1
|
Djulbegovic MB, Gonzalez DJT, Laratelli L, Antonietti M, Uversky VN, Shields CL, Karp CL. A Computational Approach to Characterize the Protein S-Mer Tyrosine Kinase (PROS1-MERTK) Protein-Protein Interaction Dynamics. Cell Biochem Biophys 2025; 83:1743-1755. [PMID: 39535659 DOI: 10.1007/s12013-024-01582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Protein S (PROS1) has recently been identified as a ligand for the TAM receptor MERTK, influencing immune response and cell survival. The PROS1-MERTK interaction plays a role in cancer progression, promoting immune evasion and metastasis in multiple cancers by fostering a tumor-supportive microenvironment. Despite its importance, limited structural insights into this interaction underscore the need for computational studies to explore their binding dynamics, potentially guiding targeted therapies. In this study, we investigated the PROS1-MERTK interaction using advanced computational analyses to support immunotherapy research. High-resolution structural models from ColabFold, an AlphaFold2 adaptation, provided a baseline structure, allowing us to examine the PROS1-MERTK interface with ChimeraX and map residue interactions through Van der Waals criteria. Molecular dynamics (MD) simulations were conducted in GROMACS over 100 ns to assess stability and conformational changes using RMSD, RMSF, and radius of gyration (Rg). The PROS1-MERTK interface was predicted to contain a heterogeneous mix of amino acid contacts, with lysine and leucine as frequent participants. MD simulations demonstrated prominent early structural shifts, stabilizing after approximately 50 ns with small conformational shifts occurring as the simulation completed. In addition, there are various regions in each protein that are predicted to have greater conformational fluctuations as compared to others, which may represent attractive areas to target to halt the progression of the interaction. These insights deepen our understanding of the PROS1-MERTK interaction role in immune modulation and tumor progression, unveiling potential targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Mak B Djulbegovic
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Carol L Shields
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| | - Carol L Karp
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA.
| |
Collapse
|
2
|
Kardam V, Bhatt V, Dubey KD. Structural and mechanistic insights into oxidative biaryl coupling to form the arylomycin core by an engineered CYP450. Dalton Trans 2025; 54:754-763. [PMID: 39575560 DOI: 10.1039/d4dt02197e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Arylomycin, a potent antibiotic targeting bacterial signal peptidase, is difficult to synthesize experimentally due to its poor to moderate yields and the formation of a mixture of compounds. A recent experimental bioengineering work shows that the core of arylomycin can be efficiently synthesized by engineering the cytochrome P450 enzyme from Streptomyces sp.; however, the mechanism of the same was not elucidated. Herein, we have thoroughly investigated the mechanism behind the evolution of the enzyme for the synthesis of the arylomycin core via C-C bond formation in the CYP450 enzyme using hybrid QM/MM calculations, MD simulations, and DFT calculations. We show that strategic mutations such as (a) G-101 → A facilitate biaryl coupling by subtly pushing the substrate and (b) the Q-306 → H mutation creates a strong pi-pi interaction with the substrate that brings the two phenol rings of the substrate closer to undergo C-C coupling. Importantly, our QM/MM calculations show that for efficient C-C formation, the reaction should proceed via the biradical mechanism rather than hydroxylation.
Collapse
Affiliation(s)
- Vandana Kardam
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India.
| | - Vaibhav Bhatt
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India.
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India.
| |
Collapse
|
3
|
Fan Z, Li X, Jiang R, Li J, Cao F, Sun M, Wang L. Molecular Dynamics Simulation Reveal the Structure-Activity Relationships of Kainoid Synthases. Mar Drugs 2024; 22:326. [PMID: 39057435 PMCID: PMC11277886 DOI: 10.3390/md22070326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Kainoid synthases are key enzymes in the biosynthesis of kainoids. Kainoids, as represented by DA and KA, are a class of naturally occurring non-protein amino acids with strong neurotransmitter activity in the mammalian central nervous system. Marine algae kainoid synthases include PnDabC from diatoms, which synthesizes domoic acid (DA), and DsKabC and GfKabC from red algae, which synthesize kainic acid (KA). Elucidation of the catalytic mechanism of kainoid synthases is of great significance for the rational design of better biocatalysts to promote the industrial production of kainoids for use in new drugs. Through modeling, molecular docking, and molecular dynamics simulations, we investigated the conformational dynamics of kainoid synthases. We found that the kainoid synthase complexes showed different stability in the simulation, and the binding and catalytic processes showed significant conformational transformations of kainoid synthase. The residues involved in specific interactions with the substrate contributed to the binding energy throughout the simulation process. Binding energy, the relaxed active pocket, electrostatic potential energy of the active pocket, the number and rotation of aromatic residues interacting with substrates during catalysis, and the number and frequency of hydrogen bonds between the individual functional groups revealed the structure-activity relationships and affected the degree of promiscuity of kainoid synthases. Our research enriches the understanding of the conformational dynamics of kainoid synthases and has potential guiding significance for their rational design.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lianghua Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (Z.F.)
