1
|
Li R, Shan S, Xu Y, Xiong J, Cheng G. Identification of bioaccessible and neuroprotective peptides from fermented casein hydrolysate. J Dairy Sci 2025:S0022-0302(25)00238-3. [PMID: 40250615 DOI: 10.3168/jds.2024-25763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/21/2025] [Indexed: 04/20/2025]
Abstract
Fermented dairy products are beneficial to cognitive health. Fermentation-released bioactive peptides have the potential to contribute to the neuroprotective effects of fermented dairy products. However, known neuroprotective peptides are mostly prepared by enzymatic hydrolysis, and physicochemical screening of food-derived functional peptides typically overlooks the interference of biotransport after ingestion. Thus, we aimed to identify neuroprotective peptides from casein fermented by Lactobacillus delbrueckii ssp. bulgaricus to provide more evidence supporting the contribution of fermentation-released peptides. We first screened bioaccessible peptides from fermented casein hydrolysate by simulating digestion, absorption, and blood-brain barrier penetration using INFOGEST standardized protocols, human colon Caco-2 cells, and human brain microvascular endothelial hCMEC/D3 cells sequentially. Next, we identified peptides of each stage by nano-liquid chromatography tandem MS. The intersections were considered bioaccessible peptides. We performed molecular docking against Kelch-like ECH-associated protein 1 (Keap1) to predict potential bioactive peptides and validated the predicted effects in BV2 microglial cells induced by LPS. As a result, we identified 1,971, 663, 276, and 208 casein peptides from the simulated products at each stage, and 63 bioaccessible peptides were identified during fermentation, underwent simulated digestion, and were transported via the simulated intestinal epithelial barrier and blood-brain barrier. Among these peptides, 7 nontoxic small peptides had relatively high predicted affinities for Keap1 and were verified in LPS-treated BV2 cells. We found that Phe-Val-Ala-Pro-Phe-Pro-Glu (FE7) decreased nitric oxide, interleukin-1β, reactive oxygen species, and lipid peroxidation levels by 69.6%, 103.6%, 119.3%, and 75.3%, respectively, in LPS-treated BV2 cells. In conclusion, FE7 could be a promising neuroprotective peptide in fermented casein hydrolysate by reducing neuroinflammation and oxidative stress. Our approach provides a feasible paradigm for identifying bioaccessible and neuroprotective peptides from dairy products.
Collapse
Affiliation(s)
- Ruirui Li
- Department of Nutrition and Food Safety, Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Shufang Shan
- Department of Clinical Nutrition, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yujie Xu
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Maternal and Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jingyuan Xiong
- Department of Nutrition and Food Safety, Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China.
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Maternal and Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China.
| |
Collapse
|
2
|
Ghosh S, Das B, Jana S, Singh KO, Sharma N, Mukherjee PK, Haldar PK. Mechanistic insight into neuroprotective effect of standardized ginger chemo varieties from Manipur, India in scopolamine induced learning and memory impaired mice. Metab Brain Dis 2025; 40:101. [PMID: 39812875 DOI: 10.1007/s11011-025-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Alzheimer's disease is a complex neurodegenerative disease characterized by progressive decline in cognitive function and behaviour. Ginger is the rhizome of the plant Zingiber officinale Roscoe, has been an important ingredient of many Ayurveda formulations to treat neurological disorders. The present study aims to estimate the variation of 6-gingerol content in nine different ginger samples collected from Manipur, India, investigate the neuroprotective potential of the most potent ginger sample against scopolamine-induced cognitively impaired mice, and validate the therapeutic claim by molecular docking analysis. High Performance Thin Layer Chromatography (HPTLC) analysis suggested that the sample GV6 had the highest 6-gingerol content with potent in vitro acetylcholnesterase (AChE) (IC50 = 336.10 µg/mL) and butyrylcholinesterase (BChE) (IC50 = 411.73 µg/mL) enzyme inhibitory activity. The neuroprotective potential of GV6 was tested in scopolamine-induced cognitively impaired mice (200 and 400 mg/kg). The behavioral analysis showed that GV6 alleviated the spatial recognition, and short-term and long-term memory in the experimental mice model. GV6 significantly improved brain AChE and BChE activity, acetylcholine (ACh) level, markedly alleviated the antioxidant parameters, and reversed the neuroinflammation. Brain histopathological observations confirmed the presence of organized nerve fibers, improvement of neuronal cell density, and reverse the nucleus shrinkage. Further molecular docking analysis showed that 6-gingerol and galantamine exhibited stable interaction with AChE (-7.5 and - 7.3 kcaL/moL) and BChE (-7.3 and - 8.5 kcaL/moL). The present study emphasizes the quality-related therapeutic importance of ginger samples from Northeast India and demonstrates that administration of GV6 may improve brain cognitive functions by restoring neurotransmitter levels and inflammatory and antioxidant parameters in scopolamine-induced cognitively impaired mice.
