1
|
Bosch A, Guzman HV, Pérez R. Adsorption-Driven Deformation and Footprints of the RBD Proteins in SARS-CoV-2 Variants on Biological and Inanimate Surfaces. J Chem Inf Model 2024; 64:5977-5990. [PMID: 39083670 PMCID: PMC11323246 DOI: 10.1021/acs.jcim.4c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024]
Abstract
Respiratory viruses, carried through airborne microdroplets, frequently adhere to surfaces, including plastics and metals. However, our understanding of the interactions between viruses and materials remains limited, particularly in scenarios involving polarizable surfaces. Here, we investigate the role of the receptor-binding domain (RBD) of the spike protein mutations on the adsorption of SARS-CoV-2 to hydrophobic and hydrophilic surfaces employing molecular simulations. To contextualize our findings, we contrast the interactions on inanimate surfaces with those on native biological interfaces, specifically the angiotensin-converting enzyme 2. Notably, we identify a 2-fold increase in structural deformations for the protein's receptor binding motif (RBM) onto inanimate surfaces, indicative of enhanced shock-absorbing mechanisms. Furthermore, the distribution of adsorbed amino acids (landing footprints) on the inanimate surface reveals a distinct regional asymmetry relative to the biological interface, with roughly half of the adsorbed amino acids arranged in opposite sites. In spite of the H-bonds formed at the hydrophilic substrate, the simulations consistently show a higher number of contacts and interfacial area with the hydrophobic surface, where the wild-type RBD adsorbs more strongly than the Delta or Omicron RBDs. In contrast, the adsorption of Delta and Omicron to hydrophilic surfaces was characterized by a distinctive hopping-pattern. The novel shock-absorbing mechanisms identified in the virus adsorption on inanimate surfaces show the embedded high-deformation capacity of the RBD without losing its secondary structure, which could lead to current experimental strategies in the design of virucidal surfaces.
Collapse
Affiliation(s)
- Antonio
M. Bosch
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Horacio V. Guzman
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Department
of Theoretical Physics, Jožef Stefan
Institute, SI-1000 Ljubljana, Slovenia
| | - Rubén Pérez
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
2
|
Muthukumaran R, Sankararamakrishnan R. Differences in the Membrane-Binding Properties of Flaviviral Nonstructural 1 (NS1) Protein: Comparative Simulations of Zika and Dengue Virus NS1 Proteins in Explicit Bilayers. ACS BIO & MED CHEM AU 2024; 4:137-153. [PMID: 38911907 PMCID: PMC11191575 DOI: 10.1021/acsbiomedchemau.3c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 06/25/2024]
Abstract
NS1 in flaviviruses is the only nonstructural protein that is secretory and interacts with different cellular components of the host cell membrane. NS1 is localized in the ER as a dimer to facilitate viral replication. Crystal structures of NS1 homologues from zika (ZIKV) and dengue (DENV) viruses have revealed the organization of different domains in NS1 dimers. The β-roll and the connector and intertwined loop regions of wing domains of NS1 have been shown to interact with the membranes. In this study, we have performed multiple molecular dynamics (MD) simulations of ZIKV and DENV NS1 systems in apo and in POPE bilayers with different cholesterol concentrations (0, 20 and 40%). The NS1 protein was placed just above the membrane surface, and for each NS1-membrane system two to three independent simulations with 600 ns production run were performed. At the end of the production runs, ZIKV NS1 inserts deeper inside the membrane compared to the DENV counterpart. Unlike ZIKV NS1, the orientation of DENV NS1 is asymmetric in which one of the chains in the dimer interacts with the membrane while the other is more exposed to the solvent. The β-roll region in ZIKV NS1 penetrates beyond the headgroup region and interacts with the lipid acyl chains while the C-terminal region barely interacts with the headgroup. Specific residues in the intertwined region deeply penetrate inside the membrane. The role of charged and aromatic residues of ZIKV NS1 in strongly interacting with the membrane components is revealed. The presence of cholesterol affects the extent of insertion in the membrane and interaction of individual residues. Overall, membrane-binding properties of ZIKV NS1 significantly differ from its counterpart in DENV. The differences found in the binding and insertion of NS1 can be used to design drugs and novel antibodies that can be flavivirus specific.