| |
Collapse
|
4
|
Li X, Liu Y. Multiscale Study on the Intramolecular C-S Bond Formation Catalyzed by P450 Monooxygenase CxnD Involved in the Biosynthesis of Chuangxinmycin: The Critical Roles of Noncrystal Water Molecule and Conformational Change. Inorg Chem 2024; 63:4086-4098. [PMID: 38376137 DOI: 10.1021/acs.inorgchem.3c03748] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Cytochrome P450 monooxygenase CxnD catalyzes intramolecular C-S bond formation in the biosynthesis of chuangxinmycin, which is representative of the synthesis of sulfur-containing natural heterocyclic compounds. The intramolecular cyclization usually requires the activation of two reaction sites and a large conformational change; thus, illuminating its detailed reaction mechanism remains challengeable. Here, the reaction pathway of CxnD-catalyzed C-S bond formation was clarified by a series of calculations, including Gaussian accelerated molecular dynamics simulations and quantum mechanical-molecular mechanical calculations. Our results revealed that the C-S formation follows a diradical coupling mechanism. CxnD first employs Cpd I to abstract the hydrogen atom from the imino group of the indole ring, and then, the resulted Cpd II further extracts another hydrogen atom from the thiol group of the side chain to afford a diradical intermediate, in which a noncrystal water molecule entering into the active site after the formation of Cpd I was proved to play an indispensable role. Moreover, the diradical intermediate cannot directly perform the coupling reaction. It should first undergo a series of conformational changes leading to the proximity of two reaction sites. It is the flexibility of the active site of the enzyme and the side chain of the substrate that makes the diradical coupling to be successful.
Collapse
Affiliation(s)
- Xinyi Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
5
|
Famulari A, Correddu D, Di Nardo G, Gilardi G, Mitrikas G, Chiesa M, García-Rubio I. Heme Spin Distribution in the Substrate-Free and Inhibited Novel CYP116B5hd: A Multifrequency Hyperfine Sublevel Correlation (HYSCORE) Study. Molecules 2024; 29:518. [PMID: 38276601 PMCID: PMC10819608 DOI: 10.3390/molecules29020518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The cytochrome P450 family consists of ubiquitous monooxygenases with the potential to perform a wide variety of catalytic applications. Among the members of this family, CYP116B5hd shows a very prominent resistance to peracid damage, a property that makes it a promising tool for fine chemical synthesis using the peroxide shunt. In this meticulous study, we use hyperfine spectroscopy with a multifrequency approach (X- and Q-band) to characterize in detail the electronic structure of the heme iron of CYP116B5hd in the resting state, which provides structural details about its active site. The hyperfine dipole-dipole interaction between the electron and proton nuclear spins allows for the locating of two different protons from the coordinated water and a beta proton from the cysteine axial ligand of heme iron with respect to the magnetic axes centered on the iron. Additionally, since new anti-cancer therapies target the inhibition of P450s, here we use the CYP116B5hd system-imidazole as a model for studying cytochrome P450 inhibition by an azo compound. The effects of the inhibition of protein by imidazole in the active-site geometry and electron spin distribution are presented. The binding of imidazole to CYP116B5hd results in an imidazole-nitrogen axial coordination and a low-spin heme FeIII. HYSCORE experiments were used to detect the hyperfine interactions. The combined interpretation of the gyromagnetic tensor and the hyperfine and quadrupole tensors of magnetic nuclei coupled to the iron electron spin allowed us to obtain a precise picture of the active-site geometry, including the orientation of the semi-occupied orbitals and magnetic axes, which coincide with the porphyrin N-Fe-N axes. The electronic structure of the iron does not seem to be affected by imidazole binding. Two different possible coordination geometries of the axial imidazole were observed. The angles between gx (coinciding with one of the N-Fe-N axes) and the projection of the imidazole plane on the heme were determined to be -60° and -25° for each of the two possibilities via measurement of the hyperfine structure of the axially coordinated 14N.