Collapse
Affiliation(s)
- Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India
| | - Bhaskar Das
- Department of Biotechnology, BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Government of India, Imphal, Manipur, 795001, India
| | - Sandipan Jana
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India
| | - Keithellakpam Ojit Singh
- Department of Biotechnology, BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Government of India, Imphal, Manipur, 795001, India
| | - Nanaocha Sharma
- Department of Biotechnology, BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Government of India, Imphal, Manipur, 795001, India
| | - Pulok K Mukherjee
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India
- Department of Biotechnology, BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Government of India, Imphal, Manipur, 795001, India
| | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
| |
Collapse
|
3
|
Cheng L, Shi C, Li X, Matsui T. Impact of Peptide Transport and Memory Function in the Brain. Nutrients 2024; 16:2947. [PMID: 39275263 PMCID: PMC11396983 DOI: 10.3390/nu16172947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Recent studies have reported the benefits of food-derived peptides for memory dysfunction. Beyond the physiological effects of peptides, their bioavailability to the brain still remains unclear since the blood-brain barrier (BBB) strictly controls the transportation of compounds to the brain. Here, updated transportation studies on BBB transportable peptides are introduced and evaluated using in vitro BBB models, in situ perfusion, and in vivo mouse experiments. Additionally, the mechanisms of action of brain health peptides in relation to the pathogenesis of neurodegenerative diseases, particularly Alzheimer's disease, are discussed. This discussion follows a summary of bioactive peptides with neuroprotective effects that can improve cognitive decline through various mechanisms, including anti-inflammatory, antioxidative, anti-amyloid β aggregation, and neurotransmitter regulation.
Collapse
Affiliation(s)
- Lihong Cheng
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Caiyue Shi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan
| | - Xixi Li
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Li Z, Dang Q, Wang P, Zhao F, Huang J, Wang C, Liu X, Min W. Food-Derived Peptides: Beneficial CNS Effects and Cross-BBB Transmission Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20453-20478. [PMID: 38085598 DOI: 10.1021/acs.jafc.3c06518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Food-derived peptides, as dietary supplements, have significant effects on promoting brain health and relieving central nervous system (CNS) diseases. However, the blood-brain barrier (BBB) greatly limits their in-brain bioavailability. Thus, overcoming the BBB to target the CNS is a major challenge for bioactive peptides in the prevention and treatment of CNS diseases. This review discusses improvement in the neuroprotective function of food-derived active peptides in CNS diseases, as well as the source of BBB penetrating peptides (BBB-shuttles) and the mechanism of transmembrane transport. Notably, this review also discusses various peptide modification methods to overcome the low permeability and stability of the BBB. Lipification, glycosylation, introduction of disulfide bonds, and cyclization are effective strategies for improving the penetration efficiency of peptides through the BBB. This review provides a new prospective for improving their neuroprotective function and developing treatments to delay or even prevent CNS diseases.