Collapse
Affiliation(s)
- Rajagopalan Muthukumaran
- Department
of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ramasubbu Sankararamakrishnan
- Department
of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Mehta
Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
3
|
Kapuganti SK, Saumya KU, Verma D, Giri R. Investigating the aggregation perspective of Dengue virus proteome. Virology 2023; 586:12-22. [PMID: 37473502 DOI: 10.1016/j.virol.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Dengue viruses are human pathogens that are transmitted through mosquitoes. Apart from the typical symptoms associated with viral fevers, DENV infections are known to cause several neurological complications such as meningitis, encephalitis, intracranial haemorrhage, retinopathies along with the more severe, and sometimes fatal, vascular leakage and dengue shock syndrome. This study was designed to investigate, in detail, the predicted viral protein aggregation prone regions among all serotypes. Further, in order to understand the cross-talk between viral protein aggregation and aggregation of cellular proteins, cross-seeding experiments between the DENV NS1 (1-30), corresponding to the β-roll domain and the diabetes hallmark protein, amylin, were performed. Various techniques such as fluorescence spectroscopy, circular dichroism, atomic force microscopy and immunoblotting have been employed for this. We observe that the DENV proteomes have many predicted APRs and the NS1 (1-30) of DENV1-3, 2K and capsid anchor of DENV2 and DENV4 are capable of forming amyloids, in vitro. Further, the DENV NS1 (1-30), aggregates are also able to cross-seed and enhance amylin aggregation and vice-versa. This knowledge may lead to an opportunity for designing suitable inhibitors of protein aggregation that may be beneficial for viral infections and comorbidities.
Collapse
Affiliation(s)
- Shivani Krishna Kapuganti
- Indian Institute of Technology Mandi, School of Basic Sciences, VPO Kamand, Himachal Pradesh, 175005, India
| | - Kumar Udit Saumya
- Indian Institute of Technology Mandi, School of Basic Sciences, VPO Kamand, Himachal Pradesh, 175005, India
| | - Deepanshu Verma
- Indian Institute of Technology Mandi, School of Basic Sciences, VPO Kamand, Himachal Pradesh, 175005, India
| | - Rajanish Giri
- Indian Institute of Technology Mandi, School of Basic Sciences, VPO Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
4
|
Saivish MV, Menezes GDL, da Silva RA, Fontoura MA, Shimizu JF, da Silva GCD, Teixeira IDS, Mistrão NFB, Hernandes VM, Rahal P, Sacchetto L, Pacca CC, Marques RE, Nogueira ML. Antiviral Activity of Quercetin Hydrate against Zika Virus. Int J Mol Sci 2023; 24:7504. [PMID: 37108665 PMCID: PMC10144977 DOI: 10.3390/ijms24087504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 04/29/2023] Open
Abstract
Zika virus (ZIKV) has re-emerged in recent decades, leading to outbreaks of Zika fever in Africa, Asia, and Central and South America. Despite its drastic re-emergence and clinical impact, no vaccines or antiviral compounds are available to prevent or control ZIKV infection. This study evaluated the potential antiviral activity of quercetin hydrate against ZIKV infection and demonstrated that this substance inhibits virus particle production in A549 and Vero cells under different treatment conditions. In vitro antiviral activity was long-lasting (still observed 72 h post-infection), suggesting that quercetin hydrate affects multiple rounds of ZIKV replication. Molecular docking indicates that quercetin hydrate can efficiently interact with the specific allosteric binding site cavity of the NS2B-NS3 proteases and NS1-dimer. These results identify quercetin as a potential compound to combat ZIKV infection in vitro.