Collapse
Affiliation(s)
- Antonino Famulari
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain;
- Department of Chemistry, University of Turin, Via Giuria 9, 10125 Torino, Italy;
| | - Danilo Correddu
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy (G.D.N.); (G.G.)
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy (G.D.N.); (G.G.)
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy (G.D.N.); (G.G.)
| | - George Mitrikas
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15341 Athens, Greece;
| | - Mario Chiesa
- Department of Chemistry, University of Turin, Via Giuria 9, 10125 Torino, Italy;
| | - Inés García-Rubio
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain;
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
6
|
de Oliveira C, Leswing K, Feng S, Kanters R, Abel R, Bhat S. FEP Protocol Builder: Optimization of Free Energy Perturbation Protocols Using Active Learning. J Chem Inf Model 2023; 63:5592-5603. [PMID: 37594480 DOI: 10.1021/acs.jcim.3c00681] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Significant improvements have been made in the past decade to methods that rapidly and accurately predict binding affinity through free energy perturbation (FEP) calculations. This has been driven by recent advances in small-molecule force fields and sampling algorithms combined with the availability of low-cost parallel computing. Predictive accuracies of ∼1 kcal mol-1 have been regularly achieved, which are sufficient to drive potency optimization in modern drug discovery campaigns. Despite the robustness of these FEP approaches across multiple target classes, there are invariably target systems that do not display expected performance with default FEP settings. Traditionally, these systems required labor-intensive manual protocol development to arrive at parameter settings that produce a predictive FEP model. Due to the (a) relatively large parameter space to be explored, (b) significant compute requirements, and (c) limited understanding of how combinations of parameters can affect FEP performance, manual FEP protocol optimization can take weeks to months to complete, and often does not involve rigorous train-test set splits, resulting in potential overfitting. These manual FEP protocol development timelines do not coincide with tight drug discovery project timelines, essentially preventing the use of FEP calculations for these target systems. Here, we describe an automated workflow termed FEP Protocol Builder (FEP-PB) to rapidly generate accurate FEP protocols for systems that do not perform well with default settings. FEP-PB uses an active-learning workflow to iteratively search the protocol parameter space to develop accurate FEP protocols. To validate this approach, we applied it to pharmaceutically relevant systems where default FEP settings could not produce predictive models. We demonstrate that FEP-PB can rapidly generate accurate FEP protocols for the previously challenging MCL1 system with limited human intervention. We also apply FEP-PB in a real-world drug discovery setting to generate an accurate FEP protocol for the p97 system. FEP-PB is able to generate a more accurate protocol than the expert user, rapidly validating p97 as amenable to free energy calculations. Additionally, through the active-learning workflow, we are able to gain insight into which parameters are most important for a given system. These results suggest that FEP-PB is a robust tool that can aid in rapidly developing accurate FEP protocols and increasing the number of targets that are amenable to the technology.
Collapse
Affiliation(s)
- César de Oliveira
- Schrodinger, Inc., 9868 Scranton Road, Suite 3200, San Diego, California 92121, United States
| | - Karl Leswing
- Schrodinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - Shulu Feng
- Schrodinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - René Kanters
- Schrodinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - Robert Abel
- Schrodinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - Sathesh Bhat
- Schrodinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| |
Collapse
|
7
|
Lu Y, Sen K, Yong C, Gunn DSD, Purton JA, Guan J, Desmoutier A, Abdul Nasir J, Zhang X, Zhu L, Hou Q, Jackson-Masters J, Watts S, Hanson R, Thomas HN, Jayawardena O, Logsdail AJ, Woodley SM, Senn HM, Sherwood P, Catlow CRA, Sokol AA, Keal TW. Multiscale QM/MM modelling of catalytic systems with ChemShell. Phys Chem Chem Phys 2023; 25:21816-21835. [PMID: 37097706 DOI: 10.1039/d3cp00648d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Hybrid quantum mechanical/molecular mechanical (QM/MM) methods are a powerful computational tool for the investigation of all forms of catalysis, as they allow for an accurate description of reactions occurring at catalytic sites in the context of a complicated electrostatic environment. The scriptable computational chemistry environment ChemShell is a leading software package for QM/MM calculations, providing a flexible, high performance framework for modelling both biomolecular and materials catalysis. We present an overview of recent applications of ChemShell to problems in catalysis and review new functionality introduced into the redeveloped Python-based version of ChemShell to support catalytic modelling. These include a fully guided workflow for biomolecular QM/MM modelling, starting from an experimental structure, a periodic QM/MM embedding scheme to support modelling of metallic materials, and a comprehensive set of tutorials for biomolecular and materials modelling.
