1
|
Xu M, Wu C, Wang S, Zhan W, Guo L, Li Y, Vogel H, Yuan S. Identifying Potent Compounds Using Pairwise Consensus Methods. J Chem Inf Model 2025. [PMID: 40366258 DOI: 10.1021/acs.jcim.5c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Molecular docking is a widely used method within the in silico compound screening process of modern drug discovery. The accuracy of this method for predicting high-affinity small-molecule binders for a target protein from a large chemical library can be substantially improved by combining individual docking tools for cross-validation. This traditional consensus strategy typically relies on averaging scores or ranks obtained from molecular docking, which are, however, vulnerable to false positives and thus exploit shortcomings from scoring functions. To overcome this remarkable weakness, we developed here the pairwise consensus score (PCS) algorithm. PCS integrates structural similarity information on ligand-receptor complexes to evaluate predicted conformations and penalize highly dissimilar docked poses. To demonstrate the versatility of PCS, we developed a consensus docking protocol for targeting G protein-coupled receptors (GPCRs) that are among the most important targets for modern drug discovery. In particular, we screened a large compound library for highly potent antagonism ligands to an important GPCR therapeutic target, the neurokinin 1 receptor, and found several compounds targeting the receptor with ten-picomolar activity. Notably, these highly active compounds show a totally different chemical structure from that of previously reported NK1 binders. This opens exciting opportunities to develop drugs with unique alternative pharmacological features and therapeutic value.
Collapse
Affiliation(s)
- Marc Xu
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyang Wu
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyu Wang
- AlphaMol Science Ltd, Shenzhen, Guangdong 518055, China
| | - Wenjin Zhan
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Liwei Guo
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yi Li
- AlphaMol Science Ltd, Shenzhen, Guangdong 518055, China
| | - Horst Vogel
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- AlphaMol Science Ltd, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518055, China
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland
| | - Shuguang Yuan
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- AlphaMol Science Ltd, Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Hayes N, Wei X, Feng H, Merkurjev E, Wei GW. Persistent Sheaf Laplacian Analysis of Protein Flexibility. J Phys Chem B 2025; 129:4169-4178. [PMID: 40261825 PMCID: PMC12051208 DOI: 10.1021/acs.jpcb.5c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Protein flexibility, measured by the B-factor or Debye-Waller factor, is essential for protein functions such as structural support, enzyme activity, cellular communication, and molecular transport. Theoretical analysis and prediction of protein flexibility are crucial for protein design, engineering, and drug discovery. In this work, we introduce the persistent sheaf Laplacian (PSL), an effective tool in topological data analysis, to model and analyze protein flexibility. By representing the local topology and geometry of protein atoms through the multiscale harmonic and nonharmonic spectra of PSLs, the proposed model effectively captures protein flexibility and provides accurate, robust predictions of protein B-factors. Our PSL model demonstrates an increase in accuracy of 32% compared to the classical Gaussian network model (GNM) in predicting B-factors for a data set of 364 proteins. Additionally, we construct a blind machine learning prediction method utilizing global and local protein features. Extensive computations and comparisons validate the effectiveness of the proposed PSL model for B-factor predictions.
Collapse
Affiliation(s)
- Nicole Hayes
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Hongsong Feng
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ekaterina Merkurjev
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East
Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
3
|
Junaid M, Zeeshan M, Khan A, Alshabrmi FM, Li W. SPLIF-Enhanced Attention-Driven 3D CNNs for Precise and Reliable Protein-Ligand Interaction Modeling for METTL3. ACS OMEGA 2025; 10:16748-16761. [PMID: 40321522 PMCID: PMC12044449 DOI: 10.1021/acsomega.5c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 05/08/2025]
Abstract
Structure-based virtual screening (SBVS) is a cornerstone of modern drug discovery pipelines. However, conventional scoring functions often fail to capture the complexities of protein-ligand binding interactions. To address this limitation, we developed DeepMETTL3, a novel scoring function that integrates 3D convolutional neural networks (CNNs) with multihead attention mechanisms and high-dimensional Structural Protein-Ligand Interaction Fingerprints (SPLIF). This approach enables the model to capture intricate 3D interaction patterns while refining and prioritizing features for precise classification of active and inactive compounds. We validated DeepMETTL3 using METTL3 as a therapeutic target, employing a scaffold-based data-splitting strategy and multiple test sets, including challenging sets with minimal chemical similarity to the training data. Our results demonstrate that DeepMETTL3 outperforms traditional scoring functions, achieving superior accuracy, robustness, and scalability. Key findings include the importance of an active-to-decoy ratio (1:50) in the training set for enhanced performance and the optimal placement of the attention mechanism after CNN1 for improved generalization. DeepMETTL3 represents a significant advancement in target-specific machine learning for SBVS, offering a framework that can be adapted to other biological targets. This work underscores the potential of deep learning in artificial intelligence-based drug design, balancing computational efficiency and predictive power in molecular docking and virtual screening. The scoring function is freely available at https://github.com/juniML/DeepMETTL3.
