1
|
Pu Q, Li M, Qu A, Liu Y, Qi M, Shen T, Sun R, Wu S, Qin W, Xiao J, Wang Y, Huang Y. Dynamic evolution of volatile and non-volatile metabolic profiles in black tea during fermentation on an industrial scale. Food Chem 2025; 485:144582. [PMID: 40319594 DOI: 10.1016/j.foodchem.2025.144582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/15/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
The effect of fermentation process on the formation of quality compounds of crush-tear-curl black tea (CTCBT) was unclear. In this study, a total of nine characteristic volatile compounds were screened, and their contents generally exhibited an upward trend during the fermentation process. Among them, the increase in the contents of phenylethanal, 2,4-hexadienal, and guaiacol contributed to the formation of a sweet aroma in tea, while the increase in hexanal and (2E)-hexanal contents helped suppress the production of off-flavors. Additionally, 68 non-volatile differential metabolites were identified. Fermentation primarily influenced the biosynthesis of flavonoids and amino acids, and regulated the taste quality of tea by promoting the oxidative degradation of tea polyphenols, the acylation of amino acids, and the breakdown of nucleotides. This provides an in-depth understanding of the dynamic evolution of quality compounds during the fermentation of CTCBT.
Collapse
Affiliation(s)
- Qian Pu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China
| | - Mingjin Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China
| | - Anlan Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China
| | - Yanan Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China
| | - Minghui Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China
| | - Tianci Shen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China
| | - Ronghui Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China
| | - Shuang Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China
| | - Wangnian Qin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China
| | - Jingyi Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China.
| | - Youyi Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Escudero A, Bueno-Aventín E, Ontañón I, Fernádez-Zurbano P, Ferreira V. The role of polyphenols in oxygen consumption and in the accumulation of acetaldehyde and Strecker aldehydes during wine oxidation. Food Chem 2025; 466:142242. [PMID: 39612856 DOI: 10.1016/j.foodchem.2024.142242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
This study explores the role of polyphenols in preventing oxidative deterioration of wine aroma. Wine models containing polyphenols extracted from grapes were fortified with delphinidin-3G (DELF) or catechin (CAT), and oxidized. DELF increased oxygen consumption rates (OCRs) and reduced the Strecker aldehydes (SAs) formation, while CAT decreased OCRs and increased SAs. Further oxidation of models with individual polyphenols: coumaric acid (COU), caffeic acid (CAF), CAT, epigallocatechin (EPIG), malvidin-3G (MV), DELF, quercetin (QUER), and myricetin (MYR) revealed that most polyphenols, except anthocyanins, slowed initial OCRs. Anthocyanins and trihydroxylated polyphenols consumed all oxygen. DELF arises as the ideal sacrificial antioxidant, consuming O2 quickly and quantitatively, avoiding Fenton reaction and SAs accumulation. MV was similar but caused high SAs levels. EPIG and MYR prevented Fenton reaction but induced moderate SAs accumulation. COU hardly consumed O2, but prevented Fenton reaction and did not induce SAs. These findings could help enhance wine quality and stability.
