1
|
Jiang J, Zhang C, Ke L, Hayes N, Zhu Y, Qiu H, Zhang B, Zhou T, Wei GW. A review of machine learning methods for imbalanced data challenges in chemistry. Chem Sci 2025; 16:7637-7658. [PMID: 40271022 PMCID: PMC12013631 DOI: 10.1039/d5sc00270b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/06/2025] [Indexed: 04/25/2025] Open
Abstract
Imbalanced data, where certain classes are significantly underrepresented in a dataset, is a widespread machine learning (ML) challenge across various fields of chemistry, yet it remains inadequately addressed. This data imbalance can lead to biased ML or deep learning (DL) models, which fail to accurately predict the underrepresented classes, thus limiting the robustness and applicability of these models. With the rapid advancement of ML and DL algorithms, several promising solutions to this issue have emerged, prompting the need for a comprehensive review of current methodologies. In this review, we examine the prominent ML approaches used to tackle the imbalanced data challenge in different areas of chemistry, including resampling techniques, data augmentation techniques, algorithmic approaches, and feature engineering strategies. Each of these methods is evaluated in the context of its application across various aspects of chemistry, such as drug discovery, materials science, cheminformatics, and catalysis. We also explore future directions for overcoming the imbalanced data challenge and emphasize data augmentation via physical models, large language models (LLMs), and advanced mathematics. The benefit of balanced data in new material design and production and the persistent challenges are discussed. Overall, this review aims to elucidate the prevalent ML techniques applied to mitigate the impacts of imbalanced data within the field of chemistry and offer insights into future directions for research and application.
Collapse
Affiliation(s)
- Jian Jiang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University Wuhan 430200 P R. China
- Department of Mathematics, Michigan State University East Lansing Michigan 48824 USA
| | - Chunhuan Zhang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University Wuhan 430200 P R. China
| | - Lu Ke
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University Wuhan 430200 P R. China
| | - Nicole Hayes
- Department of Mathematics, Michigan State University East Lansing Michigan 48824 USA
| | - Yueying Zhu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University Wuhan 430200 P R. China
| | - Huahai Qiu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University Wuhan 430200 P R. China
| | - Bengong Zhang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University Wuhan 430200 P R. China
| | - Tianshou Zhou
- Key Laboratory of Computational Mathematics, Guangdong Province, School of Mathematics, Sun Yat-sen University Guangzhou 510006 P R. China
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University East Lansing Michigan 48824 USA
- Department of Electrical and Computer Engineering, Michigan State University East Lansing Michigan 48824 USA
- Department of Biochemistry and Molecular Biology, Michigan State University East Lansing Michigan 48824 USA
| |
Collapse
|
2
|
Zhong J, Zou Z, Qiu J, Wang S. ScFold: a GNN-based model for efficient inverse folding of short-chain proteins via spatial reduction. Brief Bioinform 2025; 26:bbaf156. [PMID: 40205854 PMCID: PMC11982017 DOI: 10.1093/bib/bbaf156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/24/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025] Open
Abstract
In the realm of protein design, the efficient construction of protein sequences that accurately fold into predefined structures has become an important area of research. Although advancements have been made in the study of long-chain proteins, the design of short-chain proteins requires equal consideration. The structural information inherent in short and single chains is typically less comprehensive than that of full-length chains, which can negatively impact their performance. To address this challenge, we introduce ScFold, a novel model that incorporates an innovative node module. This module utilizes spatial dimensionality reduction and positional encoding mechanisms to enhance the extraction of structural features. Experimental results indicate that ScFold achieves a recovery rate of 52.22$\%$ on the CATH4.2 dataset, demonstrating notable efficacy for short-chain proteins, with a recovery rate of 41.6$\%$. Additionally, ScFold further exhibits enhanced recovery rates of 59.32$\%$ and 61.59$\%$ on the TS50 and TS500 datasets, respectively, demonstrating its effectiveness across diverse protein types. Additionally, we performed protein length stratification on the TS500 and CATH4.2 datasets and tested ScFold on length-specific sub-datasets. The results confirm the model's superiority in handling short-chain proteins. Finally, we selected several protein sequence groups from the CATH4.2 dataset for structural visualization analysis and provided comparisons between the model-generated sequences and the target sequences.
Collapse
Affiliation(s)
- Jiancheng Zhong
- College of Information Science and Engineering, Hunan Normal University, 36 Lushan Road, Yuelu District, Changsha 410081, Hunan, China
| | - Zhiwei Zou
- College of Information Science and Engineering, Hunan Normal University, 36 Lushan Road, Yuelu District, Changsha 410081, Hunan, China
| | - Jie Qiu
- College of Information Science and Engineering, Hunan Normal University, 36 Lushan Road, Yuelu District, Changsha 410081, Hunan, China
| | - Shaokai Wang
- Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
3
|
Guan C, Fernandes FC, Franco OL, de la Fuente-Nunez C. Leveraging large language models for peptide antibiotic design. CELL REPORTS. PHYSICAL SCIENCE 2025; 6:102359. [PMID: 39949833 PMCID: PMC11823563 DOI: 10.1016/j.xcrp.2024.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Large language models (LLMs) have significantly impacted various domains of our society, including recent applications in complex fields such as biology and chemistry. These models, built on sophisticated neural network architectures and trained on extensive datasets, are powerful tools for designing, optimizing, and generating molecules. This review explores the role of LLMs in discovering and designing antibiotics, focusing on peptide molecules. We highlight advancements in drug design and outline the challenges of applying LLMs in these areas.
