1
|
Wang T, Holscher HD, Maslov S, Hu FB, Weiss ST, Liu YY. Predicting metabolite response to dietary intervention using deep learning. Nat Commun 2025; 16:815. [PMID: 39827177 PMCID: PMC11742956 DOI: 10.1038/s41467-025-56165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Due to highly personalized biological and lifestyle characteristics, different individuals may have different metabolite responses to specific foods and nutrients. In particular, the gut microbiota, a collection of trillions of microorganisms living in the gastrointestinal tract, is highly personalized and plays a key role in the metabolite responses to foods and nutrients. Accurately predicting metabolite responses to dietary interventions based on individuals' gut microbial compositions holds great promise for precision nutrition. Existing prediction methods are typically limited to traditional machine learning models. Deep learning methods dedicated to such tasks are still lacking. Here we develop a method McMLP (Metabolite response predictor using coupled Multilayer Perceptrons) to fill in this gap. We provide clear evidence that McMLP outperforms existing methods on both synthetic data generated by the microbial consumer-resource model and real data obtained from six dietary intervention studies. Furthermore, we perform sensitivity analysis of McMLP to infer the tripartite food-microbe-metabolite interactions, which are then validated using the ground-truth (or literature evidence) for synthetic (or real) data, respectively. The presented tool has the potential to inform the design of microbiota-based personalized dietary strategies to achieve precision nutrition.
Collapse
Affiliation(s)
- Tong Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sergei Maslov
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Wang T, Holscher HD, Maslov S, Hu FB, Weiss ST, Liu YY. Predicting metabolite response to dietary intervention using deep learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.14.532589. [PMID: 36993761 PMCID: PMC10054958 DOI: 10.1101/2023.03.14.532589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Due to highly personalized biological and lifestyle characteristics, different individuals may have different metabolite responses to specific foods and nutrients. In particular, the gut microbiota, a collection of trillions of microorganisms living in the gastrointestinal tract, is highly personalized and plays a key role in the metabolite responses to foods and nutrients. Accurately predicting metabolite responses to dietary interventions based on individuals' gut microbial compositions holds great promise for precision nutrition. Existing prediction methods are typically limited to traditional machine learning models. Deep learning methods dedicated to such tasks are still lacking. Here we develop a method McMLP (Metabolite response predictor using coupled Multilayer Perceptrons) to fill in this gap. We provide clear evidence that McMLP outperforms existing methods on both synthetic data generated by the microbial consumer-resource model and real data obtained from six dietary intervention studies. Furthermore, we perform sensitivity analysis of McMLP to infer the tripartite food-microbe-metabolite interactions, which are then validated using the ground-truth (or literature evidence) for synthetic (or real) data, respectively. The presented tool has the potential to inform the design of microbiota-based personalized dietary strategies to achieve precision nutrition.
Collapse
Affiliation(s)
- Tong Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah D. Holscher
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sergei Maslov
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Frank B. Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Wang L, Wang L, Cao C, Zhao J, Song C, Bao Z, Yan C, Song S. Chitosan and its oligosaccharide accelerate colonic motility and reverse serum metabolites in rats after excessive protein consumption. Int J Biol Macromol 2023; 253:127072. [PMID: 37774814 DOI: 10.1016/j.ijbiomac.2023.127072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
Excessive protein consumption (EPC) could increase the gastrointestinal burden and impair gut motility. The present study was designed to explore the improvement of chitosan (CTS) and chitosan oligosaccharide (COS) on colonic motility and serum metabolites in rats after EPC. The results of in vivo experiments fully proved that CTS and COS could improve gut motility and reverse the serum metabolites in rats as indicated by LC-MS/MS analysis, and the COS group even showed a better effect than the CTS group. Furthermore, short-chain fatty acids (SCFAs), which could promote gut motility, were also increased to alleviate EPC-induced constipation after supplementation with CTS or COS. In addition, CTS and COS could decrease the concentration of ammonia in serum and down-regulate the levels of H2S and indole. In summary, the present study revealed that CTS and COS could produce SCFAs, improve the colonic motility in rats, reverse the levels of valine, adenosine, cysteine, 1-methyladenosine, indole, and uracil, and enhance aminoacyl-tRNA biosynthesis and valine, leucine and isoleucine degradation. The present study provides novel insights into the potential roles of CTS and COS in alleviating the adverse effects of EPC.
