 100 μg/mL; and 8d displayed 100% inhibition against Fusarium oxysporum at the same concentration. Moreover, 8j exhibited good in vitro fungicidal activity against A. solani with EC50 value of 3.06 μg/mL, and it also displayed completed in vivo protective antifungal activity against A. solani on tomato at 10 mg/L, as boscalid did. The molecular docking results indicated that 8j exhibited the high affinity with SDH protein by H-bond and π-π stacking interactions, which may explain the reasons for its good activities. These data support that compound 8j could be used as a fungicide candidate for further study. A practical method for the synthesis of pyrazole-4-carboxamides were provided and evaluation of their antifungal activities.
Collapse
Affiliation(s)
- Cuntao Dong
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Wei Gao
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Xiaotian Li
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Susu Sun
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Yanen Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Da Ren
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
| |
Collapse
|
50
|
Wang M, Du Y, Ling C, Yang Z, Jiang B, Duan H, An J, Li X, Yang X. Design, synthesis and antifungal/anti-oomycete activity of pyrazolyl oxime ethers as novel potential succinate dehydrogenase inhibitors. PEST MANAGEMENT SCIENCE 2021; 77:3910-3920. [PMID: 33871901 DOI: 10.1002/ps.6418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Succinate dehydrogenase inhibitors (SDHIs) play an increasingly important role in controlling plant diseases. However, the similar structures of SDHIs result in rapid development of cross-resistance development and a clear bottleneck of poor activity against oomycetes, therefore the need to seek new SDHI fungicides with novel structures is urgent. RESULTS Innovative pyrazolyl oxime ethers were designed by replacing amide with oxime ether based on the succinate dehydrogenase (SDH) structure, and 19 pairs of Z- and E-isomers were efficiently prepared for the discovery of SDHI compounds with a novel bridge. Their biological activities against four fungi and two oomycetes were evaluated, and substantial differences were observed between the Z- and E- isomers of the title compounds. Furthermore, most of these compounds exhibited remarkable activities against Rhizoctonia solani with EC50 values of less than 10 mg L-1 in vitro, and bioassay in vivo further confirmed that E-I-6 exhibited good protective efficacy (76.12%) at 200 mg L-1 . In addition, Z-I-12 provided better activity against the oomycetes Pythium aphanidermatum and Phytophthora capsici (EC50 = 1.56 and 0.93 mg L-1 ) than those of boscalid. Moreover, E-I-12 exhibited excellent SDH inhibition (IC50 = 0.21 mg L-1 ) thanks to its good binding ability to the SDH by hydrogen-bonding interactions, π-cation interaction and hydrophobic interactions. CONCLUSION Novel pyrazolyl oxime ethers have the potential as SDHI compounds for future development, and the strategy of replacing an amide bond with oxime ether may offer an alternative option in SDHI fungicide discovery.
Collapse
Affiliation(s)
- Minlong Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Ying Du
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Chen Ling
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zhaokai Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Biaobiao Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Jie An
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xinghai Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|