Collapse
Affiliation(s)
- Marielena Vogel Saivish
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Gabriela de Lima Menezes
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, RN, Brazil
- Unidade Especial de Ciências Exatas, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil
| | | | - Marina Alves Fontoura
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Jacqueline Farinha Shimizu
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Gislaine Celestino Dutra da Silva
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Igor da Silva Teixeira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Natalia Franco Bueno Mistrão
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Victor Miranda Hernandes
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto 15054-000, SP, Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Carolina Colombelli Pacca
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto 15054-000, SP, Brazil
- Departamento de Microbiologia, Faceres Medical School, São José do Rio Preto 15090-000, SP, Brazil
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| |
Collapse
|
5
|
Poveda Cuevas SA, Barroso da Silva FL, Etchebest C. NS1 from Two Zika Virus Strains Differently Interact with a Membrane: Insights to Understand Their Differential Virulence. J Chem Inf Model 2023; 63:1386-1400. [PMID: 36780300 DOI: 10.1021/acs.jcim.2c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Zika virus (ZIKV) from Uganda (UG) expresses a phenotype related to fetal loss, whereas the variant from Brazil (BR) induces microcephaly in neonates. The differential virulence has a direct relation to biomolecular mechanisms that make one strain more aggressive than the other. The nonstructural protein 1 (NS1) is a key viral toxin to comprehend these viral discrepancies because of its versatility in many processes of the virus life cycle. Here, we aim to examine through coarse-grained models and molecular dynamics simulations the protein-membrane interactions for both NS1ZIKV-UG and NS1ZIKV-BR dimers. A first evaluation allowed us to establish that the NS1 proteins, in the membrane presence, explore new conformational spaces when compared to systems simulated without a lipid bilayer. These events derive from both differential coupling patterns and discrepant binding affinities to the membrane. The N-terminal domain, intertwined loop, and greasy finger proposed previously as binding membrane regions were also computationally confirmed by us. The anchoring sites have aromatic and ionizable residues that manage the assembly of NS1 toward the membrane, especially for the Ugandan variant. Furthermore, in the presence of the membrane, the difference in the dynamic cross-correlation of residues between the two strains is particularly pronounced in the putative epitope regions. This suggests that the protein-membrane interaction induces changes in the distal part related to putative epitopes. Taken together, these results open up new strategies for the treatment of flaviviruses that would specifically target these dynamic differences.
Collapse
Affiliation(s)
- Sergio Alejandro Poveda Cuevas
- Programa Interunidades em Bioinformática, Universidade de São Paulo, Rua do Matão, 1010, São Paulo, São Paulo BR-05508-090, Brazil.,Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/no-Campus da USP, Ribeirão Preto, São Paulo BR-14040-903, Brazil.,Goethe University Frankfurt, Institute of Biochemistry II, Theodor-Stern-Kai 7, Frankfurt am Main, Hesse DE-60590, Germany.,Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Av. do Café, s/no-Campus da USP, Bloco B, Ribeirão Preto, São Paulo BR-14040-903, Brazil
| | - Fernando L Barroso da Silva
- Programa Interunidades em Bioinformática, Universidade de São Paulo, Rua do Matão, 1010, São Paulo, São Paulo BR-05508-090, Brazil.,Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/no-Campus da USP, Ribeirão Preto, São Paulo BR-14040-903, Brazil.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Av. do Café, s/no-Campus da USP, Bloco B, Ribeirão Preto, São Paulo BR-14040-903, Brazil
| | - Catherine Etchebest
- Université Paris Cité and Université des Antilles, INSERM, Biologie Intégrée du Globule Rouge, F-75015 Paris, France.,Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Av. do Café, s/no-Campus da USP, Bloco B, Ribeirão Preto, São Paulo BR-14040-903, Brazil
| |
Collapse
|
6
|
Cooper CD, Addison-Smith I, Guzman HV. Quantitative electrostatic force tomography for virus capsids in interaction with an approaching nanoscale probe. NANOSCALE 2022; 14:12232-12237. [PMID: 35975473 DOI: 10.1039/d2nr02526d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrostatic interactions are crucial for the assembly, disassembly and stability of proteinaceous viral capsids. Moreover, at the molecular scale, elucidating the organization and structure of the capsid proteins in response to an approaching nanoprobe is a major challenge in biomacromolecular research. Here, we report on a generalized electrostatic model, based on the Poisson-Boltzmann equation, that quantifies the subnanometric electrostatic interactions between an AFM tip and a proteinaceous capsid from molecular snapshots. This allows us to describe the contributions of specific amino acids and atoms to the interaction force. We show validation results in terms of total electrostatic forces with previous semi-empirical generalized models at available length scales (d > 1 nm). Then, we studied the interaction of the Zika capsid with conical and spherical AFM tips in a tomography-type analysis to identify the most important residues and atoms, showing the localized nature of the interaction. This method can be employed for the interpretation of force microscopy experiments in fundamental virological characterization and in diverse nanomedicine applications, where specific regions of the protein cages are aimed to electrostatically interact with molecular sized functionalized inhibitors, or tailoring protein-cage functional properties for nucleic acid delivery.
