1
|
Wang R, Li X, Xu Y, Li Y, Zhang W, Guo R, Song J. Progress, pharmacokinetics and future perspectives of luteolin modulating signaling pathways to exert anticancer effects: A review. Medicine (Baltimore) 2024; 103:e39398. [PMID: 39183411 PMCID: PMC11346905 DOI: 10.1097/md.0000000000039398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Luteolin (3, 4, 5, 7-tetrahydroxyflavone) are natural flavonoids widely found in vegetables, fruits and herbs, with anti-tumor, anti-inflammatory and antioxidant effects, and also play an anti-cancer effect in various cancers such as lung, breast, prostate, and liver cancer, etc. Specifically, the anti-cancer mechanism includes regulation of various signaling pathways to induce apoptosis of tumor cells, inhibition of tumor cell proliferation and metastasis, anti-angiogenesis, regulation of immune function, synergistic anti-cancer drugs and regulation of reactive oxygen species levels of tumor cells. Specific anti-cancer mechanisms include regulation of various signaling pathways to induce apoptosis, inhibition of tumor cell proliferation and metastasis, anti-angiogenesis, reversal of epithelial-mesenchymal transition, regulation of immune function, synergism with anti-cancer drugs and regulation of reactive oxygen species levels in tumor cells. This paper integrates the latest cutting-edge research on luteolin and combines it with the prospect of future clinical applications, aiming to explore the mechanism of luteolin exerting different anticancer effects through the regulation of different signaling pathways, so as to provide a practical theoretical basis for the use of luteolin in clinical treatment and hopefully provide some reference for the future research direction of luteolin.
Collapse
Affiliation(s)
- Rui Wang
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
- Medical School of Nantong University, Nantong, PR China
| | - Xia Li
- Department of General Medicine, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Yanhan Xu
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Yangyang Li
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Weisong Zhang
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Rongqi Guo
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Jianxiang Song
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| |
Collapse
|
2
|
Olivares-Vicente M, Sánchez-Marzo N, Herranz-López M, Micol V. Analysis of Lemon Verbena Polyphenol Metabolome and Its Correlation with Oxidative Stress under Glucotoxic Conditions in Adipocyte. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9768-9781. [PMID: 38629896 PMCID: PMC11066870 DOI: 10.1021/acs.jafc.3c06309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Lemon verbena has been shown to ameliorate obesity-related oxidative stress, but the intracellular final effectors underlying its antioxidant activity are still unknown. The purpose of this study was to correlate the antioxidant capacity of plasma metabolites of lemon verbena (verbascoside, isoverbascoside, hydroxytyrosol, caffeic acid, ferulic acid, homoprotocatechuic acid, and luteolin-7-diglucuronide) with their uptake and intracellular metabolism in hypertrophic adipocytes under glucotoxic conditions. To this end, intracellular ROS levels were measured, and the intracellular metabolites were identified and quantified by high-performance liquid chromatography with a diode array detector coupled to mass spectrometry (HPLC-DAD-MS). The results showed that the plasma metabolites of lemon verbena are absorbed by adipocytes and metabolized through phase II reactions and that the intracellular appearance of these metabolites correlates with the decrease in the level of glucotoxicity-induced oxidative stress. It is postulated that the biotransformation and accumulation of these metabolites in adipocytes contribute to the long-term antioxidant activity of the extract.