Collapse
Affiliation(s)
- Changge Guan
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- These authors contributed equally
| | - Fabiano C. Fernandes
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- Departamento de Ciência da Computação, Instituto Federal de Brasília, Campus Taguatinga, Brasília, Brazil
- These authors contributed equally
| | - Octavio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Wang Z, Yuan H, Yan J, Liu J. Identification, characterization, and design of plant genome sequences using deep learning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17190. [PMID: 39666835 DOI: 10.1111/tpj.17190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
Due to its excellent performance in processing large amounts of data and capturing complex non-linear relationships, deep learning has been widely applied in many fields of plant biology. Here we first review the application of deep learning in analyzing genome sequences to predict gene expression, chromatin interactions, and epigenetic features (open chromatin, transcription factor binding sites, and methylation sites) in plants. Then, current motif mining and functional component design and synthesis based on generative adversarial networks, large models, and attention mechanisms are elaborated in detail. The progress of protein structure and function prediction, genomic prediction, and large model applications based on deep learning is also discussed. Finally, this work provides prospects for the future development of deep learning in plants with regard to multiple omics data, algorithm optimization, large language models, sequence design, and intelligent breeding.
Collapse
Affiliation(s)
- Zhenye Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jianxiao Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
5
|
Li S, Peng L, Chen L, Que L, Kang W, Hu X, Ma J, Di Z, Liu Y. Discovery of Highly Bioactive Peptides through Hierarchical Structural Information and Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:8164-8175. [PMID: 39466714 DOI: 10.1021/acs.jcim.4c01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Peptide drugs play an essential role in modern therapeutics, but the computational design of these molecules is hindered by several challenges. Traditional methods like molecular docking and molecular dynamics (MD) simulation, as well as recent deep learning approaches, often face limitations related to computational resource demands, complex binding affinity assessments, extensive data requirements, and poor model interpretability. Here, we introduce PepHiRe, an innovative methodology that utilizes the hierarchical structural information in peptide sequences and employs a novel strategy called Ladderpath, rooted in algorithmic information theory, to rapidly generate and enhance the efficiency and clarity of novel peptide design. We applied PepHiRe to develop BH3-like peptide inhibitors targeting myeloid cell leukemia-1, a protein associated with various cancers. By analyzing just eight known bioactive BH3 peptide sequences, PepHiRe effectively derived a hierarchy of subsequences used to create new BH3-like peptides. These peptides underwent screening through MD simulations, leading to the selection of five candidates for synthesis and subsequent in vitro testing. Experimental results demonstrated that these five peptides possess high inhibitory activity, with IC50 values ranging from 28.13 ± 7.93 to 167.42 ± 22.15 nM. Our study explores a white-box model driven technique and a structured screening pipeline for identifying and generating novel peptides with potential bioactivity.
Collapse
Affiliation(s)
- Shu Li
- Centre of Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR 999078, China
| | - Lu Peng
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Liuqing Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linjie Que
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
| | - Wenqingqing Kang
- Centre of Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR 999078, China
| | - Xiaojun Hu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Jun Ma
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Zengru Di
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
| | - Yu Liu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
6
|
Satalkar V, Degaga GD, Li W, Pang YT, McShan AC, Gumbart JC, Mitchell JC, Torres MP. Generative β-hairpin design using a residue-based physicochemical property landscape. Biophys J 2024; 123:2790-2806. [PMID: 38297834 PMCID: PMC11393682 DOI: 10.1016/j.bpj.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/20/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
De novo peptide design is a new frontier that has broad application potential in the biological and biomedical fields. Most existing models for de novo peptide design are largely based on sequence homology that can be restricted based on evolutionarily derived protein sequences and lack the physicochemical context essential in protein folding. Generative machine learning for de novo peptide design is a promising way to synthesize theoretical data that are based on, but unique from, the observable universe. In this study, we created and tested a custom peptide generative adversarial network intended to design peptide sequences that can fold into the β-hairpin secondary structure. This deep neural network model is designed to establish a preliminary foundation of the generative approach based on physicochemical and conformational properties of 20 canonical amino acids, for example, hydrophobicity and residue volume, using extant structure-specific sequence data from the PDB. The beta generative adversarial network model robustly distinguishes secondary structures of β hairpin from α helix and intrinsically disordered peptides with an accuracy of up to 96% and generates artificial β-hairpin peptide sequences with minimum sequence identities around 31% and 50% when compared against the current NCBI PDB and nonredundant databases, respectively. These results highlight the potential of generative models specifically anchored by physicochemical and conformational property features of amino acids to expand the sequence-to-structure landscape of proteins beyond evolutionary limits.
Collapse
Affiliation(s)
- Vardhan Satalkar
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Gemechis D Degaga
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Wei Li
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Yui Tik Pang
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Andrew C McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Julie C Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| | - Matthew P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
7
|
Ding N, Yuan Z, Ma Z, Wu Y, Yin L. AI-Assisted Rational Design and Activity Prediction of Biological Elements for Optimizing Transcription-Factor-Based Biosensors. Molecules 2024; 29:3512. [PMID: 39124917 PMCID: PMC11313831 DOI: 10.3390/molecules29153512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The rational design, activity prediction, and adaptive application of biological elements (bio-elements) are crucial research fields in synthetic biology. Currently, a major challenge in the field is efficiently designing desired bio-elements and accurately predicting their activity using vast datasets. The advancement of artificial intelligence (AI) technology has enabled machine learning and deep learning algorithms to excel in uncovering patterns in bio-element data and predicting their performance. This review explores the application of AI algorithms in the rational design of bio-elements, activity prediction, and the regulation of transcription-factor-based biosensor response performance using AI-designed elements. We discuss the advantages, adaptability, and biological challenges addressed by the AI algorithms in various applications, highlighting their powerful potential in analyzing biological data. Furthermore, we propose innovative solutions to the challenges faced by AI algorithms in the field and suggest future research directions. By consolidating current research and demonstrating the practical applications and future potential of AI in synthetic biology, this review provides valuable insights for advancing both academic research and practical applications in biotechnology.