Collapse
Affiliation(s)
- Muhammad Junaid
- Institute
for Advanced Study, Shenzhen University, Shenzhen 518060, China
- College
of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Zeeshan
- Department
of Bioinformatics and Biotechnology, Islamic
International University Islamabad, Islamabad 44000, Pakistan
| | - Abbas Khan
- Department
of Biomedical Sciences, Sir Jeffrey Cheah Sunway Medical School, Faculty
of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Fahad M. Alshabrmi
- Department
of Medical Laboratories, College
of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wenjin Li
- Institute
for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Feng H, Zhao JY, Wei G. Multiscale Differential Geometry Learning for Protein Flexibility Analysis. J Comput Chem 2025; 46:e70073. [PMID: 40071503 PMCID: PMC11897948 DOI: 10.1002/jcc.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 03/15/2025]
Abstract
Protein structural fluctuations, measured by Debye-Waller factors or B-factors, are known to be closely associated with protein flexibility and function. Theoretical approaches have also been developed to predict B-factor values, which reflect protein flexibility. Previous models have made significant strides in analyzing B-factors by fitting experimental data. In this study, we propose a novel approach for B-factor prediction using differential geometry theory, based on the assumption that the intrinsic properties of proteins reside on a family of low-dimensional manifolds embedded within the high-dimensional space of protein structures. By analyzing the mean and Gaussian curvatures of a set of low-dimensional manifolds defined by kernel functions, we develop effective and robust multiscale differential geometry (mDG) models. Our mDG model demonstrates a 27% increase in accuracy compared to the classical Gaussian network model (GNM) in predicting B-factors for a dataset of 364 proteins. Additionally, by incorporating both global and local protein features, we construct a highly effective machine-learning model for the blind prediction of B-factors. Extensive least-squares approximations and machine learning-based blind predictions validate the effectiveness of the mDG modeling approach for B-factor predictions.
Collapse
Affiliation(s)
- Hongsong Feng
- Department of MathematicsMichigan State UniversityEast LansingMichiganUSA
| | | | - Guo‐Wei Wei
- Department of MathematicsMichigan State UniversityEast LansingMichiganUSA
- Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingMichiganUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
5
|
Luo D, Qu X, Lu D, Wang Y, Dong L, Wang B. Ligand-Conditioned Side Chain Packing for Flexible Molecular Docking. J Chem Theory Comput 2025; 21:1494-1505. [PMID: 39862170 DOI: 10.1021/acs.jctc.4c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Molecular docking is a crucial technique for elucidating protein-ligand interactions. Machine learning-based docking methods offer promising advantages over traditional approaches, with significant potential for further development. However, many current machine learning-based methods face challenges in ensuring the physical plausibility of generated docking poses. Additionally, accommodating protein flexibility remains difficult for existing methods, limiting their effectiveness in real-world scenarios. Herein, we present ApoDock, a modular docking paradigm that combines machine learning-driven conditional side chain packing based on the protein backbone and ligand information with traditional sampling methods to ensure physically realistic poses. The generated poses are finally scored by the developed mixture density network-based scoring function. With accurate side chain packing, physical-based pose sampling, and accurate pose ranking ability, ApoDock demonstrates competitive performance across diverse applications, especially when using modeled structure (AlphaFold2 and ESMFold) for docking, exhibiting a success rate of 28.5% higher than that of other state of the art (SOTA), highlighting its potential as a valuable tool for protein-ligand binding studies and related applications.