Collapse
Affiliation(s)
- Christopher D Cooper
- Department of Mechanical Engineering, Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile
- Centro Científico Tecnológico de Valparaíso (CCTVal), 2390123 Valparaíso, Chile
| | - Ian Addison-Smith
- Department of Mechanical Engineering, Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile
| | - Horacio V Guzman
- Department of Theoretical Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
7
|
Structural dynamics of Zika virus NS1 via a reductionist approach reveal the disordered nature of its β-roll domain in isolation. Virology 2022; 573:72-83. [PMID: 35724498 DOI: 10.1016/j.virol.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
Flavivirus Non-structural 1 (NS1) protein performs multiple functions and it is highly plausible that significant structural and folding dynamics of NS1 might play a role in its multifunctionality. It is important to understand the structural conformations of NS1 and its domains in isolation, possibly highlighting the implications on the overall NS1 protein dynamics. Therefore, we have employed extensively long molecular dynamic (MD) simulations in understanding the dynamics of the three structural domains (i.e., β-roll, wing, and β-ladder) in isolation, as a reductionist approach. We also found that the β-ladder domain is highly flexible, while the β-roll domain is disordered during long simulations. Further, we experimentally validated our findings using CD spectroscopy and confirmed the intrinsically disordered behavior of NS1 β-roll in isolation and lipid mimetic environments. Therefore, we believe this study may have implications for significant dynamics played by NS1 protein, specifically during oligomerization of NS1.
Collapse
|
8
|
Poveda-Cuevas SA, Etchebest C, da Silva FLB. Self-association features of NS1 proteins from different flaviviruses. Virus Res 2022; 318:198838. [PMID: 35662566 DOI: 10.1016/j.virusres.2022.198838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/22/2022]
Abstract
Flaviviruses comprise a large group of arboviral species that are distributed in several countries of the tropics, neotropics, and some temperate zones. Since they can produce neurological pathologies or vascular damage, there has been intense research seeking better diagnosis and treatments for their infections in the last decades. The flavivirus NS1 protein is a relevant clinical target because it is involved in viral replication, immune evasion, and virulence. Being a key factor in endothelial and tissue-specific modulation, NS1 has been largely studied to understand the molecular mechanisms exploited by the virus to reprogram host cells. A central part of the viral maturation processes is the NS1 oligomerization because many stages rely on these protein-protein assemblies. In the present study, the self-associations of NS1 proteins from Zika, Dengue, and West Nile viruses are examined through constant-pH coarse-grained biophysical simulations. Free energies of interactions were estimated for different oligomeric states and pH conditions. Our results show that these proteins can form both dimers and tetramers under conditions near physiological pH even without the presence of lipids. Moreover, pH plays an important role mainly controlling the regimes where van der Waals interactions govern their association. Finally, despite the similarity at the sequence level, we found that each flavivirus has a well-characteristic protein-protein interaction profile. These specific features can provide new hints for the development of binders both for better diagnostic tools and the formulation of new therapeutic drugs.