Collapse
Affiliation(s)
- Nana Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Zenan Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China;
| | - Yefei Wu
- Zhejiang Qianjiang Biochemical Co., Ltd., Haining 314400, China;
| | - Lianghong Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
8
|
Wang H, Liu D, Zhao K, Wang Y, Zhang G. SPDesign: protein sequence designer based on structural sequence profile using ultrafast shape recognition. Brief Bioinform 2024; 25:bbae146. [PMID: 38600663 PMCID: PMC11006797 DOI: 10.1093/bib/bbae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024] Open
Abstract
Protein sequence design can provide valuable insights into biopharmaceuticals and disease treatments. Currently, most protein sequence design methods based on deep learning focus on network architecture optimization, while ignoring protein-specific physicochemical features. Inspired by the successful application of structure templates and pre-trained models in the protein structure prediction, we explored whether the representation of structural sequence profile can be used for protein sequence design. In this work, we propose SPDesign, a method for protein sequence design based on structural sequence profile using ultrafast shape recognition. Given an input backbone structure, SPDesign utilizes ultrafast shape recognition vectors to accelerate the search for similar protein structures in our in-house PAcluster80 structure database and then extracts the sequence profile through structure alignment. Combined with structural pre-trained knowledge and geometric features, they are further fed into an enhanced graph neural network for sequence prediction. The results show that SPDesign significantly outperforms the state-of-the-art methods, such as ProteinMPNN, Pifold and LM-Design, leading to 21.89%, 15.54% and 11.4% accuracy gains in sequence recovery rate on CATH 4.2 benchmark, respectively. Encouraging results also have been achieved on orphan and de novo (designed) benchmarks with few homologous sequences. Furthermore, analysis conducted by the PDBench tool suggests that SPDesign performs well in subdivided structures. More interestingly, we found that SPDesign can well reconstruct the sequences of some proteins that have similar structures but different sequences. Finally, the structural modeling verification experiment indicates that the sequences designed by SPDesign can fold into the native structures more accurately.
Collapse
Affiliation(s)
| | | | | | - Yajun Wang
- Corresponding authors. Guijun Zhang, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China. E-mail: ; Yajun Wang, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China. E-mail:
| | - Guijun Zhang
- Corresponding authors. Guijun Zhang, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China. E-mail: ; Yajun Wang, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China. E-mail:
| |
Collapse
|
9
|
Hu X, Lin C, Chen T, Chen W. Interactive design generation and optimization from generative adversarial networks in spatial computing. Sci Rep 2024; 14:5154. [PMID: 38431717 PMCID: PMC10908823 DOI: 10.1038/s41598-024-54783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
This paper focuses on exploring the application possibilities and optimization problems of Generative Adversarial Networks (GANs) in spatial computing to improve design efficiency and creativity and achieve a more intelligent design process. A method for icon generation is proposed, and a basic architecture for icon generation is constructed. A system with generation and optimization capabilities is constructed to meet various requirements in spatial design by introducing the concept of interactive design and the characteristics of requirement conditions. Next, the generated icons can effectively maintain diversity and innovation while meeting the conditional features by integrating multi-feature recognition modules into the discriminator and optimizing the structure of conditional features. The experiment uses publicly available icon datasets, including LLD-Icon and Icons-50. The icon shape generated by the model proposed here is more prominent, and the color of colored icons can be more finely controlled. The Inception Score (IS) values under different models are compared, and it is found that the IS value of the proposed model is 7.05, which is higher than that of other GAN models. The multi-feature icon generation model based on Auxiliary Classifier GANs performs well in presenting multiple feature representations of icons. After introducing multi-feature recognition modules into the network model, the peak error of the recognition network is only 2.000 in the initial stage, while the initial error of the ordinary GAN without multi-feature recognition modules is as high as 5.000. It indicates that the improved model effectively helps the discriminative network recognize the core information of icon images more quickly. The research results provide a reference basis for achieving more efficient and innovative interactive space design.
Collapse
Affiliation(s)
- Xiaochen Hu
- School of Design and Innovation, China Academy of Art, Hangzhou, 310000, Zhejiang, China.
| | - Cun Lin
- School of Design and Innovation, China Academy of Art, Hangzhou, 310000, Zhejiang, China
| | - Tianyi Chen
- School of Design and Innovation, China Academy of Art, Hangzhou, 310000, Zhejiang, China
| | - Weibo Chen
- School of Design and Innovation, China Academy of Art, Hangzhou, 310000, Zhejiang, China
| |
Collapse
|
10
|
Guo Z, Liu J, Wang Y, Chen M, Wang D, Xu D, Cheng J. Diffusion models in bioinformatics and computational biology. NATURE REVIEWS BIOENGINEERING 2024; 2:136-154. [PMID: 38576453 PMCID: PMC10994218 DOI: 10.1038/s44222-023-00114-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 04/06/2024]
Abstract
Denoising diffusion models embody a type of generative artificial intelligence that can be applied in computer vision, natural language processing and bioinformatics. In this Review, we introduce the key concepts and theoretical foundations of three diffusion modelling frameworks (denoising diffusion probabilistic models, noise-conditioned scoring networks and score stochastic differential equations). We then explore their applications in bioinformatics and computational biology, including protein design and generation, drug and small-molecule design, protein-ligand interaction modelling, cryo-electron microscopy image data analysis and single-cell data analysis. Finally, we highlight open-source diffusion model tools and consider the future applications of diffusion models in bioinformatics.
Collapse
Affiliation(s)
- Zhiye Guo
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Jian Liu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Yanli Wang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Mengrui Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Duolin Wang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
11
|
Michalik I, Kuder KJ. Machine Learning Methods in Protein-Protein Docking. Methods Mol Biol 2024; 2780:107-126. [PMID: 38987466 DOI: 10.1007/978-1-0716-3985-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
An exponential increase in the number of publications that address artificial intelligence (AI) usage in life sciences has been noticed in recent years, while new modeling techniques are constantly being reported. The potential of these methods is vast-from understanding fundamental cellular processes to discovering new drugs and breakthrough therapies. Computational studies of protein-protein interactions, crucial for understanding the operation of biological systems, are no exception in this field. However, despite the rapid development of technology and the progress in developing new approaches, many aspects remain challenging to solve, such as predicting conformational changes in proteins, or more "trivial" issues as high-quality data in huge quantities.Therefore, this chapter focuses on a short introduction to various AI approaches to study protein-protein interactions, followed by a description of the most up-to-date algorithms and programs used for this purpose. Yet, given the considerable pace of development in this hot area of computational science, at the time you read this chapter, the development of the algorithms described, or the emergence of new (and better) ones should come as no surprise.