Collapse
Affiliation(s)
- Linlin Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Lilong Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Cui Cao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Jun Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chen Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunhong Yan
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
4
|
Yang Q, Cai X, Zhu Y, Hu Z, Wei Y, Dang Q, Zhang Y, Zhao X, Jiang X, Yu H. Oat β-glucan supplementation pre- and during pregnancy alleviates fetal intestinal immunity development damaged by gestational diabetes in rats. Food Funct 2023; 14:8453-8466. [PMID: 37622658 DOI: 10.1039/d3fo00429e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Oat β-glucan (OG) has been shown to improve intestinal microecology in gestational diabetes mellitus (GDM), but the effect on fetal intestine health is unknown. Herein, we aimed to investigate the effects of OG supplementation during gestation in GDM dams on fetal intestinal immune development. OG was supplemented one week before mating until the end of the experiment. GDM rats were made with a high-fat diet (HFD) with a minimal streptozotocin (STZ) dose. The fetal intestines were sampled at gestation day (GD) 19.5, and the intestinal morphology, chemical barrier molecules, intraepithelial immune cell makers, and levels of inflammatory cytokines were investigated. The results showed that OG supplementation alleviated the decrease of the depth of fetal intestinal villi and crypts, the number of goblet cells (GCs), protein expression of mucin-1 (Muc1) and Muc2, the mRNA levels of Gpr41, Gpr43, and T cell markers, and increased the number of paneth cells (PCs), the mRNA levels of defensin-6 (defa6), and macrophage (Mø) marker and the expression of cytokines induced by GDM. In addition, OG supplementation alleviated the function of immune cell self-proliferation, chemotaxis and assembly capabilities, protein, fat, folic acid, and zinc absorption damaged by GDM. As indicated by these findings, OG supplementation before and during pregnancy improved the fetal intestinal chemical barriers, immune cells, cytokines, and the metabolism of nutrients to protect the fetal intestinal immunity.
Collapse
Affiliation(s)
- Qian Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Xiaxia Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Yandi Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Zhuo Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Yuchen Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Qinyu Dang
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Yadi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Xiaoyan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Xinyin Jiang
- Departments of Health and Nutrition Sciences, Brooklyn College of City, University of New York, NY 11210, USA
| | - Huanling Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| |
Collapse
|
5
|
Razola-Díaz MDC, Verardo V, Guerra-Hernández EJ, García-Villanova Ruiz B, Gómez-Caravaca AM. Response Surface Methodology for the Optimization of Flavan-3-ols Extraction from Avocado By-Products via Sonotrode Ultrasound-Assisted Extraction. Antioxidants (Basel) 2023; 12:1409. [PMID: 37507948 PMCID: PMC10376872 DOI: 10.3390/antiox12071409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Avocado peel and seed are the main by-products of avocado processing and are considered as promising sources of phenolic compounds with biological activities. Thus, this research focuses on the establishment, for the first time, of ultrasound-assisted extraction of flavan-3-ols with high antioxidant activity from avocado peel and seed using a sonotrode. Indeed, 2 Box-Behnken designs were performed for 15 experiments, with each design having three independent factors (ratio ethanol/water (v/v), time (min) and amplitude (%)). In both models, the responses included total procyanidins (flavan-3-ols) measured via HPLC-FLD and antioxidant activity measured via DPPH, ABTS and FRAP. The results showed that applying the sonotrode extraction method could increase flavan-3-ols recovery by 54% and antioxidant activity by 62-76% compared to ultrasound bath technology. Therefore, this technology was demonstrated to be a non-thermal, low time-consuming and scalable method that allowed the recovery of flavan-3-ols from avocado by-products that could be used as functional ingredients.