Collapse
Affiliation(s)
- Zehui Li
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P.R. China
| | - Qiao Dang
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P.R. China
| | - Peng Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
| | - Fanrui Zhao
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Chongchong Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Xingquan Liu
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| |
Collapse
|
5
|
Ding J, Huang L, Yang J, Qi L, Zhu C, Lin S. Dual Action of Reduced Allergenicity and Improved Memory of Instant Soybean Powder Hydrolysates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18815-18828. [PMID: 37991338 DOI: 10.1021/acs.jafc.3c06490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Soy allergens are susceptible to inducing allergic reactions in infants and young animals, which have an impact on the effective daily utilization of proteins. In this study, we used Alcalase-hydrolyzed instant soybean powder (ISP) to clarify the sensitization changes of instant soybean powder hydrolysates (ISPH), and we explored the assisted memory-enhancing effects. BALB/c mice in the ISPH group showed significant improvement in the allergy symptoms, with their allergy symptom scores decreasing to (1.57 ± 0.53) and their specific serum IgE and IgG1 binding capacity decreasing by 28.00 and 25.73% (P < 0.05), which suppressed the mast cell degranulation rate. Meanwhile, the plasma HIS and IL-4 levels decreased by 12.59 and 25.32%, and the plasma INF-γ and IL- 10 levels increased by 30.64 and 27.79%, which obviously regulated the imbalance of Th1/Th2 cells and attenuated the tissue damage (P < 0.05). Furthermore, ISPH improved behavioral characteristics, increased cholinergic system activity, reduced neuronal cell damage or apoptosis, and increased the number of Nissl bodies to help improve memory in Kunming mice (P < 0.05). In general, alcalase-hydrolyzed ISP had the dual effects of reducing allergenicity and aiding in memory improvement.
Collapse
Affiliation(s)
- Jie Ding
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
| | - Luyue Huang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
| | - Jingqi Yang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| | - Libo Qi
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Chunyan Zhu
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
- Engineering Research Center of Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| |
Collapse
|
6
|
Tyliszczak M, Wiatrak B, Danielewski M, Szeląg A, Kucharska AZ, Sozański T. Does a pickle a day keep Alzheimer's away? Fermented food in Alzheimer's disease: A review. Exp Gerontol 2023; 184:112332. [PMID: 37967591 DOI: 10.1016/j.exger.2023.112332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Fermented food is commonly viewed as healthy, mostly due to its probiotic and digestion-enhancing properties and recently it has been examined with regard to the development of new therapeutic and preventive measures for Alzheimer's disease. Fermented food has been shown to have anti-inflammatory and antioxidant properties and to alter the gut microbiota. However, the exact pathogenesis of Alzheimer's disease is still unknown and its connections to systemic inflammation and gut dysbiosis, as potential targets of fermented food, require further investigation. Therefore, to sum up the current knowledge, this article reviews recent research on the pathogenesis of Alzheimer's disease with emphasis on the role of the gut-brain axis and studies examining the use of fermented foods. The analysis of the fermented food research includes clinical and preclinical in vivo and in vitro studies. The fermented food studies have shown promising effects on amyloid-β metabolism, inflammation, and cognitive impairment in animals and humans. Fermented food has great potential in developing new approaches to Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Michał Tyliszczak
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | | | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | - Alicja Z Kucharska
- Department of Fruit, Vegetable, and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Tomasz Sozański
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wroclaw University of Science and Technology, Wrocław, Poland
| |
Collapse
|
7
|
Zheng J, Gao Y, Ding J, Sun N, Lin S. Antarctic krill peptides improve scopolamine-induced memory impairment in mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Sun CC, Yin ZP, Chen JG, Wang WJ, Zheng GD, Li JE, Chen LL, Zhang QF. Dihydromyricetin Improves Cognitive Impairments in d-Galactose-Induced Aging Mice through Regulating Oxidative Stress and Inhibition of Acetylcholinesterase. Mol Nutr Food Res 2022; 66:e2101002. [PMID: 34932880 DOI: 10.1002/mnfr.202101002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Indexed: 02/05/2023]
Abstract
SCOPE Alzheimer's disease (AD) is a neurodegenerative disease with phenomena of cognitive impairments. Oxidative stress and cholinergic system dysfunction are two widely studied pathogenesis of AD. Dihydromyricetin (DMY) is a natural dihydroflavonol with many bioactivities. In this study, it is aimed to investigate the effects of DMY on cognitive impairment in d-galactose (d-gal) induced aging mice. METHODS AND RESULTS Mice are intraperitoneally injected with d-gal for 16 weeks, and DMY is supplemented in drinking water. The results show that DMY significantly improves d-gal-induced cognitive impairments in novel object recognition and Y-maze studies. H&E and TUNEL staining show that DMY could improve histopathological changes and cell apoptosis in mice brain. DMY effectively induces the activities of catalase, superoxide dismutase and glutathione peroxidase, and reduces malondialdehyde level in mice brain and liver. Furthermore, DMY reduces cholinergic injury by inhibiting the activity of Acetylcholinesterase (AChE) in mice brain. In vitro studies show that DMY is a non-competitive inhibitor of AChE with IC50 value of 161.2 µg mL-1 . CONCLUSION DMY alleviates the cognitive impairments in d-gal-induced aging mice partly through regulating oxidative stress and inhibition of acetylcholinesterase.