Collapse
Affiliation(s)
- Ilona Michalik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Kamil J Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
12
|
Barghout RA, Xu Z, Betala S, Mahadevan R. Advances in generative modeling methods and datasets to design novel enzymes for renewable chemicals and fuels. Curr Opin Biotechnol 2023; 84:103007. [PMID: 37931573 DOI: 10.1016/j.copbio.2023.103007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 11/08/2023]
Abstract
Biotechnology has revolutionized the development of sustainable energy sources by harnessing biomass as a feedstock for energy production. However, challenges such as recalcitrant feedstocks and inefficient metabolic pathways hinder the large-scale integration of renewable energy systems. Enzyme engineering has emerged as a powerful tool to address these challenges by enhancing enzyme activity, specificity, and stability. Generative machine learning (ML) models have shown great promise in accelerating protein design, allowing for the generation of novel protein sequences with desired properties by navigating vast spaces. This review paper aims to summarize the state of the art in generative models for protein design and how they can be applied to bioenergy applications, including the underlying architectures and training strategies. Additionally, it highlights the importance of high-quality datasets for training and evaluating generative models, organizes available datasets for generative protein design, and discusses the potential of applying generative models to strain design for bioenergy production.
Collapse
Affiliation(s)
- Rana A Barghout
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, Canada.
| | - Zhiqing Xu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, Canada
| | - Siddharth Betala
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, Canada
| |
Collapse
|
13
|
Mallik BB, Stanislaw J, Alawathurage TM, Khmelinskaia A. De Novo Design of Polyhedral Protein Assemblies: Before and After the AI Revolution. Chembiochem 2023; 24:e202300117. [PMID: 37014094 DOI: 10.1002/cbic.202300117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
Self-assembling polyhedral protein biomaterials have gained attention as engineering targets owing to their naturally evolved sophisticated functions, ranging from protecting macromolecules from the environment to spatially controlling biochemical reactions. Precise computational design of de novo protein polyhedra is possible through two main types of approaches: methods from first principles, using physical and geometrical rules, and more recent data-driven methods based on artificial intelligence (AI), including deep learning (DL). Here, we retrospect first principle- and AI-based approaches for designing finite polyhedral protein assemblies, as well as advances in the structure prediction of such assemblies. We further highlight the possible applications of these materials and explore how the presented approaches can be combined to overcome current challenges and to advance the design of functional protein-based biomaterials.
Collapse
Affiliation(s)
- Bhoomika Basu Mallik
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Jenna Stanislaw
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Tharindu Madhusankha Alawathurage
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Alena Khmelinskaia
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
- Current address: Department of Chemistry, Ludwig Maximillian University, 80539, Munich, Germany
| |
Collapse
|
14
|
Xie X, Valiente PA, Kim PM. HelixGAN a deep-learning methodology for conditional de novo design of α-helix structures. Bioinformatics 2023; 39:6991169. [PMID: 36651657 PMCID: PMC9887083 DOI: 10.1093/bioinformatics/btad036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
MOTIVATION Protein and peptide engineering has become an essential field in biomedicine with therapeutics, diagnostics and synthetic biology applications. Helices are both abundant structural feature in proteins and comprise a major portion of bioactive peptides. Precise design of helices for binding or biological activity is still a challenging problem. RESULTS Here, we present HelixGAN, the first generative adversarial network method to generate de novo left-handed and right-handed alpha-helix structures from scratch at an atomic level. We developed a gradient-based search approach in latent space to optimize the generation of novel α-helical structures by matching the exact conformations of selected hotspot residues. The designed α-helical structures can bind specific targets or activate cellular receptors. There is a significant agreement between the helix structures generated with HelixGAN and PEP-FOLD, a well-known de novo approach for predicting peptide structures from amino acid sequences. HelixGAN outperformed RosettaDesign, and our previously developed structural similarity method to generate D-peptides matching a set of given hotspots in a known L-peptide. As proof of concept, we designed a novel D-GLP1_1 analog that matches the conformations of critical hotspots for the GLP1 function. MD simulations revealed a stable binding mode of the D-GLP1_1 analog coupled to the GLP1 receptor. This novel D-peptide analog is more stable than our previous D-GLP1 design along the MD simulations. We envision HelixGAN as a critical tool for designing novel bioactive peptides with specific properties in the early stages of drug discovery. AVAILABILITY AND IMPLEMENTATION https://github.com/xxiexuezhi/helix_gan. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xuezhi Xie
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada,Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Pedro A Valiente
- Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | |
Collapse
|
15
|
Liu J, Zhang C, Lai L. GeoPacker: A novel deep learning framework for protein side-chain modeling. Protein Sci 2022; 31:e4484. [PMID: 36309961 PMCID: PMC9667900 DOI: 10.1002/pro.4484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
Atomic interactions play essential roles in protein folding, structure stabilization, and function performance. Recent advances in deep learning-based methods have achieved impressive success not only in protein structure prediction, but also in protein sequence design. However, highly efficient and accurate protein side-chain prediction methods that can give detailed atomic interactions are still lacking. In the present study, we developed a deep learning based method, GeoPacker, that uses geometric deep learning coupled ResNet for protein side-chain modeling. GeoPacker explicitly represents atomic interactions with rotational and translational invariance for information extraction of relative locations. GeoPacker outperformed the state-of-the-art energy function-based methods in side-chain structure prediction accuracy and runs about 10 and 700 times faster than the deep learning-based method DLPacker and OPUS-rota4 with comparable prediction accuracy, respectively. The performance of GeoPacker does not depend on the secondary structures that the residues belong to. GeoPacker gives highly accurate predictions for buried residues in the protein core as well as protein-protein interface, making it a useful tool for protein structure modeling, protein, and interaction design.