Collapse
Affiliation(s)
- María Del Carmen Razola-Díaz
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18011 Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda. del Conocimiento s/n, 18100 Granada, Spain
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18011 Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda. del Conocimiento s/n, 18100 Granada, Spain
| | | | | | - Ana María Gómez-Caravaca
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda. del Conocimiento s/n, 18100 Granada, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
6
|
Lin L, Zhang J, He L, Li L, Song Y, Xiao W, Gong Z. L-Theanine Mitigates the Harmful Effects of Excess High-Protein Diet in Rats by Regulating Protein Metabolism. Mol Nutr Food Res 2023; 67:e2200198. [PMID: 36415057 DOI: 10.1002/mnfr.202200198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/16/2022] [Indexed: 11/24/2022]
Abstract
SCOPE l-Theanine (LTA) is a non-protein amino acid that contributes to the flavor of tea and can regulate protein metabolism of healthy organisms. However, it is unknown whether it regulates protein metabolism in individuals on high-protein diets (HPDs). METHODS AND RESULTS Here, Sprague-Dawley rats are fed HPDs with different protein supply ratios and administered a diverse dose of LTA for 40 days. Results show that HPDs with an energy supply ratio from protein >40% impair the liver and kidneys, elevate serum ammonia and urea nitrogen, induce amino acid (AA) catabolism, and promote fatty acid (FA) synthesis via FA-binding protein 5 (Fabp5) and acetyl-CoA carboxylase 1 (ACC1). LTA intervention alleviates HPD-induced hepatic and renal injury and improves serum biochemical indices. It increases hepatic free AA content and inhibits FA synthesis by downregulating Fabp5 and ACC1. It promotes protein synthesis by acting on the mammalian target of rapamycin (mTOR) pathway, thereby alleviating HPD-induced metabolic disorders. CONCLUSIONS This study demonstrates that LTA mitigates kidney and liver damage induced by long-term excess HPDs by regulating protein metabolism.
Collapse
Affiliation(s)
- Ling Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan, 410128, China
| | - Jiao Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan, 410128, China
| | - Lin He
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan, 410128, China
| | - Lanlan Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan, 410128, China
| | - Yuxin Song
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan, 410128, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan, 410128, China
| | - Zhihua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan, 410128, China
| |
Collapse
|
7
|
Jiang Q, Charoensiddhi S, Xue X, Sun B, Liu Y, El-Seedi HR, Wang K. A review on the gastrointestinal protective effects of tropical fruit polyphenols. Crit Rev Food Sci Nutr 2022; 63:7197-7223. [PMID: 36397724 DOI: 10.1080/10408398.2022.2145456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tropical fruits are popular because of their unique, delicious flavors and good nutritional value. Polyphenols are considered to be the main bioactive ingredients in tropical fruits, and these exert a series of beneficial effects on the human gastrointestinal tract that can enhance intestinal health and prevent intestinal diseases. Moreover, they are distinct from the polyphenols in fruits grown in other geographical zones. Thus, the comprehensive effects of polyphenols in tropical fruits on gut health warrant in-depth review. This article reviews, first, the biological characteristics of several representative tropical fruits, including mango, avocado, noni, cashew apple, passion fruit and lychee; second, the types and content of the main polyphenols in these tropical fruits; third, the effects of each of these fruit polyphenols on gastrointestinal health; and, fourth, the protective mechanism of polyphenols. Polyphenols and their metabolites play a crucial role in the regulation of the gut microbiota, increasing intestinal barrier function, reducing oxidative stress, inhibiting the secretion of inflammatory factors and regulating immune function. Thus, review highlights the value of tropical fruits, highlighting their significance for future research on their applications as functional foods that are oriented to gastrointestinal protection.