Collapse
Affiliation(s)
- Ana Escudero
- Laboratorio de Análisis del Aroma y Enología (LAAE). Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Associate unit to Instituto de Ciencias de la Vid y del Vino (ICVV) (UR-CSIC-GR), C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Elena Bueno-Aventín
- Laboratorio de Análisis del Aroma y Enología (LAAE). Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Associate unit to Instituto de Ciencias de la Vid y del Vino (ICVV) (UR-CSIC-GR), C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ignacio Ontañón
- Laboratorio de Análisis del Aroma y Enología (LAAE). Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Associate unit to Instituto de Ciencias de la Vid y del Vino (ICVV) (UR-CSIC-GR), C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | | | - Vicente Ferreira
- Laboratorio de Análisis del Aroma y Enología (LAAE). Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Associate unit to Instituto de Ciencias de la Vid y del Vino (ICVV) (UR-CSIC-GR), C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
3
|
Liao B, Huang R, Li W, Chen H, Shen H, Shen H, Su Y, Wang M, Lai W, Li Y, Zhang B. Metabolic analysis of polymeric proanthocyanidins related to red pigmentation in Camellia drupifera cv. 'Hongrou No.1' mesocarps. Food Chem 2025; 465:142099. [PMID: 39581088 DOI: 10.1016/j.foodchem.2024.142099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/12/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Red mesocarp, characterized as a unique pigment trait of newly identified Camellia drupifera cv. 'Hongrou No.1'('HR'), is believed to act as the plant's protective shield against diverse adversities. Comprehensive metabolic profiling revealed that the ectopic deposition of polymeric insoluble proanthocyanidins (PAs) in cell walls is responsible for the "red" pigmentation of 'HR' mesocarps. Furthermore, structural equation modeling and variation partitioning analysis demonstrated that a molybdenum-dependent aldehyde oxidase, encoded by CdGLOX1, was induced in 'HR' mesocarps and deemed to be a dominant determinant of polymeric insoluble PA accumulation through the putative oxidative condensation of PA subunits. This study provides a background for an in-depth understanding of the mechanisms of unperceived pigmentation in fruits.
Collapse
Affiliation(s)
- Boyong Liao
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Runsheng Huang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Weimeng Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Huajie Chen
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Haoye Shen
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hongjian Shen
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yiting Su
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Min Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Weili Lai
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Bipei Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
4
|
Wen M, Hu W, Li L, Long P, Han Z, Ke JP, Deng Z, Zhu M, Zhang L. Developed metabolomics approach reveals the non-volatile color-contributing metabolites during Keemun congou black tea processing. Food Chem 2025; 463:141222. [PMID: 39270495 DOI: 10.1016/j.foodchem.2024.141222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
While key aroma and taste compounds of Keemun Congou black teas (KCBT) form during aeration and thermal stages, it is still unknown whether these processing stages also produce non-volatile color-contributing metabolites. Through integrating metabolomics with correlation and ridge regression analyses, 190 metabolites were identified as marker compounds that reclassified 15 KCBT samples collected from five processing stages into four groups. Meanwhile, the results of quantification and heatmap analysis showed that the concentrations of theaflavins and theasinensins significantly increased, as catechin decreased, after rolling, while flavonoid aglycones and polyunsaturated fatty acids increased throughout drying. Regression analysis between marker compound levels and total color difference values (∆E) revealed that the major color contributors were 3,5-dicaffeoylquinic acid, glucosyl-dehydrodigallic acid, theacitrin A, kaempferol-O-robinobioside, and (-)-epigallocatechin, with regression coefficients (absolute value) exceeding 4 × 10-2. Overall, the present study confirmed that rolling and drying were the two vital stages responsible for the color formation of KCBT.
Collapse
Affiliation(s)
- Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Wei Hu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Lu Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Piaopiao Long
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| | - Jia-Ping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zhiyang Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Fischer A, Gök R, Esatbeyoglu T. A Design of Experiments Approach to the Radical-Induced Oxidation of Dimeric C4-C8 Linked B-Type Procyanidins. Molecules 2024; 30:111. [PMID: 39795168 PMCID: PMC11721415 DOI: 10.3390/molecules30010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
This study systematically investigated the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical induced oxidation of all dimeric C4-C8 linked B-type procyanidins (PCs) B1-B4 to maximise the formation of the oxidation products using a Design of Experiments (DoE) approach. The C4β-C8 linked B1 and B2 formed the A1 (1) and A2 (2) (m/z 575 [M-H]-) with an ether bridge between C2u-O-C7t as expected. Interestingly, the oxidation of the C4α-C8 linked dimers B3 and B4 yielded for each two main oxidation products with m/z 575 [M-H]-. One of them required only a short reaction time (10.0 min, 25.0 °C for B3 (3) and B4 (5)), whereas the other was maximally formed at a longer time and higher temperature (314 min and 75.0 °C for B3 (5); 360 min, 53.7 °C for B4 (6)). The formation rates were optimised to 47.4 ± 1.14% (A1; 1), 27.5 ± 0.76% (A2; 2), 48.6 ± 4.01% (3), 32.0 ± 1.14% (4), 45.0 ± 5.14% (5) and 60.2 ± 3.68% (6).