Collapse
Affiliation(s)
- Ding Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xiaoyang Qu
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine of Fujian Province, School of Pharmacy and Medical Technology, Putian University, Putian 351100, P. R. China
| | - Dexin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yiqiu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Lina Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, P. R. China
| |
Collapse
|
6
|
Cao D, Chen M, Zhang R, Wang Z, Huang M, Yu J, Jiang X, Fan Z, Zhang W, Zhou H, Li X, Fu Z, Zhang S, Zheng M. SurfDock is a surface-informed diffusion generative model for reliable and accurate protein-ligand complex prediction. Nat Methods 2025; 22:310-322. [PMID: 39604569 DOI: 10.1038/s41592-024-02516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Accurately predicting protein-ligand interactions is crucial for understanding cellular processes. We introduce SurfDock, a deep-learning method that addresses this challenge by integrating protein sequence, three-dimensional structural graphs and surface-level features into an equivariant architecture. SurfDock employs a generative diffusion model on a non-Euclidean manifold, optimizing molecular translations, rotations and torsions to generate reliable binding poses. Our extensive evaluations across various benchmarks demonstrate SurfDock's superiority over existing methods in docking success rates and adherence to physical constraints. It also exhibits remarkable generalizability to unseen proteins and predicted apo structures, while achieving state-of-the-art performance in virtual screening tasks. In a real-world application, SurfDock identified seven novel hit molecules in a virtual screening project targeting aldehyde dehydrogenase 1B1, a key enzyme in cellular metabolism. This showcases SurfDock's ability to elucidate molecular mechanisms underlying cellular processes. These results highlight SurfDock's potential as a transformative tool in structural biology, offering enhanced accuracy, physical plausibility and practical applicability in understanding protein-ligand interactions.
Collapse
Affiliation(s)
- Duanhua Cao
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingan Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Runze Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaokun Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Manlin Huang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Nanchang University, Nanchang, China
| | - Jie Yu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai, China
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xinyu Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhehuan Fan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Zhou
- Institute for AI Industry Research (AIR), Tsinghua University, Beijing, China
| | - Xutong Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zunyun Fu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingyue Zheng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Vittorio S, Lunghini F, Morerio P, Gadioli D, Orlandini S, Silva P, Jan Martinovic, Pedretti A, Bonanni D, Del Bue A, Palermo G, Vistoli G, Beccari AR. Addressing docking pose selection with structure-based deep learning: Recent advances, challenges and opportunities. Comput Struct Biotechnol J 2024; 23:2141-2151. [PMID: 38827235 PMCID: PMC11141151 DOI: 10.1016/j.csbj.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
Molecular docking is a widely used technique in drug discovery to predict the binding mode of a given ligand to its target. However, the identification of the near-native binding pose in docking experiments still represents a challenging task as the scoring functions currently employed by docking programs are parametrized to predict the binding affinity, and, therefore, they often fail to correctly identify the ligand native binding conformation. Selecting the correct binding mode is crucial to obtaining meaningful results and to conveniently optimizing new hit compounds. Deep learning (DL) algorithms have been an area of a growing interest in this sense for their capability to extract the relevant information directly from the protein-ligand structure. Our review aims to present the recent advances regarding the development of DL-based pose selection approaches, discussing limitations and possible future directions. Moreover, a comparison between the performances of some classical scoring functions and DL-based methods concerning their ability to select the correct binding mode is reported. In this regard, two novel DL-based pose selectors developed by us are presented.
Collapse
Affiliation(s)
- Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli 25, I-20133 Milano, Italy
| | - Filippo Lunghini
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso de Amicis 95, 80123 Naples, Italy
| | - Pietro Morerio
- Pattern Analysis and Computer Vision, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy
| | - Davide Gadioli
- Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, I-20133 Milano, Italy
| | - Sergio Orlandini
- SCAI, SuperComputing Applications and Innovation Department, CINECA, Via dei Tizii 6, Rome 00185, Italy
| | - Paulo Silva
- IT4Innovations, VSB – Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| | - Jan Martinovic
- IT4Innovations, VSB – Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| | - Alessandro Pedretti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli 25, I-20133 Milano, Italy
| | - Domenico Bonanni
- Department of Physical and Chemical Sciences, University of L′Aquila, via Vetoio, L′Aquila 67010, Italy
| | - Alessio Del Bue
- Pattern Analysis and Computer Vision, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy
| | - Gianluca Palermo
- Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, I-20133 Milano, Italy
| | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli 25, I-20133 Milano, Italy
| | - Andrea R. Beccari
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso de Amicis 95, 80123 Naples, Italy
| |
Collapse
|
8
|
Yang Z, Zhao YM, Wang X, Liu X, Zhang X, Li Y, Lv Q, Chen CYC, Shen L. Scalable crystal structure relaxation using an iteration-free deep generative model with uncertainty quantification. Nat Commun 2024; 15:8148. [PMID: 39289379 PMCID: PMC11408520 DOI: 10.1038/s41467-024-52378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
In computational molecular and materials science, determining equilibrium structures is the crucial first step for accurate subsequent property calculations. However, the recent discovery of millions of new crystals and super large twisted structures has challenged traditional computational methods, both ab initio and machine-learning-based, due to their computationally intensive iterative processes. To address these scalability issues, here we introduce DeepRelax, a deep generative model capable of performing geometric crystal structure relaxation rapidly and without iterations. DeepRelax learns the equilibrium structural distribution, enabling it to predict relaxed structures directly from their unrelaxed ones. The ability to perform structural relaxation at the millisecond level per structure, combined with the scalability of parallel processing, makes DeepRelax particularly useful for large-scale virtual screening. We demonstrate DeepRelax's reliability and robustness by applying it to five diverse databases, including oxides, Materials Project, two-dimensional materials, van der Waals crystals, and crystals with point defects. DeepRelax consistently shows high accuracy and efficiency, validated by density functional theory calculations. Finally, we enhance its trustworthiness by integrating uncertainty quantification. This work significantly accelerates computational workflows, offering a robust and trustworthy machine-learning method for material discovery and advancing the application of AI for science.