Collapse
Affiliation(s)
- Qianer Jiang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Biqi Sun
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Hesham R El-Seedi
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Lopes de Oliveira F, Yanka Portes Arruda T, Caldeira Morzelle M, Paula Aparecida Pereira A, Neves Casarotti S. Fruit by-products as potential prebiotics and promising functional ingredients to produce fermented milk. Food Res Int 2022; 161:111841. [PMID: 36192971 DOI: 10.1016/j.foodres.2022.111841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/04/2022]
|
9
|
Lanuza F, Zamora-Ros R, Petermann-Rocha F, Martínez-Sanguinetti MA, Troncoso-Pantoja C, Labraña AM, Leiva-Ordoñez AM, Nazar G, Ramírez-Alarcón K, Ulloa N, Lasserre-Laso N, Parra-Soto S, Martorell M, Villagrán M, Garcia-Diaz DF, Andrés-Lacueva C, Celis-Morales C. Advances in Polyphenol Research from Chile: A Literature Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2009508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- F Lanuza
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
- Centro de Epidemiología Cardiovascular y Nutricional (EPICYN), Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - R Zamora-Ros
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - F Petermann-Rocha
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - C Troncoso-Pantoja
- Centro de Investigación en Educación y Desarrollo (CIEDE-UCSC), Departamento de Salud Pública, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - AM Labraña
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - AM Leiva-Ordoñez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - G Nazar
- Departamento de Psicología, Facultad de Ciencias Sociales, y Centro de Vida Saludable. Universidad de Concepción, Concepción, Chile
| | - K Ramírez-Alarcón
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - N Ulloa
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, y Centro de Vida Saludable, Universidad de Concepción, Concepción, Chile
| | - N Lasserre-Laso
- Escuela de Nutrición y Dietética, Facultad de Salud, Universidad Santo Tomás, Los Ángeles, Chile
| | - S Parra-Soto
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - M Martorell
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - M Villagrán
- Department of Basic Science, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - DF Garcia-Diaz
- Department of Nutrition, School of Medicine, University of Chile, Independencia, 1027 Santiago, Chile
| | - C Andrés-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - C Celis-Morales
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Centro de Investigación en Fisiología del Ejercicio (CIFE), Universidad Mayor, Santiago, Chile
- Laboratorio de Rendimiento Humano, Grupo de Estudio en Educación, Actividad Física y Salud (GEEAFyS), Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
10
|
Interference of dietary polyphenols with potentially toxic amino acid metabolites derived from the colonic microbiota. Amino Acids 2021; 54:311-324. [PMID: 34235577 DOI: 10.1007/s00726-021-03034-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Each day, varying amounts of undigested or partially digested proteins reach the colon where they are metabolized by the microbiota, resulting in the formation of compounds such as ammonia, p-cresol, skatole, phenol, indole, and hydrogen sulfide (H2S). In farm animals, the excessive production of these metabolites can affect the quality of meat and milk and is a source of contaminating emissions from animal manure. In humans, their accumulation is potentially harmful, and it has been proposed that they could be involved in the development of pathologies such as colorectal cancer and ulcerative colitis, among others. This review assesses the evidence supporting the use of dietary polyphenols to reduce the production of these metabolites. Most studies have used condensed (proanthocyanidins) or hydrolyzable (ellagitannins and gallotannins) tannins, and have been carried out in farm animals. Several show that the administration of tannins in pigs, chicken, and ruminants decreases the levels of ammonia, p-cresol, skatole, and/or H2S, improving meat/milk quality and reducing manure odor. Direct application of tannins to manure also decreases ammonia emissions. Few studies were carried out in rats and humans and their results confirm, to a lesser extent, those reported in farm animals. These effects would be due to the capacity of tannins to trap ammonia and H2S, and to modify the composition of the microbiota, reducing the bacterial populations producing metabolites. In addition, PACs prevent p-cresol and H2S-induced alterations on intestinal cells in vitro. Tannins, therefore, appear as an interesting tool for improving the quality of animal products, human health, and the harmful emissions associated with breeding.