Collapse
Affiliation(s)
- Annik Fischer
- Department of Molecular Food Chemistry and Development, Institute of Food and One Health, Leibniz University Hannover, 30167 Hannover, Germany;
| | - Recep Gök
- Institute of Food Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany;
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Development, Institute of Food and One Health, Leibniz University Hannover, 30167 Hannover, Germany;
| |
Collapse
|
6
|
Wei J, Liu B, Zhong R, Chen Y, Fang F, Huang X, Pang X, Zhang Z. Characterization of a longan pericarp browning related peroxidase with a focus on its role in proanthocyanidin and lignin polymerization. Food Chem 2024; 461:140937. [PMID: 39191036 DOI: 10.1016/j.foodchem.2024.140937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/22/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
The longan pericarp turns brown dramatically after harvesting, but the mechanism is not well understood. In this work, two peroxidases were purified from longan pericarp and found to be identical to the class III peroxidases PRX53-2 and PRX53-3. In vitro, PRX53-2/3 catalyzed the browning of several pericarp abundant proanthocyanidin and lignin monomers, such as (-)-epicatechin (EC), (+)-catechin (CT) and coniferyl alcohol (ConA). PRX53-2 was upregulated and highly-expressed, while PRX53-3 was expressed at low levels after harvesting; thus, PRX53-2 was considered a browning-related gene. The reaction with both proanthocyanidin and lignin presented a greater degree of brown coloration compared to the single substrate reactions. Several procyanidins isomers, EC-ConA and CT-ConA were detected in the double-substrate reaction. These results not only demonstrate that the effects of PRX53-2 on proanthocyanidin and lignin polymerization may be crucial for longan pericarp browning, but also help in developing new strategies or preservatives to delay pericarp browning.
Collapse
Affiliation(s)
- Junbin Wei
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, 510640, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Bin Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources / Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables / Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
| | - Ruihao Zhong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources / Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables / Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
| | - Ying Chen
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources / Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables / Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
| | - Fang Fang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources / Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables / Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
| | - Xuemei Huang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xuequn Pang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources / Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables / Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoqi Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources / Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables / Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Wang M, Fei C, Zhou Y, Dai Y, Ren L, Zhang X, Yin F. Effect of chemical components on color variation during processing of Crataegi Fructus. Food Sci Biotechnol 2024; 33:3245-3255. [PMID: 39328220 PMCID: PMC11422337 DOI: 10.1007/s10068-024-01576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 09/28/2024] Open
Abstract
The color and chemical composition of Crataegi Fructus (CF) vary greatly during processing, but few studies have explored the relationship between them. To address this issue, the effect of chemical composition on the color change of CF during processing was evaluated by mass spectrometry and color detection. A total of 107 compounds, including organic acids, flavonoids, furans, terpenoids, lignans and alkaloids, were identified from 26 representative samples by UHPLC-Q-TOF-MS, among them, the first three compounds changed most significantly during CF processing. Based on Spearman's rho correlation and multiple linear regression analysis, 85 variables from 107 compounds were identified to be associated with color value (P < 0.01). There are 12 compounds that are considered to be the key substances that cause color changes. This study not only realized the objectification of color evaluation, but also verified the relationship between color and chemical composition in food processing. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01576-2.