Collapse
Affiliation(s)
- Mariló Olivares-Vicente
- Instituto
de Investigación, Desarrollo e Innovación en Biotecnología
Sanitaria de Elche, Universidad Miguel Hernández
(UMH), Elche 03202, Spain
| | - Noelia Sánchez-Marzo
- Instituto
de Investigación, Desarrollo e Innovación en Biotecnología
Sanitaria de Elche, Universidad Miguel Hernández
(UMH), Elche 03202, Spain
| | - María Herranz-López
- Instituto
de Investigación, Desarrollo e Innovación en Biotecnología
Sanitaria de Elche, Universidad Miguel Hernández
(UMH), Elche 03202, Spain
| | - Vicente Micol
- Instituto
de Investigación, Desarrollo e Innovación en Biotecnología
Sanitaria de Elche, Universidad Miguel Hernández
(UMH), Elche 03202, Spain
- CIBER:
CB12/03/30038, Fisiopatología de la Obesidad y la Nutrición,
CIBERobn, Instituto de Salud Carlos III
(ISCIII), Madrid 28029, Spain
| |
Collapse
|
3
|
Kaci H, Bakos É, Needs PW, Kroon PA, Valentová K, Poór M, Özvegy-Laczka C. The 2-aminoethyl diphenylborinate-based fluorescent method identifies quercetin and luteolin metabolites as substrates of Organic anion transporting polypeptides, OATP1B1 and OATP2B1. Eur J Pharm Sci 2024; 196:106740. [PMID: 38437885 DOI: 10.1016/j.ejps.2024.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Organic anion transporting polypeptides (OATPs), OATP1B1 and OATP2B1 are membrane proteins mediating the cellular uptake of chemically diverse organic compounds. OATP1B1 is exclusively expressed in hepatocytes and plays a key role in hepatic detoxification. The ubiquitously expressed OATP2B1 promotes the intestinal absorption of orally administered drugs. Flavonoids are widely found in foods and beverages, and many of them can inhibit OATP function, resulting in food-drug interactions. In our previous work, we have shown that not only luteolin (LUT) and quercetin (Q), but also some of their metabolites can inhibit OATP1B1 and OATP2B1 activity. However, data about the potential direct transport of these flavonoids by OATPs have been incomplete. Hence, in the current study, we developed a simple, fluorescence-based method for the measurement of intracellular flavonoid levels. The method applies a cell-permeable small molecule (2-aminoethyl diphenylborinate, 2-APB), that, upon forming a complex with flavonoids, results in their fluorescence enhancement. This way the direct uptake of LUT and Q, and also their metabolites' could be investigated both by confocal microscopy and in a fluorescence plate reader in living cells. With this approach we identified quercetin-3'-O-sulfate, luteolin-3'-O-glucuronide, luteolin-7-O-glucuronide and luteolin-3'-O-sulfate as substrates of both OATP1B1 and OATP2B1. Our results highlight that OATP1B1 and OATP2B1 can be key participants in the transmembrane movement of LUT and Q conjugates with otherwise low cell permeability. In addition, the novel method developed in this study can be a good completion to existing fluorescence-based assays to investigate OATP function.
Collapse
Affiliation(s)
- Hana Kaci
- Institute of Molecular Life Sciences, RCNS, HUN-REN, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest Pázmány Péter sétány 1/C, Hungary
| | - Éva Bakos
- Institute of Molecular Life Sciences, RCNS, HUN-REN, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| | - Paul W Needs
- Food, Microbiome & Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Paul A Kroon
- Food, Microbiome & Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague CZ-142 00, Czech Republic
| | - Miklós Poór
- Molecular Medicine Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary; Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, Pécs H-7624, Hungary
| | - Csilla Özvegy-Laczka
- Institute of Molecular Life Sciences, RCNS, HUN-REN, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| |
Collapse
|
4
|
Kaci H, Bodnárová S, Fliszár-Nyúl E, Lemli B, Pelantová H, Valentová K, Bakos É, Özvegy-Laczka C, Poór M. Interaction of luteolin, naringenin, and their sulfate and glucuronide conjugates with human serum albumin, cytochrome P450 (CYP2C9, CYP2C19, and CYP3A4) enzymes and organic anion transporting polypeptide (OATP1B1 and OATP2B1) transporters. Biomed Pharmacother 2023; 157:114078. [PMID: 36481402 DOI: 10.1016/j.biopha.2022.114078] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Luteolin and naringenin are flavonoids found in various foods/beverages and present in certain dietary supplements. After a high intake of these flavonoids, their sulfate and glucuronide conjugates reach micromolar concentrations in the bloodstream. Some pharmacokinetic interactions of luteolin and naringenin have been investigated in previous studies; however, only limited data are available in regard to their metabolites. In this study, we aimed to investigate the interactions of the sulfate and glucuronic acid conjugates of luteolin and naringenin with human serum albumin, cytochrome P450 (CYP2C9, 2C19, and 3A4) enzymes, and organic anion transporting polypeptide (OATP1B1 and OATP2B1) transporters. Our main findings are as follows: (1) Sulfate conjugates formed more stable complexes with albumin than the parent flavonoids. (2) Luteolin and naringenin conjugates showed no or only weak inhibitory action on the CYP enzymes examined. (3) Certain conjugates of luteolin and naringenin are potent inhibitors of OATP1B1 and/or OATP2B1 enzymes. (4) Conjugated metabolites of luteolin and naringenin may play an important role in the pharmacokinetic interactions of these flavonoids.