Collapse
|
11
|
Mora-Sandí A, Ramírez-González A, Castillo-Henríquez L, Lopretti-Correa M, Vega-Baudrit JR. Persea Americana Agro-Industrial Waste Biorefinery for Sustainable High-Value-Added Products. Polymers (Basel) 2021; 13:1727. [PMID: 34070330 PMCID: PMC8197556 DOI: 10.3390/polym13111727] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Significant problems have arisen in recent years, such as global warming and hunger. These complications are related to the depletion and exploitation of natural resources, as well as environmental pollution. In this context, bioprocesses and biorefinery can be used to manage agro-industrial wastes for obtaining high-value-added products. A large number of by-products are composed of lignin and cellulose, having the potential to be exploited sustainably for chemical and biological conversion. The biorefinery of agro-industrial wastes has applications in many fields, such as pharmaceuticals, medicine, material engineering, and environmental remediation. A comprehensive approach has been developed toward the agro-industrial management of avocado (Persea americana) biomass waste, which can be transformed into high-value-added products to mitigate global warming, save non-renewable energy, and contribute to health and science. Therefore, this work presents a comprehensive review on avocado fruit waste biorefinery and its possible applications as biofuel, as drugs, as bioplastics, in the environmental field, and in emerging nanotechnological opportunities for economic and scientific growth.
Collapse
Affiliation(s)
- Anthony Mora-Sandí
- School of Chemistry, National University of Costa Rica (UNA), Heredia 86-3000, Costa Rica; (A.M.-S.); (A.R.-G.)
| | - Abigail Ramírez-González
- School of Chemistry, National University of Costa Rica (UNA), Heredia 86-3000, Costa Rica; (A.M.-S.); (A.R.-G.)
| | - Luis Castillo-Henríquez
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica;
- Faculty of Pharmacy, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Mary Lopretti-Correa
- Nuclear Research Center, Faculty of Science, Universidad de la República (UdelaR), Montevideo 11300, Uruguay;
| | - José Roberto Vega-Baudrit
- School of Chemistry, National University of Costa Rica (UNA), Heredia 86-3000, Costa Rica; (A.M.-S.); (A.R.-G.)
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica;
| |
Collapse
|
12
|
Cerda-Opazo P, Gotteland M, Oyarzun-Ampuero FA, Garcia L. Design, development and evaluation of nanoemulsion containing avocado peel extract with anticancer potential: A novel biological active ingredient to enrich food. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
The Relationship between Fruit Size and Phenolic and Enzymatic Composition of Avocado Byproducts (Persea americana Mill.): The Importance for Biorefinery Applications. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6040091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Avocado byproducts are a rich source of health-promoting biomolecules. The purpose of this work is to study three groups of statistically different avocado fruit sizes (Persea americana Mill.) (small (S), medium (M), and large (L)), and their relationship with total phenolic and flavonoid contents (TPC and TFC, respectively), DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging capacity and individual phenolics, and the activities of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and polyphenol oxidase (PPO) in avocado peel extract (APE). The results indicated that TPC, TFC, and antioxidant and enzymatic activities were higher in the APE of the S group (p < 0.05). The flavonoids (flavanols and flavonols) and phenolic acids were also significatively concentrated in S group’s APE. Overall, the phenolic content was significantly lower in the L group. Positive correlations (p < 0.0001 and p < 0.05) were observed between TPC, TPF, DPPH, and enzymatic activity, and negative correlations resulted for avocado weight and volume. The outstanding phenolic content and enzymatic activity of avocado peels from low-cost avocado byproducts are ideal for biorefinery applications, thereby increasing the bioeconomy of the avocado industry.
Collapse
|
14
|
Salazar-López NJ, Domínguez-Avila JA, Yahia EM, Belmonte-Herrera BH, Wall-Medrano A, Montalvo-González E, González-Aguilar GA. Avocado fruit and by-products as potential sources of bioactive compounds. Food Res Int 2020; 138:109774. [PMID: 33292952 DOI: 10.1016/j.foodres.2020.109774] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/22/2022]
Abstract
The increased demand for avocado, and therefore production and consumption, generate large quantities of by-products such as seeds, peel, and defatted pulp, which account for approximately 30% of fruit weight, and which are commonly discarded and wasted. The present review focuses on various compounds present in avocado fruit and its by-products, with particular interest to those that can be potentially used in different industrial forms, such as nutraceuticals, to add to or to formulate functional foods, among other uses. Main molecular families of bioactive compounds present in avocado include phenolic compounds (such as hydroxycinnamic acids, hydroxybenzoic acids, flavonoids and proanthocyanins), acetogenins, phytosterols, carotenoids and alkaloids. Types, contents, and possible functions of these bioactive compounds are described from a chemical, biological, and functional approach. The use of avocado and its by-products requires using processing methods that allow highest yield with the least amount of unusable residues, while also preserving the integrity of bioactive compounds of interest. Avocado cultivar, fruit development, ripening stage, and processing methods are some of the main factors that influence the type and amount of extractable molecules. The phytochemical diversity of avocado fruit and its by-products make them potential sources of nutraceutical compounds, from which functional foods can be obtained, as well as other applications in food, health, pigment, and material sectors, among others.