Collapse
Affiliation(s)
- Miaomiao Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 People’s Republic of China
| | - Chenghao Fei
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Yaqian Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 People’s Republic of China
| | - Yanpeng Dai
- Shandong Academy of Chinese Medicine, Jinan, 250000 People’s Republic of China
| | - Lijia Ren
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400 People’s Republic of China
| | - Xian Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 People’s Republic of China
| | - Fangzhou Yin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 People’s Republic of China
| |
Collapse
|
8
|
Zhu J, Wang R, Zhang Y, Lu Y, Cai S, Xiong Q. Metabolomics Reveals Antioxidant Metabolites in Colored Rice Grains. Metabolites 2024; 14:120. [PMID: 38393012 PMCID: PMC10891847 DOI: 10.3390/metabo14020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Colored rice is richer in nutrients and contains more nutrients and bioactive substances than ordinary white rice. Moderate consumption of black (purple) rice has a variety of physiological effects, such as antioxidant effects, blood lipid regulation, and blood sugar control. Therefore, we utilized nontargeted metabolomics, quantitative assays for flavonoid and phenolic compounds, and physiological and biochemical data to explore the correlations between metabolites and the development of antioxidant characteristics in pigmented rice seeds. The findings indicated that, among Yangjinnuo 818 (YJN818), Hongnuo (HN), Yangchannuo 1 hao (YCN1H), and Yangzi 6 hao (YZ6H), YZ6H exhibited the highest PAL activity, which was 2.13, 3.08, and 3.25 times greater than those of YJN818, HN, and YCN1H, respectively. YZ6H likewise exhibited the highest flavonoid content, which was 3.8, 7.06, and 35.54 times greater than those of YJN818, HN, and YCN1H, respectively. YZ6H also had the highest total antioxidant capacity, which was 2.42, 3.76, and 3.77 times greater than those of YJN818, HN, and YCN1H, respectively. Thus, purple rice grains have stronger antioxidant properties than other colored rice grains. Receiver operating characteristic (ROC) curve analysis revealed that trans-3,3',4',5,5',7-hexahydroxyflavanone, phorizin, and trilobatin in the YZ6H, HN, and YCN1H comparison groups all had area under the curve (AUC) values of 1. Phlorizin, trans-3,3',4',5,5',7-hexahydroxyflavanone, and trilobatin were recognized as indices of antioxidant capability in colored rice in this research. This research adds to the understanding of antioxidant compounds in pigmented rice, which can increase the nutritional value of rice and promote the overall well-being of individuals. This type of information is of immense importance in maintaining a balanced and healthy diet.
Collapse
Affiliation(s)
- Jinyan Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Ruizhi Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.)
| | - Yu Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.)
| | - Yanyao Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.)
| | - Shuo Cai
- Jiangxi Irrigation Experiment Central Station, Nanchang 330201, China
| | - Qiangqiang Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Jiangxi Irrigation Experiment Central Station, Nanchang 330201, China
| |
Collapse
|
9
|
Liu S, Xiao Y, Bai C, Liu H, Su X, Jin P, Xu H, Cao L, Yao L. The physiological and biochemical responses to dark pericarp disease induced by excess manganese in litchi. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108269. [PMID: 38096732 DOI: 10.1016/j.plaphy.2023.108269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 02/15/2024]
Abstract
Dark pericarp disease (DPD), a physiological disorder induced by excess Manganese (Mn) in litchi, severely impacts the appearance and its economic value. To elucidate the underlying mechanisms of DPD, this study investigated the variations of phenolic compound, antioxidant defense system, subcellular structure, and transcriptome profiles in both normal fruit and dark pericarp fruit (DPF) at three developmental stages (green, turning, and maturity) of 'Guiwei' litchi. The results reveal that excess Mn in DPF pericarp resulted in a significant increase in reactive oxygen species, especially H2O2, and subsequent alterations in antioxidant enzyme activities. Notably, SOD (EC 1.15.1.1) activity at the green stage, along with POD (EC 1.11.1.7) and APX (EC 1.11.1.11) activities at the turning and the maturity stages, and GST (EC 2.5.1.18) activity during fruit development, were markedly higher in DPF. Cell injury was observed in pericarp, facilitating the formation of dark materials in DPF. Transcriptome profiling further reveals that genes involved in flavonoid and anthocyanin synthesis were up-regulated during the green stage but down-regulated during the turning and maturity stages. In contrast, PAL (EC 4.3.1.24), C4H (EC 1.14.14.91), 4CL (EC 6.2.1.12), CAD (EC 1.1.1.195), and particularly POD, were up-regulated, leading to reduced flavonoid and anthocyanin accumulation and increased lignin content in DPF pericarp. The above suggests that the antioxidant system and phenolic metabolism jointly resisted the oxidative stress induced by Mn stress. We speculate that phenols, terpenes, or their complexes might be the substrates of the dark substances in DPF pericarp, but more investigations are needed to identify them.
