1
|
Shen C, Ding X, Rao W, Hu J, Lin T, Zhou XZ, Zheng Y, Dong F, Fan G. Prediction of Potential Risk for Ten Azole and Benzimidazole Fungicides with the Aryl Hydrocarbon Receptor Agonistic Activity to Aquatic Ecosystems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1167-1181. [PMID: 39811929 DOI: 10.1021/acs.jafc.4c09545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Azole and benzimidazole fungicides are widely used agrochemicals to prevent and treat fungal growth and are frequently detected in aquatic environments. Here, we aimed to assess the aquatic ecological risks of ten currently used azole and benzimidazole fungicides, which with the aryl hydrocarbon receptor (AhR) agonistic activity, and their transformation products (TPs). We obtained over 400 types of aerobic TPs for ten fungicides. Some fungicides and their TPs (approximately 26.7%) exhibited the potential AhR agonistic activity and toxicity to different aquatic species. Meanwhile, some compounds with the chlorine element and benzene ring structure exhibited environmental persistence and mobile ability. Several of them were frequently detected in aquatic environments, posing potential risks to aquatic ecosystems. These harmful fungicides and their TPs should be given attention. This study provides important insight into the aquatic ecological risks caused by azole and benzimidazole fungicides, which can provide theoretical guidance for their pollution control.
Collapse
Affiliation(s)
- Chao Shen
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaoyan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Wenhua Rao
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Jinfeng Hu
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Tao Lin
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xian-Zhi Zhou
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Guocheng Fan
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
2
|
Huang J, Lin S, Zhou J, Chen H, Tang S, Wu J, Huang S, Cheng D, Zhang Z. Dissipation and Distribution of Prochloraz in Bananas and a Risk Assessment of Its Dietary Intake. TOXICS 2022; 10:435. [PMID: 36006113 PMCID: PMC9415821 DOI: 10.3390/toxics10080435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As a systematic fungicide, prochloraz is often used to control banana freckle disease, and it is significant to assess the safety and risk of prochloraz. METHODS The dissipation kinetics and distribution of prochloraz in bananas were measured by high-performance liquid chromatography (HPLC). RESULTS The results showed that the fortified recoveries in bananas were 83.01-99.12%, and the relative standard deviations (RSDs) were 2.45-7.84%. The half-life of prochloraz in banana peel (3.93-5.60 d) was significantly lower than it was in whole banana (8.25-10.80 d) and banana pulp (10.35-12.84 d). The terminal residue of prochloraz in banana fruits was below the maximum residue level (MRL, China) at pre-harvest intervals (PHI) of 21 d. Moreover, the residue of prochloraz in banana peel was always 1.06-7.71 times greater than it was in banana pulp. The dietary risk assessment results indicated that the prochloraz residue in bananas at PHI of 21 d was safe for representative populations. (4) Conclusions: We found that a 26.7% prochloraz emulsion oil in water (EW) diluted 1000-fold and sprayed three times under field conditions was safe and reliable, providing a reference for the safe application of prochloraz in bananas.
Collapse
Affiliation(s)
- Jiajian Huang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (J.H.); (S.L.); (J.Z.); (H.C.); (S.T.); (J.W.)
| | - Sukun Lin
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (J.H.); (S.L.); (J.Z.); (H.C.); (S.T.); (J.W.)
| | - Jingtong Zhou
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (J.H.); (S.L.); (J.Z.); (H.C.); (S.T.); (J.W.)
| | - Huiya Chen
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (J.H.); (S.L.); (J.Z.); (H.C.); (S.T.); (J.W.)
| | - Shiqi Tang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (J.H.); (S.L.); (J.Z.); (H.C.); (S.T.); (J.W.)
| | - Jian Wu
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (J.H.); (S.L.); (J.Z.); (H.C.); (S.T.); (J.W.)
| | - Suqing Huang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Dongmei Cheng
- Department of Plant Protection, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (J.H.); (S.L.); (J.Z.); (H.C.); (S.T.); (J.W.)
| |
Collapse
|
3
|
Liu J, Xia W, Wan Y, Xu S. Azole and strobilurin fungicides in source, treated, and tap water from Wuhan, central China: Assessment of human exposure potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149733. [PMID: 34467936 DOI: 10.1016/j.scitotenv.2021.149733] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/24/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Fungicides are widely used in agriculture worldwide. However, data on the occurrence of fungicides in drinking water are scarce. This study aimed to determine the occurrence of 12 selected fungicides in drinking water, the removal efficiency of conventional water treatment processes for fungicides, and the risk of fungicide exposure. In this study, source water (February and July), treated water (February and July), and tap water samples (February, April, July, and October) were collected from Wuhan, central China, in 2019. Seven of the twelve selected fungicides were 100% detected in the three types of water samples; tricyclazole was found with the highest concentrations in the source water phase (median: 15.2 ng/L; range: 4.21-67.9 ng/L). The concentrations of the 12 selected fungicides remaining in the treated water samples (median proportion of the remaining content: 77.5%) revealed that most of the target analytes may not be removed efficiently by conventional water treatment processes, though they could be removed efficiently by advanced treatment. Higher concentrations of the fungicides were observed in samples collected in July (median: 38.7 ng/L; range: 12.5-85.8 ng/L), followed by those in October (median: 21.8 ng/L; range: 10.2-58.8 ng/L), February (median: 9.82 ng/L; range: 5.63-93.3 ng/L), and April (median: 7.13 ng/L; range: 6.23-91.1 ng/L). The health risk assessment implied that estimated daily intake of these fungicides through tap water ingestion might pose a low risk to consumers, though risk associated with infant exposure to the fungicides requires further attention. This study provides baseline data on the occurrence, removal efficiencies, and seasonal variations of the selected fungicides in tap water from central China.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
4
|
Shan T, Zhang X, Guo C, Guo S, Zhao X, Yuan Y, Yue T. Identity, Synthesis, and Cytotoxicity of Forchlorfenuron Metabolites in Kiwifruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9529-9535. [PMID: 34382788 DOI: 10.1021/acs.jafc.1c02492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Forchlorfenuron (CPPU) is a plant growth regulator widely used in kiwifruit production. Although research on the toxicological and environmental effects of CPPU is well-established, the nature and toxicological properties of its metabolites are much less well-known. Using high resolution mass spectrometry and nuclear magnetic resonance, the CPPU previously unidentified metabolites in Xuxiang and Jinyan kiwifruit were identified as N-(2-chloro-4-pyridinyl)-N'-(2-hydroxy-4-methoxyphenyl)-urea (metabolite 1) and N-phenyl-N'-4-pyridinylurea (metabolite 2, CAS: 1932-35-0). Their structures were confirmed by synthesis (metabolite 1) and by comparison with a commercial standard (metabolite 2). Quantitative studies demonstrate that CPPU and its metabolites are mainly retained in the kiwifruit peel, while the content is dependent on the nature of the peel surface, with the smoother peel of Jinyan kiwifruit retaining smaller amounts of the compound. Cell viability experiments in Caco2 and Lo2 cells show that the metabolites may have a lower cytotoxicity compared to the parent compound CPPU.
Collapse
Affiliation(s)
- Tingting Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
| | - Xiao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
| | - Chunfeng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
| | - Shihuan Guo
- College of Food Science and Technology, Northwest University, Xian 710000, China
| | - Xubo Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
- National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling 712100, China
- College of Food Science and Technology, Northwest University, Xian 710000, China
| |
Collapse
|