Collapse
Affiliation(s)
- Ziduo Yang
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yi-Ming Zhao
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Xian Wang
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Xiaoqing Liu
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Xiuying Zhang
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Yifan Li
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Qiujie Lv
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Calvin Yu-Chian Chen
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, China.
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
- Guangdong L-Med Biotechnology Co., Ltd., Meizhou, Guangdong, China.
| | - Lei Shen
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore.
- National University of Singapore (Chongqing) Research Institute, Chongqing, China.
| |
Collapse
|
9
|
Kairys V, Baranauskiene L, Kazlauskiene M, Zubrienė A, Petrauskas V, Matulis D, Kazlauskas E. Recent advances in computational and experimental protein-ligand affinity determination techniques. Expert Opin Drug Discov 2024; 19:649-670. [PMID: 38715415 DOI: 10.1080/17460441.2024.2349169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Modern drug discovery revolves around designing ligands that target the chosen biomolecule, typically proteins. For this, the evaluation of affinities of putative ligands is crucial. This has given rise to a multitude of dedicated computational and experimental methods that are constantly being developed and improved. AREAS COVERED In this review, the authors reassess both the industry mainstays and the newest trends among the methods for protein - small-molecule affinity determination. They discuss both computational affinity predictions and experimental techniques, describing their basic principles, main limitations, and advantages. Together, this serves as initial guide to the currently most popular and cutting-edge ligand-binding assays employed in rational drug design. EXPERT OPINION The affinity determination methods continue to develop toward miniaturization, high-throughput, and in-cell application. Moreover, the availability of data analysis tools has been constantly increasing. Nevertheless, cross-verification of data using at least two different techniques and careful result interpretation remain of utmost importance.
Collapse
Affiliation(s)
- Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Egidijus Kazlauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
10
|
Zhu J, Gu Z, Pei J, Lai L. DiffBindFR: an SE(3) equivariant network for flexible protein-ligand docking. Chem Sci 2024; 15:7926-7942. [PMID: 38817560 PMCID: PMC11134415 DOI: 10.1039/d3sc06803j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/07/2024] [Indexed: 06/01/2024] Open
Abstract
Molecular docking, a key technique in structure-based drug design, plays pivotal roles in protein-ligand interaction modeling, hit identification and optimization, in which accurate prediction of protein-ligand binding mode is essential. Conventional docking approaches perform well in redocking tasks with known protein binding pocket conformation in the complex state. However, in real-world docking scenario without knowing the protein binding conformation for a new ligand, accurately modeling the binding complex structure remains challenging as flexible docking is computationally expensive and inaccurate. Typical deep learning-based docking methods do not explicitly consider protein side chain conformations and fail to ensure the physical plausibility and detailed atomic interactions. In this study, we present DiffBindFR, a full-atom diffusion-based flexible docking model that operates over the product space of ligand overall movements and flexibility and pocket side chain torsion changes. We show that DiffBindFR has higher accuracy in producing native-like binding structures with physically plausible and detailed interactions than available docking methods. Furthermore, in the Apo and AlphaFold2 modeled structures, DiffBindFR demonstrates superior advantages in accurate ligand binding pose and protein binding conformation prediction, making it suitable for Apo and AlphaFold2 structure-based drug design. DiffBindFR provides a powerful flexible docking tool for modeling accurate protein-ligand binding structures.