Collapse
Affiliation(s)
- You Lu
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Kakali Sen
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Chin Yong
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - David S D Gunn
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - John A Purton
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Jingcheng Guan
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Alec Desmoutier
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Jamal Abdul Nasir
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xingfan Zhang
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Lei Zhu
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Qing Hou
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Joe Jackson-Masters
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Sam Watts
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Rowan Hanson
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Harry N Thomas
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Omal Jayawardena
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Scott M Woodley
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Hans M Senn
- School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK
| | - Paul Sherwood
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - C Richard A Catlow
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Alexey A Sokol
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Thomas W Keal
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| |
Collapse
|
8
|
Cao X, Yang X, Xiao M, Jiang X. Molecular Dynamics Simulations Reveal the Conformational Transition of GH33 Sialidases. Int J Mol Sci 2023; 24:ijms24076830. [PMID: 37047800 PMCID: PMC10095477 DOI: 10.3390/ijms24076830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Sialidases are increasingly used in the production of sialyloligosaccharides, a significant component of human milk oligosaccharides. Elucidating the catalytic mechanism of sialidases is critical for the rational design of better biocatalysts, thereby facilitating the industrial production of sialyloligosaccharides. Through comparative all-atom molecular dynamics simulations, we investigated the structural dynamics of sialidases in Glycoside Hydrolase family 33 (GH33). Interestingly, several sialidases displayed significant conformational transition and formed a new cleft in the simulations. The new cleft was adjacent to the innate active site of the enzyme, which serves to accommodate the glycosyl acceptor. Furthermore, the residues involved in the specific interactions with the substrate were evolutionarily conserved in the whole GH33 family, highlighting their key roles in the catalysis of GH33 sialidases. Our results enriched the catalytic mechanism of GH33 sialidases, with potential implications in the rational design of sialidases.
Collapse
Affiliation(s)
- Xueting Cao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Xiao Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Min Xiao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| |
Collapse
|
9
|
Cheng YY, Cui CX. Theoretical study on hydrogen transfer in the dissociation of dimethyl disulfide radical cations. Phys Chem Chem Phys 2023; 25:3780-3788. [PMID: 36644933 DOI: 10.1039/d2cp05395k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogen transfer (HT) is of crucial importance in biochemistry and atmospheric chemistry. Here, HT processes involved in the dissociation reaction of dimethyl disulfide radical cations (DMDS˙+, CH3SSCH3˙+) are investigated using quantum chemical calculations. Four HTs from the C to S atom and one HT from the S to S atom are observed and the most probable paths are proposed in the dissociation channel from DMDS˙+ to CHnS+ (n = 2-4). The mechanisms of all these five HTs are described as hydrogen atom transfer (HAT) and four of them are accompanied by electron transfer (ET). Considering the catalytic effect of water molecules existing in organisms and the atmosphere, five HT processes in the dissociation of the [DMDS + H2O]˙+ complex are further explored, which show lower free energy barriers. With the participation of water molecules acting as a base, two HTs from the C to the S atom, which have the largest decrease in energy barriers, are characterized as concerted proton-coupled electron transfer (cPCET). These results can be extended to understand the mechanism of the HT process during the dissociation of disulfide and help provide a strategy to design a rare cPCET mechanism for the activation of the C-H bond.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, China.
| | - Cheng-Xing Cui
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China.
| |
Collapse
|
10
|
Cournia Z, Soares TA, Wahab HA, Amaro RE. Celebrating Diversity, Equity, Inclusion, and Respect in Computational and Theoretical Chemistry. J Chem Inf Model 2022; 62:6287-6291. [PMID: 36567670 DOI: 10.1021/acs.jcim.2c01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Thereza A Soares
- Department of Chemistry, University of São Paulo, 14040-901 Ribeirão Preto, Brazil.,Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, 0315 Oslo, Norway
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, 3234 Urey Hall, #0340, 9500 Gilman Drive, La Jolla, 92093-0340 San Diego, California, United States
| |
Collapse
|