Collapse
Affiliation(s)
- Silin Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Youping Xiao
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Cuihua Bai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China
| | - Huilin Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xuexia Su
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Jin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Huiting Xu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Laixin Cao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Lixian Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Zhong R, Wei J, Liu B, Luo H, Zhang Z, Pang X, Fang F. Metabolite and Transcriptome Profiles of Proanthocyanidin Biosynthesis in the Development of Litchi Fruit. Int J Mol Sci 2022; 24:ijms24010532. [PMID: 36613975 PMCID: PMC9820520 DOI: 10.3390/ijms24010532] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
The fruit of Litchi chinensis contains high levels of proanthocyanidins (PAs) in the pericarp. These substances can serve as substrates of laccase-mediated rapid pericarp browning after the fruit is harvested. In this study, we found that the major PAs in litchi pericarp were (-)-epicatechin (EC) and several procyanidins (PCs), primarily PC A2, B2, and B1, and the EC and the PC content decreased with the development of the fruit. RNA-seq analysis showed that 43 early and late structure genes related to flavonoid/PA biosynthesis were expressed in the pericarp, including five ANTHOCYANIDIN REDUCTASE (ANR), two LEUCOANTHOCYANIDIN REDUCTASE (LAR), and two ANTHOCYANIDIN SYNTHASE (ANS) genes functioning in the PA biosynthesis branch of the flavonoid pathway. Among these nine PA biosynthesis-related genes, ANR1a, LAR1/2, and ANS1 were highly positively correlated with changes in the EC/PC content, suggesting that they are the key PA biosynthesis-related genes. Several transcription factor (TF) genes, including MYB, bHLH, WRKY, and AP2 family members, were found to be highly correlated with ANR1a, LAR1/2, and ANS1, and their relevant binding elements were detected in the promoters of these target genes, strongly suggesting that these TF genes may play regulatory roles in PA biosynthesis. In summary, this study identified the candidate key structure and regulatory genes in PA biosynthesis in litchi pericarp, which will assist in understanding the accumulation of high levels of browning-related PA substances in the pericarp.
Collapse
Affiliation(s)
- Ruihao Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Junbin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Bin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Honghui Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoqi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xuequn Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.P.); (F.F.)
| | - Fang Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.P.); (F.F.)
| |
Collapse
|
11
|
Fan W, Zong H, Zhao T, Deng J, Yang H. Bioactivities and mechanisms of dietary proanthocyanidins on blood pressure lowering: A critical review of in vivo and clinical studies. Crit Rev Food Sci Nutr 2022; 64:3522-3538. [PMID: 36226711 DOI: 10.1080/10408398.2022.2132375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Proanthocyanidins, widespread in natural plant sources, are bioactive substances that exhibit broad benefits to human health. Of note, proanthocyanidins have been reported to lower blood pressure and prevent hypertension, but a critical review of this is lacking. In this review, information on the basic structures and absorption of dietary proanthocyanidins as well as their bioactivities and related mechanisms on the lowering of blood pressure derived via in vivo and clinical studies are summarized. Clinical studies have shown that proanthocyanidins have a pronounced blood pressure-lowering effect, effectively preventing hypertension and reducing the occurrence of cardiovascular and cerebrovascular diseases. The potential mechanisms, which are herein reviewed in detail, involve the improvement of vascular function, reduction of oxidative stress and inflammation, and modulation of lipid metabolism. Taken together, this work provides information for a better understanding of the antihypertensive effects of proanthocyanidins, which may promote their use to reduce the risk of developing hypertension.