Collapse
Affiliation(s)
- Jintao Zhu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
| | - Zhonghui Gu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
| | - Jianfeng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
- BNLMS, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies Chengdu Sichuan China
| |
Collapse
|
11
|
Zhang X, Shen C, Zhang H, Kang Y, Hsieh CY, Hou T. Advancing Ligand Docking through Deep Learning: Challenges and Prospects in Virtual Screening. Acc Chem Res 2024; 57:1500-1509. [PMID: 38577892 DOI: 10.1021/acs.accounts.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Molecular docking, also termed ligand docking (LD), is a pivotal element of structure-based virtual screening (SBVS) used to predict the binding conformations and affinities of protein-ligand complexes. Traditional LD methodologies rely on a search and scoring framework, utilizing heuristic algorithms to explore binding conformations and scoring functions to evaluate binding strengths. However, to meet the efficiency demands of SBVS, these algorithms and functions are often simplified, prioritizing speed over accuracy.The emergence of deep learning (DL) has exerted a profound impact on diverse fields, ranging from natural language processing to computer vision and drug discovery. DeepMind's AlphaFold2 has impressively exhibited its ability to accurately predict protein structures solely from amino acid sequences, highlighting the remarkable potential of DL in conformation prediction. This groundbreaking advancement circumvents the traditional search-scoring frameworks in LD, enhancing both accuracy and processing speed and thereby catalyzing a broader adoption of DL algorithms in binding pose prediction. Nevertheless, a consensus on certain aspects remains elusive.In this Account, we delineate the current status of employing DL to augment LD within the VS paradigm, highlighting our contributions to this domain. Furthermore, we discuss the challenges and future prospects, drawing insights from our scholarly investigations. Initially, we present an overview of VS and LD, followed by an introduction to DL paradigms, which deviate significantly from traditional search-scoring frameworks. Subsequently, we delve into the challenges associated with the development of DL-based LD (DLLD), encompassing evaluation metrics, application scenarios, and physical plausibility of the predicted conformations. In the evaluation of LD algorithms, it is essential to recognize the multifaceted nature of the metrics. While the accuracy of binding pose prediction, often measured by the success rate, is a pivotal aspect, the scoring/screening power and computational speed of these algorithms are equally important given the pivotal role of LD tools in VS. Regarding application scenarios, early methods focused on blind docking, where the binding site is unknown. However, recent studies suggest a shift toward identifying binding sites rather than solely predicting binding poses within these models. In contrast, LD with a known pocket in VS has been shown to be more practical. Physical plausibility poses another significant challenge. Although DLLD models often achieve higher success rates compared to traditional methods, they may generate poses with implausible local structures, such as incorrect bond angles or lengths, which are disadvantageous for postprocessing tasks like visualization. Finally, we discuss the future perspectives for DLLD, emphasizing the need to improve generalization ability, strike a balance between speed and accuracy, account for protein conformation flexibility, and enhance physical plausibility. Additionally, we delve into the comparison between generative and regression algorithms in this context, exploring their respective strengths and potential.
Collapse
Affiliation(s)
- Xujun Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Hangzhou Carbonsilicon AI Technology Co., Ltd, Hangzhou 310018, Zhejiang, China
| | - Chao Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Hangzhou Carbonsilicon AI Technology Co., Ltd, Hangzhou 310018, Zhejiang, China
| | - Haotian Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Hangzhou Carbonsilicon AI Technology Co., Ltd, Hangzhou 310018, Zhejiang, China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chang-Yu Hsieh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
12
|
Rahman J, Newton MAH, Ali ME, Sattar A. Distance plus attention for binding affinity prediction. J Cheminform 2024; 16:52. [PMID: 38735985 PMCID: PMC11089753 DOI: 10.1186/s13321-024-00844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
Protein-ligand binding affinity plays a pivotal role in drug development, particularly in identifying potential ligands for target disease-related proteins. Accurate affinity predictions can significantly reduce both the time and cost involved in drug development. However, highly precise affinity prediction remains a research challenge. A key to improve affinity prediction is to capture interactions between proteins and ligands effectively. Existing deep-learning-based computational approaches use 3D grids, 4D tensors, molecular graphs, or proximity-based adjacency matrices, which are either resource-intensive or do not directly represent potential interactions. In this paper, we propose atomic-level distance features and attention mechanisms to capture better specific protein-ligand interactions based on donor-acceptor relations, hydrophobicity, and π -stacking atoms. We argue that distances encompass both short-range direct and long-range indirect interaction effects while attention mechanisms capture levels of interaction effects. On the very well-known CASF-2016 dataset, our proposed method, named Distance plus Attention for Affinity Prediction (DAAP), significantly outperforms existing methods by achieving Correlation Coefficient (R) 0.909, Root Mean Squared Error (RMSE) 0.987, Mean Absolute Error (MAE) 0.745, Standard Deviation (SD) 0.988, and Concordance Index (CI) 0.876. The proposed method also shows substantial improvement, around 2% to 37%, on five other benchmark datasets. The program and data are publicly available on the website https://gitlab.com/mahnewton/daap. Scientific Contribution StatementThis study innovatively introduces distance-based features to predict protein-ligand binding affinity, capitalizing on unique molecular interactions. Furthermore, the incorporation of protein sequence features of specific residues enhances the model's proficiency in capturing intricate binding patterns. The predictive capabilities are further strengthened through the use of a deep learning architecture with attention mechanisms, and an ensemble approach, averaging the outputs of five models, is implemented to ensure robust and reliable predictions.