Collapse
Affiliation(s)
- Hana Kaci
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary; Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary
| | - Slávka Bodnárová
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Beáta Lemli
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Green Chemistry Research Group, János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Éva Bakos
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary.
| |
Collapse
|
5
|
Xia H. Extensive metabolism of flavonoids relevant to their potential efficacy on Alzheimer's disease. Drug Metab Rev 2021; 53:563-591. [PMID: 34491868 DOI: 10.1080/03602532.2021.1977316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder, the incidence of which is climbing with ever-growing aged population, but no cure is hitherto available. The epidemiological studies unveiled that chronic intake of flavonoids was negatively associated with AD risk. Flavonoids, a family of natural polyphenols widely distributed in human daily diets, were readily conjugated by phase II drug metabolizing enzymes after absorption in vivo, and glucuronidation could occur in 1 min following intravenous administration. Recently, as many as 191 metabolites were obtained after intragastric administration of a single flavonoid, indicating that other bioactive metabolites, besides conjugates, might be formed and account for the contradiction between efficacy of flavonoids in human or animal models and low systematic exposure of flavonoid glycosides or aglycones. In this review, metabolism of complete 68 flavonoid monomers potential for AD treatment, grouped in flavonoid O-glycosides, flavonoid aglycones, flavonoid C-glycosides, flavonoid dimers, flavonolignans and prenylated flavonoids according to their common structural elements, respectively, has been systematically retrospected, summarized and discussed, including their unequivocally identified metabolites, metabolic interconversions, metabolic locations, metabolic sites (regio- or stereo-selectivity), primarily involved metabolic enzymes or intestinal bacteria, and interspecies correlations or differences in metabolism, and their bioactive metabolites and the underlying mechanism to reverse AD pathology were also reviewed, providing whole perspective about advances on extensive metabolism of diverse potent flavonoids in vivo and in vitro up to date and aiming at elucidation of mechanism of actions of flavonoids on AD or other central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Hongjun Xia
- Medical College, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
6
|
Chen M, Ren X, Sun S, Wang X, Xu X, Li X, Wang X, Li X, Yan X, Li R, Wang Y, Liu X, Dong Y, Fu X, She G. Structure, Biological Activities and Metabolism of Flavonoid Glucuronides. Mini Rev Med Chem 2021; 22:322-354. [PMID: 34036917 DOI: 10.2174/1389557521666210521221352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/04/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Flavonoid glucuronides are a kind of natural products which present a flavone linked directly with one or several glucuronides through O-glycoside bond. They had become of interest in natural product research in the past decades for their antioxidant, anti-inflammatory, and anti-bacteria activities. In particular, the compound breviscapine has a notable effect on cardio-cerebrovascular diseases. Several other compounds even have antitumor activity. METHODS Through searching the database and reading a large number of documents, we summarized the related findings of flavonoid glucuronides. RESULTS We summarized 211 naturally occurring flavonoid glucuronides in 119 references with their chemical structures, biological activities, and metabolism. A total of 220 references from 1953 to 2020 were cited in this paper according to literature databases such as CNKI, Weipu, Wanfang data, Elsevier, Springer, Wiley, NCBI, PubMed, EmBase, etc.. CONCLUSION Flavonoid glucuronides are a class of compounds with various chemical structures and a diverse range of biological activities. And they are thought to be potential candidates for drug discovery, but the specific study on their mechanisms is still limited until now. We hope this article can provide references for natural product researchers and draw more attention to flavonoid glucuronides' biological activities and mechanisms.