Collapse
Affiliation(s)
- Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Houru Zong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jianjun Deng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Liu B, Zhou X, Guan H, Pang X, Zhang Z. Purification and Characterization of a Dark Red Skin Related Dimeric Polyphenol Oxidase from Huaniu Apples. Foods 2022; 11:foods11121790. [PMID: 35741987 PMCID: PMC9223062 DOI: 10.3390/foods11121790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
The distinct dark-red skin of Huaniu apples renders them attractive to customers. However, the mechanism that leads to the development of the color of the fruit is unclear. In this study, we found that compared with red Fuji (a bright-red apple cultivar), Huaniu apples had higher contents of (−)-epicatechin (EC), (−)-epigallocatechin (EGC), (−)-gallocatechin gallate (GCG), and procyanidins (PCs) B2 and C1 in the peel, which implies that the polymerization of the flavanols and PCs may be correlated with the dark-red skin of the fruit. Using EC as a substrate, we purified an enzyme from Huaniu peel. We performed protein sequencing and discovered that the enzyme was a polyphenol oxidase (PPO). The molecular weight of the enzyme was approximately 140 kDa, which we estimated by native-PAGE and SDS-PAGE, while it was 61 kDa by urea-SDS-PAGE, from which we discovered that the PPO was a dimer. We observed the lowest Km value for catechol (0.60 mM), and the best substrate was 4-methylcatechol, with a Vmax of 526.32 U mg−1 protein. EC is a suitable natural substrate, with a Km value of 1.17 mM, and 55.27% of the Vmax/Km of 4-methylcatechol. When we used EC as a substrate, the optimum temperature and pH of the PPO were 25 °C and 5.0, respectively. In summary, we purified a dimeric PPO from Huaniu apples that showed high activity to EC, which might catalyze the polymerization of flavanols and PCs and lead to the dark-red color development of the fruit.
Collapse
Affiliation(s)
- Bin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China; (B.L.); (X.Z.); (H.G.); (X.P.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xianfang Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China; (B.L.); (X.Z.); (H.G.); (X.P.)
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Haiyan Guan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China; (B.L.); (X.Z.); (H.G.); (X.P.)
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xuequn Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China; (B.L.); (X.Z.); (H.G.); (X.P.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoqi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China; (B.L.); (X.Z.); (H.G.); (X.P.)