Collapse
Affiliation(s)
- Cui-Cui Sun
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhong-Ping Yin
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ji-Guang Chen
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wen-Jun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guo-Dong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jing-En Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ling-Li Chen
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qing-Feng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
9
|
Zhao Y, Dong Y, Ge Q, Cui P, Sun N, Lin S. Neuroprotective effects of NDEELNK from sea cucumber ovum against scopolamine-induced PC12 cell damage through enhancing energy metabolism and upregulation of the PKA/BDNF/NGF signaling pathway. Food Funct 2021; 12:7676-7687. [PMID: 34259275 DOI: 10.1039/d1fo00631b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of the study was to evaluate the neuroprotective function of sea cucumber ovum peptide-derived NDEELNK and explore the underlying molecular mechanisms. NDEELNK exerted the neuroprotective effect by improving the acetylcholine (ACh) level and reducing the acetylcholinesterase (AChE) activity in PC12 cells. By molecular docking, we confirmed that the NDEELNK backbone and AChE interacted through hydrophobic and hydrogen bonds in contact with the amino acid residues of the cavity wall. NDEELNK increased superoxide dismutase (SOD) activity and decreased reactive oxygen species (ROS) production, thereby reducing mitochondrial dysfunction and enhancing energy metabolism. Our results demonstrated that NDEELNK supplementation alleviated scopolamine-induced PC12 cell damage by improving the cholinergic system, increasing energy metabolism and upregulating the expression of phosphorylated protein kinase A (p-PKA), brain-derived neurotrophic factor (BNDF) and nerve growth factor (NGF) signaling proteins in in vitro experiments. These results demonstrated that the sea cucumber ovum peptide-derived NDEELNK might play a protective role in PC12 cells.
Collapse
Affiliation(s)
- Yue Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | | | | | | | | | | |
Collapse
|
10
|
Jia W, Zhang R, Zhu Z, Shi L. LC-Q-Orbitrap HRMS-based proteomics reveals potential nutritional function of goat whey fraction. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
11
|
Zhao F, Liu C, Fang L, Lu H, Wang J, Gao Y, Gabbianelli R, Min W. Walnut-Derived Peptide Activates PINK1 via the NRF2/KEAP1/HO-1 Pathway, Promotes Mitophagy, and Alleviates Learning and Memory Impairments in a Mice Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2758-2772. [PMID: 33591165 DOI: 10.1021/acs.jafc.0c07546] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mitophagy has a pivotal protective function in the pathogenesis of neurological disorders. However, the mechanism of its modulation remains elusive, especially in PINK1-mediated mitophagy. Here, we investigated the neuroprotective effects of a walnut-derived peptide, YVLLPSPK, against scopolamine-induced cognitive deficits in mice and explored the underlying PINK1-mediated mitophagy mechanisms in H2O2-treated HT-22 cells. Using the Morris water maze, we showed that YVLLPSPK relieved the cognitive deficiency by alleviating oxidative stress. Mitochondrial morphology was observed in mice hippocampal tissues using transmission electron microscopy (TEM). Both Western blot and immunofluorescence analysis illustrated YVLLPSPK promoted the expression of mitophagy-related proteins and activated the NRF2/KEAP1/HO-1 pathway. Subsequently, an NRF2 inhibitor (ML385) was used to verify the contribution of the YVLLPSPK-regulated NRF2/KEAP1/HO-1 pathway in PINK1-mediated mitophagy in H2O2-treated HT-22 cells. These data suggested that YVLLPSPK improved learning and memory in scopolamine-induced cognitive-impaired mice through a mechanism associated with PINK1-mediated mitophagy via the NRF2/KEAP1/HO-1 pathway.