Collapse
Affiliation(s)
- Min Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Siqi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiuhuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiao Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoping Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiao Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xin Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ruiwen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Gaimei She
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia 750004, China
| |
Collapse
|
7
|
Farooqi AA, Butt G, El-Zahaby SA, Attar R, Sabitaliyevich UY, Jovic JJ, Tang KF, Naureen H, Xu B. Luteolin mediated targeting of protein network and microRNAs in different cancers: Focus on JAK-STAT, NOTCH, mTOR and TRAIL-mediated signaling pathways. Pharmacol Res 2020. [DOI: https://doi.org/10.1016/j.phrs.2020.105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Farooqi AA, Butt G, El-Zahaby SA, Attar R, Sabitaliyevich UY, Jovic JJ, Tang KF, Naureen H, Xu B. Luteolin mediated targeting of protein network and microRNAs in different cancers: Focus on JAK-STAT, NOTCH, mTOR and TRAIL-mediated signaling pathways. Pharmacol Res 2020; 160:105188. [PMID: 32919041 DOI: 10.1016/j.phrs.2020.105188] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
There has always been a keen interest of basic and clinical researchers to search for cancer therapeutics having minimum off-target effects and maximum anticancer activities. In accordance with this approach, there has been an explosion in the field of natural products research in the past few decades because of extra-ordinary list of natural extracts and their biologically and pharmacologically active constituents having significant medicinal properties. Apparently, luteolin-mediated anticancer effects have been investigated in different cancers but there is superfluousness of superficial data. Generalized scientific evidence encompassing apoptosis, DNA damage and anti-inflammatory effects has been reported extensively. However, how luteolin modulates deregulated oncogenic pathways in different cancers has not been comprehensively uncovered. In this review we have attempted to focus on cutting-edge research which has unveiled remarkable abilities of luteolin to modulate deregulated oncogenic pathways in different cancers. We have partitioned the review into various sections to separately discuss advancements in therapeutic targeting of oncogenic protein networks. We have provided detailed mechanistic insights related to JAK-STAT signaling and summarized how luteolin inhibited STAT proteins to inhibit STAT-driven gene network. We have also individually analyzed Wnt/β-catenin and NOTCH pathway and how luteolin effectively targeted these pathways. Mapping of the signaling landscape has revealed that NOTCH pathway can be targeted therapeutically. NOTCH pathway was noted to be targeted by luteolin. We have also conceptually analyzed how luteolin restored TRAIL-induced apoptosis in resistant cancers. Luteolin induced an increase in pro-apoptotic proteins and efficiently inhibited anti-apoptotic proteins to induce apoptosis. Luteolin mediated regulation of non-coding RNAs is an exciting and emerging facet. Excitingly, there is sequential and systematic accumulation of clues which have started to shed light on intricate regulation of microRNAs by luteolin in different cancers. Collectively, sophisticated information will enable us to develop a refined understanding of the multi-layered regulation of signaling pathways and non-coding RNAs by luteolin in different cancers.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, 44000, Pakistan.
| | | | - Sally A El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Turkey
| | - Uteuliyev Yerzhan Sabitaliyevich
- Department of Health Policy and Health Care Development, Kazakh Medical University of Continuing Education, Almaty, 050004, Kazakhstan
| | - Jovana Joksimovic Jovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, SvetozaraMarkovića 69, 34000, Kragujevac, Serbia
| | - Kai-Fu Tang
- Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Humaira Naureen
- Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, 519087, Guangdong, China.
| |
Collapse
|
9
|
Combination of luteolin and lycopene effectively protect against the “two-hit” in NAFLD through Sirt1/AMPK signal pathway. Life Sci 2020; 256:117990. [DOI: 10.1016/j.lfs.2020.117990] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023]
|