Collapse
Affiliation(s)
- Sergio A Poveda-Cuevas
- Universidade de São Paulo, Programa Interunidades em Bioinformática, Rua do Matão, 1010, BR-05508-090 São Paulo, São Paulo, Brazil; Universidade de São Paulo, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, BR-14040-903 Ribeirão Preto, São Paulo, Brazil; University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, Bloco B, BR-14040-903 Ribeirão Preto, São Paulo, Brazil.; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Catherine Etchebest
- Université Paris Cité, Biologie Intégrée du Globule Rouge, Equipe 2, INSERM, F-75015 Paris, France; University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, Bloco B, BR-14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Fernando L Barroso da Silva
- Universidade de São Paulo, Programa Interunidades em Bioinformática, Rua do Matão, 1010, BR-05508-090 São Paulo, São Paulo, Brazil; Universidade de São Paulo, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, BR-14040-903 Ribeirão Preto, São Paulo, Brazil; University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, Bloco B, BR-14040-903 Ribeirão Preto, São Paulo, Brazil..
| |
Collapse
|
9
|
Lubna S, Chinta S, Burra P, Vedantham K, Ray S, Bandyopadhyay D. New substitutions on NS1 protein from influenza A (H1N1) virus: Bioinformatics analyses of Indian strains isolated from 2009 to 2020. Health Sci Rep 2022; 5:e626. [PMID: 35509388 PMCID: PMC9059196 DOI: 10.1002/hsr2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Syeda Lubna
- Birla Institute of Technology and Science, Pilani, Hyderabad Campus Hyderabad Telangana India
| | - Suma Chinta
- Birla Institute of Technology and Science, Pilani, Hyderabad Campus Hyderabad Telangana India
| | - Prakruthi Burra
- Birla Institute of Technology and Science, Pilani, Hyderabad Campus Hyderabad Telangana India
| | - Kiranmayi Vedantham
- Birla Institute of Technology and Science, Pilani, Hyderabad Campus Hyderabad Telangana India
| | | | - Debashree Bandyopadhyay
- Birla Institute of Technology and Science, Pilani, Hyderabad Campus Hyderabad Telangana India
| |
Collapse
|
10
|
Giron CC, Laaksonen A, Barroso da Silva FL. Up State of the SARS-COV-2 Spike Homotrimer Favors an Increased Virulence for New Variants. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:694347. [PMID: 35047936 PMCID: PMC8757851 DOI: 10.3389/fmedt.2021.694347] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic has spread worldwide. However, as soon as the first vaccines-the only scientifically verified and efficient therapeutic option thus far-were released, mutations combined into variants of SARS-CoV-2 that are more transmissible and virulent emerged, raising doubts about their efficiency. This study aims to explain possible molecular mechanisms responsible for the increased transmissibility and the increased rate of hospitalizations related to the new variants. A combination of theoretical methods was employed. Constant-pH Monte Carlo simulations were carried out to quantify the stability of several spike trimeric structures at different conformational states and the free energy of interactions between the receptor-binding domain (RBD) and angiotensin-converting enzyme II (ACE2) for the most worrying variants. Electrostatic epitopes were mapped using the PROCEEDpKa method. These analyses showed that the increased virulence is more likely to be due to the improved stability to the S trimer in the opened state, in which the virus can interact with the cellular receptor, ACE2, rather than due to alterations in the complexation RBD-ACE2, since the difference observed in the free energy values was small (although more attractive in general). Conversely, the South African/Beta variant (B.1.351), compared with the SARS-CoV-2 wild type (wt), is much more stable in the opened state with one or two RBDs in the up position than in the closed state with three RBDs in the down position favoring the infection. Such results contribute to understanding the natural history of disease and indicate possible strategies for developing new therapeutic molecules and adjusting the vaccine doses for higher B-cell antibody production.
Collapse
Affiliation(s)
- Carolina Corrêa Giron
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Hospital de Clínicas, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Aatto Laaksonen
- Arrhenius Laboratory, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, China
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
- Division of Energy Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden
| | - Fernando Luís Barroso da Silva
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|