Collapse
Affiliation(s)
- Norma Julieta Salazar-López
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - J Abraham Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Elhadi M Yahia
- Laboratorio de Fitoquímicos y Nutrición, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias, Juriquilla, Querétaro, 76230 Qro., Mexico.
| | - Beatriz Haydee Belmonte-Herrera
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chihuahua 32310, Mexico.
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México-Instituto Tecnológico de Tepic, Av. Tecnológico 255 Fracc. Lagos del Country, Tepic, Nayarit 63175, Mexico.
| | - G A González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
15
|
Gotteland M, Riveros K, Gasaly N, Carcamo C, Magne F, Liabeuf G, Beattie A, Rosenfeld S. The Pros and Cons of Using Algal Polysaccharides as Prebiotics. Front Nutr 2020; 7:163. [PMID: 33072794 PMCID: PMC7536576 DOI: 10.3389/fnut.2020.00163] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Macroalgae stand out for their high content of dietary fiber (30–75%) that include soluble, sulfated (fucoidan, agaran, carrageenan, and ulvan) and non-sulfated (laminaran and alginate) polysaccharides. Many studies indicate that these compounds exert varied biological activities and health-promoting effects and for this reason, there is a growing interest for using them in food products. The aim of this review was to critically evaluate prebiotic properties of algal polysaccharides, i.e., their ability to exert biological activities by modulating the composition and/or diversity of gut microbiota (GM). Pre-clinical studies show that the non-sulfated alginate and laminaran are well-fermented by GM, promoting the formation of short chain fatty acids (SCFAs) including butyrate, and preventing that of harmful putrefactive compounds (NH3, phenol, p-cresol, indole and H2S). Alginate increases Bacteroides, Bifidobacterium, and Lactobacillus species while laminaran mostly stimulates Bacteroides sp. Results with sulfated polysaccharides are more questionable. Agarans are poorly fermentable but agarose-oligosaccharides exhibit an interesting prebiotic potential, increasing butyrate-producing bacteria and SCFAs. Though carrageenan-oligosaccharides are also fermented, their use is currently limited due to safety concerns. Regarding fucoidan, only one study reports SCFAs production, suggesting that it is poorly fermented. Its effect on GM does not indicate a clear pattern, making difficult to conclude whether it is beneficial or not. Notably, fucoidan impact on H2S production has not been evaluated, though some studies report it increases sulfate-reducing bacteria. Ulvan is badly fermented by GM and some studies show that part of its sulfate is dissimilated to H2S, which could affect colonic mitochondrial function. Accordingly, these results support the use of laminaran, alginate and agaro-oligosaccharides as prebiotics while more studies are necessary regarding that of fucoidan, carrageenan and ulvan. However, the realization of clinical trials is necessary to confirm such prebiotic properties in humans.
Collapse
Affiliation(s)
- Martin Gotteland
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Human Nutrition, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Karla Riveros
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Naschla Gasaly
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Constanza Carcamo
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fabien Magne
- Microbiology and Mycology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Gianella Liabeuf
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alejandra Beattie
- Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos, Universidad de Magallanes, Punta Arenas, Chile.,Centro de Investigación para la Conservación de Ecosistemas Australes, Punta Arenas, Chile
| | - Sebastián Rosenfeld
- Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos, Universidad de Magallanes, Punta Arenas, Chile.,Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Instituto de Ecología y Biodiversidad, Santiago, Chile
| |
Collapse
|