Collapse
Affiliation(s)
- Jiale Liu
- Center for Life Sciences, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Changsheng Zhang
- BNLMS, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Luhua Lai
- Center for Life Sciences, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
- BNLMS, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| |
Collapse
|
16
|
Ramos EK, Tsai CF, Jia Y, Cao Y, Manu M, Taftaf R, Hoffmann AD, El-Shennawy L, Gritsenko MA, Adorno-Cruz V, Schuster EJ, Scholten D, Patel D, Liu X, Patel P, Wray B, Zhang Y, Zhang S, Moore RJ, Mathews JV, Schipma MJ, Liu T, Tokars VL, Cristofanilli M, Shi T, Shen Y, Dashzeveg NK, Liu H. Machine learning-assisted elucidation of CD81-CD44 interactions in promoting cancer stemness and extracellular vesicle integrity. eLife 2022; 11:e82669. [PMID: 36193887 PMCID: PMC9581534 DOI: 10.7554/elife.82669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
Tumor-initiating cells with reprogramming plasticity or stem-progenitor cell properties (stemness) are thought to be essential for cancer development and metastatic regeneration in many cancers; however, elucidation of the underlying molecular network and pathways remains demanding. Combining machine learning and experimental investigation, here we report CD81, a tetraspanin transmembrane protein known to be enriched in extracellular vesicles (EVs), as a newly identified driver of breast cancer stemness and metastasis. Using protein structure modeling and interface prediction-guided mutagenesis, we demonstrate that membrane CD81 interacts with CD44 through their extracellular regions in promoting tumor cell cluster formation and lung metastasis of triple negative breast cancer (TNBC) in human and mouse models. In-depth global and phosphoproteomic analyses of tumor cells deficient with CD81 or CD44 unveils endocytosis-related pathway alterations, leading to further identification of a quality-keeping role of CD44 and CD81 in EV secretion as well as in EV-associated stemness-promoting function. CD81 is coexpressed along with CD44 in human circulating tumor cells (CTCs) and enriched in clustered CTCs that promote cancer stemness and metastasis, supporting the clinical significance of CD81 in association with patient outcomes. Our study highlights machine learning as a powerful tool in facilitating the molecular understanding of new molecular targets in regulating stemness and metastasis of TNBC.
Collapse
Affiliation(s)
- Erika K Ramos
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
- Driskill Graduate Program in Life Science, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National LaboratoryWashingtonUnited States
| | - Yuzhi Jia
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
| | - Yue Cao
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M UniversityCollege StationUnited States
| | - Megan Manu
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
| | - Rokana Taftaf
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
- Driskill Graduate Program in Life Science, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Andrew D Hoffmann
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
| | | | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National LaboratoryWashingtonUnited States
| | | | - Emma J Schuster
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
- Driskill Graduate Program in Life Science, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - David Scholten
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
- Driskill Graduate Program in Life Science, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Dhwani Patel
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
| | - Xia Liu
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
- Department of Toxicology and Cancer Biology, University of KentuckyLexingtonUnited States
| | - Priyam Patel
- Quantitative Data Science Core, Center for Genetic Medicine, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Brian Wray
- Quantitative Data Science Core, Center for Genetic Medicine, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Youbin Zhang
- Department of Medicine, Hematology/Oncology Division, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Shanshan Zhang
- Pathology Core Facility, Northwestern UniversityChicagoUnited States
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National LaboratoryWashingtonUnited States
| | - Jeremy V Mathews
- Pathology Core Facility, Northwestern UniversityChicagoUnited States
| | - Matthew J Schipma
- Quantitative Data Science Core, Center for Genetic Medicine, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National LaboratoryWashingtonUnited States
| | - Valerie L Tokars
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
| | - Massimo Cristofanilli
- Department of Medicine, Hematology/Oncology Division, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National LaboratoryWashingtonUnited States
| | - Yang Shen
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M UniversityCollege StationUnited States
| | | | - Huiping Liu
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
- Department of Medicine, Hematology/Oncology Division, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| |
Collapse
|
17
|
Zatorski N, Stein D, Rahman R, Iyengar R, Schlessinger A. Structural signatures: a web server for exploring a database of and generating protein structural features from human cell lines and tissues. Database (Oxford) 2022; 2022:6650186. [PMID: 35881481 PMCID: PMC9319604 DOI: 10.1093/database/baac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/05/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Structural features of proteins provide powerful insights into biological function and similarity. Specifically, previous work has demonstrated that structural features of tissue and drug-treated cell line samples can be used to predict tissue type and characterize drug relationships, respectively. We have developed structural signatures, a web server for annotating and analyzing protein features from gene sets that are often found in transcriptomic and proteomic data. This platform provides access to a structural feature database derived from normal and disease human tissue samples. We show how analysis using this database can shed light on the relationship between states of single-cell RNA-sequencing lung cancer samples. These various structural feature signatures can be visualized on the server itself or downloaded for additional analysis. The structural signatures server tool is freely available at https://structural-server.kinametrix.com/.
Collapse
Affiliation(s)
- Nicole Zatorski
- Department of Pharmacological Sciences, Institute for Systems Biomedicine Icahn School of Medicine at Mount Sinai , One Gustave L. Levy Place, Box 1677 New York, NY 10029, USA
| | - David Stein
- Department of Pharmacological Sciences, Institute for Systems Biomedicine Icahn School of Medicine at Mount Sinai , One Gustave L. Levy Place, Box 1677 New York, NY 10029, USA
| | - Rayees Rahman
- Department of Pharmacological Sciences, Institute for Systems Biomedicine Icahn School of Medicine at Mount Sinai , One Gustave L. Levy Place, Box 1677 New York, NY 10029, USA
| | - Ravi Iyengar
- Department of Pharmacological Sciences, Institute for Systems Biomedicine Icahn School of Medicine at Mount Sinai , One Gustave L. Levy Place, Box 1677 New York, NY 10029, USA
- Institute for Systems Biomedicine Icahn School of Medicine at Mount Sinai , One Gustave L. Levy Place, Box 1215 New York, NY 10029, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Institute for Systems Biomedicine Icahn School of Medicine at Mount Sinai , One Gustave L. Levy Place, Box 1677 New York, NY 10029, USA
| |
Collapse
|
18
|
Freschlin CR, Fahlberg SA, Romero PA. Machine learning to navigate fitness landscapes for protein engineering. Curr Opin Biotechnol 2022; 75:102713. [PMID: 35413604 PMCID: PMC9177649 DOI: 10.1016/j.copbio.2022.102713] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/05/2022] [Accepted: 02/28/2022] [Indexed: 11/19/2022]
Abstract
Machine learning (ML) is revolutionizing our ability to understand and predict the complex relationships between protein sequence, structure, and function. Predictive sequence-function models are enabling protein engineers to efficiently search the sequence space for useful proteins with broad applications in biotechnology. In this review, we highlight the recent advances in applying ML to protein engineering. We discuss supervised learning methods that infer the sequence-function mapping from experimental data and new sequence representation strategies for data-efficient modeling. We then describe the various ways in which ML can be incorporated into protein engineering workflows, including purely in silico searches, ML-assisted directed evolution, and generative models that can learn the underlying distribution of the protein function in a sequence space. ML-driven protein engineering will become increasingly powerful with continued advances in high-throughput data generation, data science, and deep learning.