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
13
|
Xiang H, Li Q, Sun-Waterhouse D, Li J, Cui C, Waterhouse GI. Improving the color and functional properties of seabuckthorn seed protein with phytase treatment combined with alkaline solubilization and isoelectric precipitation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:931-939. [PMID: 34265087 DOI: 10.1002/jsfa.11425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/24/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Reducing anti-nutritional factors like phytates in seed protein products requires an ongoing effort. This study was the first to investigate the phytic acid content in seabuckthorn seed protein (SSP) and its reduction by an exogenous phytase during protein isolation from seabuckthorn seed meal through the common alkaline solubilization-isoelectric precipitation process. RESULTS The additional phytase treatment could reduce the content of phytic acid from 22.46 to 13.27 g kg-1 , leading to SSP products with lighter color (lower ΔE* ), higher protein solubility, higher in vitro digestibility, but lower phenolic antioxidant content (including flavonoids and procyanidins) and some beneficial ions like Ca, Fe, Mg, and Zn. The Fourier transform infrared (FTIR) results indicated that the secondary structure of protein changed under the treatment with phytase. Correlation analysis showed that L* was significantly negatively correlated with TP, TPC and TF (P < 0.001), while a* and b* were significantly positively correlated with them (P < 0.001). CONCLUSIONS There may be a trade-off between protein functionalities and other health-promoting components when a phytase treatment is included in SSP isolation. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Xiang
- School of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Qingyang Li
- School of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Dongxiao Sun-Waterhouse
- School of Food Science and Technology, South China University of Technology, Guangzhou, China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Jiawei Li
- Perfect (GuangDong) Co., Ltd, Zhongshan, China
| | - Chun Cui
- School of Food Science and Technology, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | | |
Collapse
|
14
|
Wei J, Zhang X, Zhong R, Liu B, Zhang X, Fang F, Zhang Z, Pang X. Laccase-Mediated Flavonoid Polymerization Leads to the Pericarp Browning of Litchi Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15218-15230. [PMID: 34889093 DOI: 10.1021/acs.jafc.1c06043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Litchi pericarp turns brown rapidly after fruit harvest, while the mechanism remains obscure. The contents of (-)-epicatechin (EC) and procyanidins (PCs) A2/B1/B2/C1 decreased during the pericarp browning, and a previously identified laccase (ADE/LAC) showed activity to these compounds, with brown products observed in the reactions. By UPLC-DAD-QTOF-MS/MS, isomers of dimeric, trimeric, and tetrameric PCs were detected in the EC-ADE/LAC reaction. In the presence of cyanidin-3-O-rutiside and rutin, anthocyanin-EC and rutin-EC adducts were, respectively, produced, and darker brown precipitation was observed in these reactions relatively to the EC-ADE/LAC reaction alone. ADE/LAC catalyzed the conversion of PC B2 to A-type PC dimers and B-type PC tetramers. ADE/LAC complemented the transparent testa of Arabidopsis LAC15-loss-of-function mutant (tt10) to wild-type dark brown seed coat. The results demonstrated that ADE/LAC-mediated flavonoid polymerization played an important role in the browning of pericarp.
Collapse
Affiliation(s)
- Junbin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ruihao Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Bin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xuelian Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fang Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoqi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xuequn Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
15
|
Bueno-Aventín E, Escudero A, Fernández-Zurbano P, Ferreira V. Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Model Wine Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15290-15300. [PMID: 34894689 PMCID: PMC8704169 DOI: 10.1021/acs.jafc.1c05880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 05/25/2023]
Abstract
Polyphenolic fractions from Garnacha, Tempranillo, and Moristel grapes were reconstituted to form model wines of identical pH, ethanol, amino acid, metal, and varietal polyfunctional mercaptan (PFM) contents. Models were subjected to a forced oxidation procedure at 35 °C and to an equivalent treatment under strict anoxia. Polyphenolic profiles significantly determined oxygen consumption rates (5.6-13.6 mg L-1 day-1), Strecker aldehyde (SA) accumulation (ratios max/min around 2.5), and levels of PFMs remaining (ratio max/min between 1.93 and 4.53). By contrast, acetaldehyde accumulated in small amounts and homogeneously (11-15 mg L-1). Tempranillo samples, with highest delphinidin and prodelphinidins and smallest catechin, consume O2 faster but accumulate less SA and retain smallest amounts of PFMs under anoxic conditions. Overall, SA accumulation may be related to polyphenols, producing stable quinones. The ability to protect PFMs as disulfides may be negatively related to the increase in tannin activity, while pigmented tannins could be related to 4-methyl-4-mercaptopentanone decrease.