Collapse
Affiliation(s)
- Fanrui Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
- School of Advanced Studies, University of Camerino, Camerino, Macerata 62032, Italy
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Hongyan Lu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Yawen Gao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, Macerata 62032, Italy
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| |
Collapse
|
12
|
Wu D, Zhang S, Sun N, Zhu B, Lin S. Neuroprotective Function of a Novel Hexapeptide QMDDQ from Shrimp via Activation of the PKA/CREB/BNDF Signaling Pathway and Its Structure-Activity Relationship. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6759-6769. [PMID: 32452680 DOI: 10.1021/acs.jafc.0c02689] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study aimed to evaluate the neuroprotective function of shrimp-derived peptides QMDDQ and KMDDQ. Biochemical results revealed that both peptides exhibited neuroprotective effects by increasing acetylcholine (ACh) content and inhibiting acetylcholinesterase (AChE) activity in PC12 cells; QMDDQ was more active than KMDDQ. COSY-NOESY spectroscopic data showed that the superior neuroprotective function of QMDDQ might be attributed to its N-terminal glutamine as it exhibited an extended spatial conformation, facilitating its interactions with AChE. QMDDQ can promote the basic energy metabolism of cells more than KMDDQ. The peptides showed neuroprotective ability due to the activation of the antiapoptosis and PKA/CREB/BNDF signaling pathway. QMDDQ was selected to investigate its memory-enhancing activity in scopolamine-induced amnesic mice, revealing memory protection in mice, as it improved their performance in the Morris water maze experiment. In addition, QMDDQ increased ACh content (4.98 ± 0.51 μg/mg prot) and decreased AChE activity (4.72 ± 0.11 U/mg prot) in the mouse hippocampus. These data indicate the systemic mechanism through which naturally derived QMDDQ improved neuroprotection and memory ability.
Collapse
Affiliation(s)
- Dan Wu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Shuyu Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| |
Collapse
|
13
|
Ayabe T, Ano Y, Ohya R, Kitaoka S, Furuyashiki T. The Lacto-Tetrapeptide Gly-Thr-Trp-Tyr, β-Lactolin, Improves Spatial Memory Functions via Dopamine Release and D1 Receptor Activation in the Hippocampus. Nutrients 2019; 11:nu11102469. [PMID: 31618902 PMCID: PMC6835598 DOI: 10.3390/nu11102469] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 01/06/2023] Open
Abstract
Scope: Peptides containing tryptophan–tyrosine sequences, including the lacto-tetrapeptide glycine–threonine–tryptophan–tyrosine (GTWY) and β-lactolin, from β-lactoglobulin in whey enzymatic digestion, enhance hippocampus-dependent memory functions, which are blocked by the systemic administration of dopamine D1-like antagonist. In this study, we investigated the role of the hippocampal dopaminergic system in the memory-enhancing effect of β-lactolin. Methods and Results: The results of in vivo microdialysis revealed that oral administration of β-lactolin increased the extracellular concentration of dopamine in the hippocampus and enhanced both spatial working memory, as measured in the Y-maze test, and spatial reference memory, as measured in the novel object location test. These memory-enhancing effects of β-lactolin, but not the baseline memory functions, were impaired by the knockdown of the dopamine D1 receptor subtype in the hippocampus. β-Lactolin also enhanced object memory, as measured by the novel object recognition test. However, D1 knockdown in the hippocampus spared this memory function either with or without the administration of β-lactolin. Conclusions: The present results indicate that oral administration of β-lactolin increases dopamine release and D1 receptor signaling in the hippocampus, thereby enhancing spatial memory, but it may improve object memory via a separate mechanism.
Collapse
Affiliation(s)
- Tatsuhiro Ayabe
- Research Laboratories for Health Science & Food Technologies, Kirin Holdings Company Ltd., 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan.
| | - Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies, Kirin Holdings Company Ltd., 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan.
| | - Rena Ohya
- Research Laboratories for Health Science & Food Technologies, Kirin Holdings Company Ltd., 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan.
| | - Shiho Kitaoka
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
- AMED-CREST, Chiyoda-ku, Tokyo 100-0004, Japan.
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
- AMED-CREST, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|