Collapse
Affiliation(s)
- Chase R Freschlin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah A Fahlberg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Philip A Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA; Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
19
|
Ding W, Nakai K, Gong H. Protein design via deep learning. Brief Bioinform 2022; 23:bbac102. [PMID: 35348602 PMCID: PMC9116377 DOI: 10.1093/bib/bbac102] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
Proteins with desired functions and properties are important in fields like nanotechnology and biomedicine. De novo protein design enables the production of previously unseen proteins from the ground up and is believed as a key point for handling real social challenges. Recent introduction of deep learning into design methods exhibits a transformative influence and is expected to represent a promising and exciting future direction. In this review, we retrospect the major aspects of current advances in deep-learning-based design procedures and illustrate their novelty in comparison with conventional knowledge-based approaches through noticeable cases. We not only describe deep learning developments in structure-based protein design and direct sequence design, but also highlight recent applications of deep reinforcement learning in protein design. The future perspectives on design goals, challenges and opportunities are also comprehensively discussed.
Collapse
Affiliation(s)
- Wenze Ding
- School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China
- School of Future Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Kenta Nakai
- Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Talluri S. Algorithms for protein design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:1-38. [PMID: 35534105 DOI: 10.1016/bs.apcsb.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Computational Protein Design has the potential to contribute to major advances in enzyme technology, vaccine design, receptor-ligand engineering, biomaterials, nanosensors, and synthetic biology. Although Protein Design is a challenging problem, proteins can be designed by experts in Protein Design, as well as by non-experts whose primary interests are in the applications of Protein Design. The increased accessibility of Protein Design technology is attributable to the accumulated knowledge and experience with Protein Design as well as to the availability of software and online resources. The objective of this review is to serve as a guide to the relevant literature with a focus on the novel methods and algorithms that have been developed or applied for Protein Design, and to assist in the selection of algorithms for Protein Design. Novel algorithms and models that have been introduced to utilize the enormous amount of experimental data and novel computational hardware have the potential for producing substantial increases in the accuracy, reliability and range of applications of designed proteins.
Collapse
Affiliation(s)
- Sekhar Talluri
- Department of Biotechnology, GITAM, Visakhapatnam, India.
| |
Collapse
|
21
|
Lin E, Lin CH, Lane HY. De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update. J Chem Inf Model 2022; 62:761-774. [DOI: 10.1021/acs.jcim.1c01361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eugene Lin
- Department of Biostatistics, University of Washington, Seattle, Washington 98195, United States
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung 40447, Taiwan
- Brain Disease Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
22
|
Deep generative modeling for protein design. Curr Opin Struct Biol 2021; 72:226-236. [PMID: 34963082 DOI: 10.1016/j.sbi.2021.11.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022]
Abstract
Deep learning approaches have produced substantial breakthroughs in fields such as image classification and natural language processing and are making rapid inroads in the area of protein design. Many generative models of proteins have been developed that encompass all known protein sequences, model specific protein families, or extrapolate the dynamics of individual proteins. Those generative models can learn protein representations that are often more informative of protein structure and function than hand-engineered features. Furthermore, they can be used to quickly propose millions of novel proteins that resemble the native counterparts in terms of expression level, stability, or other attributes. The protein design process can further be guided by discriminative oracles to select candidates with the highest probability of having the desired properties. In this review, we discuss five classes of generative models that have been most successful at modeling proteins and provide a framework for model guided protein design.
Collapse
|
23
|
De novo protein design by deep network hallucination. Nature 2021; 600:547-552. [PMID: 34853475 DOI: 10.1038/s41586-021-04184-w] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/21/2021] [Indexed: 12/25/2022]
Abstract
There has been considerable recent progress in protein structure prediction using deep neural networks to predict inter-residue distances from amino acid sequences1-3. Here we investigate whether the information captured by such networks is sufficiently rich to generate new folded proteins with sequences unrelated to those of the naturally occurring proteins used in training the models. We generate random amino acid sequences, and input them into the trRosetta structure prediction network to predict starting residue-residue distance maps, which, as expected, are quite featureless. We then carry out Monte Carlo sampling in amino acid sequence space, optimizing the contrast (Kullback-Leibler divergence) between the inter-residue distance distributions predicted by the network and background distributions averaged over all proteins. Optimization from different random starting points resulted in novel proteins spanning a wide range of sequences and predicted structures. We obtained synthetic genes encoding 129 of the network-'hallucinated' sequences, and expressed and purified the proteins in Escherichia coli; 27 of the proteins yielded monodisperse species with circular dichroism spectra consistent with the hallucinated structures. We determined the three-dimensional structures of three of the hallucinated proteins, two by X-ray crystallography and one by NMR, and these closely matched the hallucinated models. Thus, deep networks trained to predict native protein structures from their sequences can be inverted to design new proteins, and such networks and methods should contribute alongside traditional physics-based models to the de novo design of proteins with new functions.