Collapse
Affiliation(s)
- Elena Bueno-Aventín
- Laboratorio
de Análisis del Aroma y Enología (LAAE), Departamento
de Química Analítica, Universidad
de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Ana Escudero
- Laboratorio
de Análisis del Aroma y Enología (LAAE), Departamento
de Química Analítica, Universidad
de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Purificación Fernández-Zurbano
- Instituto
de Ciencias de la Vid y del Vino (Universidad de La Rioja, CSIC, Gobierno
de La Rioja). Finca La
Grajera, Logroño, La Rioja E-26007, Spain
| | - Vicente Ferreira
- Laboratorio
de Análisis del Aroma y Enología (LAAE), Departamento
de Química Analítica, Universidad
de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| |
Collapse
|
16
|
Yang H, Tuo X, Wang L, Tundis R, Portillo MP, Simal-Gandara J, Yu Y, Zou L, Xiao J, Deng J. Bioactive procyanidins from dietary sources: The relationship between bioactivity and polymerization degree. Trends Food Sci Technol 2021; 111:114-127. [DOI: 10.1016/j.tifs.2021.02.063] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Karonen M, Imran IB, Engström MT, Salminen JP. Characterization of Natural and Alkaline-Oxidized Proanthocyanidins in Plant Extracts by Ultrahigh-Resolution UHPLC-MS/MS. Molecules 2021; 26:molecules26071873. [PMID: 33810382 PMCID: PMC8037856 DOI: 10.3390/molecules26071873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we analyzed the proanthocyanidin (PA) composition of 55 plant extracts before and after alkaline oxidation by ultrahigh-resolution UHPLC-MS/MS. We characterized the natural PA structures in detail and studied the sophisticated changes in the modified PA structures and the typical patterns and models of reactions within different PA classes due to the oxidation. The natural PAs were A- and B-type PCs, PDs and PC/PD mixtures. In addition, we detected galloylated PAs. B-type PCs in different plant extracts were rather stable and showed no or minor modification due to the alkaline oxidation. For some samples, we detected the intramolecular reactions of PCs producing A-type ether linkages. A-type PCs were also rather stable with no or minor modification, but in some plants, the formation of additional ether linkages was detected. PAs containing PD units were more reactive. After alkaline oxidation, these PAs or their oxidation products were no longer detected by MS even though a different type and/or delayed PA hump was still detected by UV at 280 nm. Galloylated PAs were rather stable under alkaline oxidation if they were PC-based, but we detected the intramolecular conversion from B-type to A-type. Galloylated PDs were more reactive and reacted similarly to nongalloylated PDs.
Collapse
|
18
|
Imran IB, Karonen M, Salminen JP, Engström MT. Modification of Natural Proanthocyanidin Oligomers and Polymers Via Chemical Oxidation under Alkaline Conditions. ACS OMEGA 2021; 6:4726-4739. [PMID: 33644580 PMCID: PMC7906247 DOI: 10.1021/acsomega.0c05515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/21/2021] [Indexed: 05/31/2023]
Abstract
We tested the susceptibility of 102 proanthocyanidin (PA)-rich plant extracts to oxidation under alkaline conditions and the possibility to produce chemically modified PAs via oxidation. Both the nonoxidized and the oxidized extracts were analyzed using group-specific ultrahigh-performance liquid chromatography-diode array detection-tandem mass spectrometry (UHPLC-DAD-MS/MS) methods capable of detecting procyanidin (PC) and prodelphinidin (PD) moieties along the two-dimensional (2D) chromatographic fingerprints of plant PAs. The results indicated different reactivities for PCs and PDs. When detected by UHPLC-DAD only, most of the PC-rich samples exhibited only a subtle change in their PA content, but the UHPLC-MS/MS quantitation showed that the decrease in the PC content varied by 0-100%. The main reaction route was concluded to be intramolecular. The PD-rich and galloylated PAs showed a different pattern with high reductions in the original PA content by both ultraviolet (UV) and MS/MS quantitation, accompanied by the shifted retention times of the chromatographic PA humps. In these samples, both intra- and intermolecular reactions were indicated.
Collapse
|