Collapse
|
24
|
Defresne M, Barbe S, Schiex T. Protein Design with Deep Learning. Int J Mol Sci 2021; 22:11741. [PMID: 34769173 PMCID: PMC8584038 DOI: 10.3390/ijms222111741] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/21/2022] Open
Abstract
Computational Protein Design (CPD) has produced impressive results for engineering new proteins, resulting in a wide variety of applications. In the past few years, various efforts have aimed at replacing or improving existing design methods using Deep Learning technology to leverage the amount of publicly available protein data. Deep Learning (DL) is a very powerful tool to extract patterns from raw data, provided that data are formatted as mathematical objects and the architecture processing them is well suited to the targeted problem. In the case of protein data, specific representations are needed for both the amino acid sequence and the protein structure in order to capture respectively 1D and 3D information. As no consensus has been reached about the most suitable representations, this review describes the representations used so far, discusses their strengths and weaknesses, and details their associated DL architecture for design and related tasks.
Collapse
Affiliation(s)
- Marianne Defresne
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, ANITI, 31077 Toulouse, France; (M.D.); (S.B.)
- Université Fédérale de Toulouse, ANITI, INRAE, UR 875, 31326 Toulouse, France
| | - Sophie Barbe
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, ANITI, 31077 Toulouse, France; (M.D.); (S.B.)
| | - Thomas Schiex
- Université Fédérale de Toulouse, ANITI, INRAE, UR 875, 31326 Toulouse, France
| |
Collapse
|
25
|
Kosugi T, Ohue M. Quantitative Estimate Index for Early-Stage Screening of Compounds Targeting Protein-Protein Interactions. Int J Mol Sci 2021; 22:10925. [PMID: 34681589 PMCID: PMC8539639 DOI: 10.3390/ijms222010925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/02/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Drug-likeness quantification is useful for screening drug candidates. Quantitative estimates of drug-likeness (QED) are commonly used to assess quantitative drug efficacy but are not suitable for screening compounds targeting protein-protein interactions (PPIs), which have recently gained attention. Therefore, we developed a quantitative estimate index for compounds targeting PPIs (QEPPI), specifically for early-stage screening of PPI-targeting compounds. QEPPI is an extension of the QED method for PPI-targeting drugs that models physicochemical properties based on the information available for drugs/compounds, specifically those reported to act on PPIs. FDA-approved drugs and compounds in iPPI-DB, which comprise PPI inhibitors and stabilizers, were evaluated using QEPPI. The results showed that QEPPI is more suitable than QED for early screening of PPI-targeting compounds. QEPPI was also considered an extended concept of the "Rule-of-Four" (RO4), a PPI inhibitor index. We evaluated the discriminatory performance of QEPPI and RO4 for datasets of PPI-target compounds and FDA-approved drugs using F-score and other indices. The F-scores of RO4 and QEPPI were 0.451 and 0.501, respectively. QEPPI showed better performance and enabled quantification of drug-likeness for early-stage PPI drug discovery. Hence, it can be used as an initial filter to efficiently screen PPI-targeting compounds.
Collapse
Affiliation(s)
| | - Masahito Ohue
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, G3-56-4259 Nagatsutacho, Midori-ku, Yokohama 226-8501, Kanagawa, Japan;
| |
Collapse
|
26
|
Sacha M, Błaż M, Byrski P, Dąbrowski-Tumański P, Chromiński M, Loska R, Włodarczyk-Pruszyński P, Jastrzębski S. Molecule Edit Graph Attention Network: Modeling Chemical Reactions as Sequences of Graph Edits. J Chem Inf Model 2021; 61:3273-3284. [PMID: 34251814 DOI: 10.1021/acs.jcim.1c00537] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The central challenge in automated synthesis planning is to be able to generate and predict outcomes of a diverse set of chemical reactions. In particular, in many cases, the most likely synthesis pathway cannot be applied due to additional constraints, which requires proposing alternative chemical reactions. With this in mind, we present Molecule Edit Graph Attention Network (MEGAN), an end-to-end encoder-decoder neural model. MEGAN is inspired by models that express a chemical reaction as a sequence of graph edits, akin to the arrow pushing formalism. We extend this model to retrosynthesis prediction (predicting substrates given the product of a chemical reaction) and scale it up to large data sets. We argue that representing the reaction as a sequence of edits enables MEGAN to efficiently explore the space of plausible chemical reactions, maintaining the flexibility of modeling the reaction in an end-to-end fashion and achieving state-of-the-art accuracy in standard benchmarks. Code and trained models are made available online at https://github.com/molecule-one/megan.
Collapse
Affiliation(s)
| | | | | | - Paweł Dąbrowski-Tumański
- Molecule One, Warsaw 00-815, Poland.,Faculty of Mathematics and Natural Sciences, School of Exact Sciences, Cardinal Stefan Wyszynski University, Warsaw 01-815, Poland
| | | | - Rafał Loska
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland
| | | | | |
Collapse
|
27
|
Cao Y, Das P, Chenthamarakshan V, Chen PY, Melnyk I, Shen Y. Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design. PROCEEDINGS OF MACHINE LEARNING RESEARCH 2021; 139:1261-1271. [PMID: 34423306 PMCID: PMC8375603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Designing novel protein sequences for a desired 3D topological fold is a fundamental yet nontrivial task in protein engineering. Challenges exist due to the complex sequence-fold relationship, as well as the difficulties to capture the diversity of the sequences (therefore structures and functions) within a fold. To overcome these challenges, we propose Fold2Seq, a novel transformer-based generative framework for designing protein sequences conditioned on a specific target fold. To model the complex sequence-structure relationship, Fold2Seq jointly learns a sequence embedding using a transformer and a fold embedding from the density of secondary structural elements in 3D voxels. On test sets with single, high-resolution and complete structure inputs for individual folds, our experiments demonstrate improved or comparable performance of Fold2Seq in terms of speed, coverage, and reliability for sequence design, when compared to existing state-of-the-art methods that include data-driven deep generative models and physics-based RosettaDesign. The unique advantages of fold-based Fold2Seq, in comparison to a structure-based deep model and RosettaDesign, become more evident on three additional real-world challenges originating from low-quality, incomplete, or ambiguous input structures. Source code and data are available at https://github.com/IBM/fold2seq.
Collapse
Affiliation(s)
- Yue Cao
- IBM Research
- Texas A&M University
| | | | | | | | | | | |
Collapse
|
28
|
Tripathi MK, Nath A, Singh TP, Ethayathulla AS, Kaur P. Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery. Mol Divers 2021; 25:1439-1460. [PMID: 34159484 PMCID: PMC8219515 DOI: 10.1007/s11030-021-10256-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022]
Abstract
The accumulation of massive data in the plethora of Cheminformatics databases has made the role of big data and artificial intelligence (AI) indispensable in drug design. This has necessitated the development of newer algorithms and architectures to mine these databases and fulfil the specific needs of various drug discovery processes such as virtual drug screening, de novo molecule design and discovery in this big data era. The development of deep learning neural networks and their variants with the corresponding increase in chemical data has resulted in a paradigm shift in information mining pertaining to the chemical space. The present review summarizes the role of big data and AI techniques currently being implemented to satisfy the ever-increasing research demands in drug discovery pipelines.
Collapse
Affiliation(s)
- Manish Kumar Tripathi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Abhigyan Nath
- Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, 492001, India
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - A S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
29
|
Osadchy M, Kolodny R. How Deep Learning Tools Can Help Protein Engineers Find Good Sequences. J Phys Chem B 2021; 125:6440-6450. [PMID: 34105961 DOI: 10.1021/acs.jpcb.1c02449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The deep learning revolution introduced a new and efficacious way to address computational challenges in a wide range of fields, relying on large data sets and powerful computational resources. In protein engineering, we consider the challenge of computationally predicting properties of a protein and designing sequences with these properties. Indeed, accurate and fast deep network oracles for different properties of proteins have been developed. These learn to predict a property from an amino acid sequence by training on large sets of proteins that have this property. In particular, deep networks can learn from the set of all known protein sequences to identify ones that are protein-like. A fundamental challenge when engineering sequences that are both protein-like and satisfy a desired property is that these are rare instances within the vast space of all possible ones. When searching for these very rare instances, one would like to use good sampling procedures. Sampling approaches that are decoupled from the prediction of the property or in which the predictor uses only post-sampling to identify good instances are less efficient. The alternative is to use sampling methods that are geared to generate sequences satisfying and/or optimizing the predictor's desired properties. Deep learning has a class of architectures, denoted as generative models, which offer the capability of sampling from the learned distribution of a predicted property. Here, we review the use of deep learning tools to find good sequences for protein engineering, including developing oracles/predictors of a property of the proteins and methods that sample from a distribution of protein-like sequences to optimize the desired property.
Collapse
Affiliation(s)
- Margarita Osadchy
- Department of Computer Science, Jacobs Building, University of Haifa, 199 Aba Houshi Road, Mount Carmel, Haifa, Israel 3498838
| | - Rachel Kolodny
- Department of Computer Science, Jacobs Building, University of Haifa, 199 Aba Houshi Road, Mount Carmel, Haifa, Israel 3498838
| |
Collapse
|
30
|
Narayanan H, Dingfelder F, Butté A, Lorenzen N, Sokolov M, Arosio P. Machine Learning for Biologics: Opportunities for Protein Engineering, Developability, and Formulation. Trends Pharmacol Sci 2021; 42:151-165. [DOI: 10.1016/j.tips.2020.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
|
31
|
Pan X, Kortemme T. Recent advances in de novo protein design: Principles, methods, and applications. J Biol Chem 2021; 296:100558. [PMID: 33744284 PMCID: PMC8065224 DOI: 10.1016/j.jbc.2021.100558] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
The computational de novo protein design is increasingly applied to address a number of key challenges in biomedicine and biological engineering. Successes in expanding applications are driven by advances in design principles and methods over several decades. Here, we review recent innovations in major aspects of the de novo protein design and include how these advances were informed by principles of protein architecture and interactions derived from the wealth of structures in the Protein Data Bank. We describe developments in de novo generation of designable backbone structures, optimization of sequences, design scoring functions, and the design of the function. The advances not only highlight design goals reachable now but also point to the challenges and opportunities for the future of the field.
Collapse
Affiliation(s)
- Xingjie Pan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA; UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, California, USA.
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA; UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
32
|
Affiliation(s)
- Kenneth M Merz
- Department of Chemistry, Michigan State University, Michigan, East Lansing 48824, United States
| | - Gianni De Fabritiis
- Computational Science Laboratory, Barcelona Biomedical Research Park (PRBB), Universitat Pompeu Fabra, C Dr Aiguader 88, 08003 Barcelona, Spain
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, Michigan, East Lansing 48824, United States
| |
Collapse
|
33
|
Gao W, Mahajan SP, Sulam J, Gray JJ. Deep Learning in Protein Structural Modeling and Design. PATTERNS (NEW YORK, N.Y.) 2020; 1:100142. [PMID: 33336200 PMCID: PMC7733882 DOI: 10.1016/j.patter.2020.100142] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Deep learning is catalyzing a scientific revolution fueled by big data, accessible toolkits, and powerful computational resources, impacting many fields, including protein structural modeling. Protein structural modeling, such as predicting structure from amino acid sequence and evolutionary information, designing proteins toward desirable functionality, or predicting properties or behavior of a protein, is critical to understand and engineer biological systems at the molecular level. In this review, we summarize the recent advances in applying deep learning techniques to tackle problems in protein structural modeling and design. We dissect the emerging approaches using deep learning techniques for protein structural modeling and discuss advances and challenges that must be addressed. We argue for the central importance of structure, following the "sequence → structure → function" paradigm. This review is directed to help both computational biologists to gain familiarity with the deep learning methods applied in protein modeling, and computer scientists to gain perspective on the biologically meaningful problems that may benefit from deep learning techniques.
Collapse
Affiliation(s)
- Wenhao Gao
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sai Pooja Mahajan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeremias Sulam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|