Collapse
Affiliation(s)
- Julia Rahman
- School of Information and Communication Technology, Griffith University, 170 Kessels Rd, Nathan, 4111, QLD, Australia.
| | - M A Hakim Newton
- Institute for Integrated and Intelligent Systems (IIIS), Griffith University, 170 Kessels Rd, Nathan, 4111, QLD, Australia
- School of Information and Physical Sciences, University of Newcastle, University Dr, Callaghan, 2308, NSW, Australia
| | - Mohammed Eunus Ali
- Department of Computer Science & Engineering, Bangladesh University of Engineering and Technology, Palashi, 1205, Dhaka, Bangladesh
| | - Abdul Sattar
- Institute for Integrated and Intelligent Systems (IIIS), Griffith University, 170 Kessels Rd, Nathan, 4111, QLD, Australia
| |
Collapse
|
13
|
Rayka M, Mirzaei M, Mohammad Latifi A. An ensemble-based approach to estimate confidence of predicted protein-ligand binding affinity values. Mol Inform 2024; 43:e202300292. [PMID: 38358080 DOI: 10.1002/minf.202300292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
When designing a machine learning-based scoring function, we access a limited number of protein-ligand complexes with experimentally determined binding affinity values, representing only a fraction of all possible protein-ligand complexes. Consequently, it is crucial to report a measure of confidence and quantify the uncertainty in the model's predictions during test time. Here, we adopt the conformal prediction technique to evaluate the confidence of a prediction for each member of the core set of the CASF 2016 benchmark. The conformal prediction technique requires a diverse ensemble of predictors for uncertainty estimation. To this end, we introduce ENS-Score as an ensemble predictor, which includes 30 models with different protein-ligand representation approaches and achieves Pearson's correlation of 0.842 on the core set of the CASF 2016 benchmark. Also, we comprehensively investigate the residual error of each data point to assess the normality behavior of the distribution of the residual errors and their correlation to the structural features of the ligands, such as hydrophobic interactions and halogen bonding. In the end, we provide a local host web application to facilitate the usage of ENS-Score. All codes to repeat results are provided at https://github.com/miladrayka/ENS_Score.
Collapse
Affiliation(s)
- Milad Rayka
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Morteza Mirzaei
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Latifi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Tan LH, Kwoh CK, Mu Y. RmsdXNA: RMSD prediction of nucleic acid-ligand docking poses using machine-learning method. Brief Bioinform 2024; 25:bbae166. [PMID: 38695120 PMCID: PMC11063749 DOI: 10.1093/bib/bbae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 05/04/2024] Open
Abstract
Small molecule drugs can be used to target nucleic acids (NA) to regulate biological processes. Computational modeling methods, such as molecular docking or scoring functions, are commonly employed to facilitate drug design. However, the accuracy of the scoring function in predicting the closest-to-native docking pose is often suboptimal. To overcome this problem, a machine learning model, RmsdXNA, was developed to predict the root-mean-square-deviation (RMSD) of ligand docking poses in NA complexes. The versatility of RmsdXNA has been demonstrated by its successful application to various complexes involving different types of NA receptors and ligands, including metal complexes and short peptides. The predicted RMSD by RmsdXNA was strongly correlated with the actual RMSD of the docked poses. RmsdXNA also outperformed the rDock scoring function in ranking and identifying closest-to-native docking poses across different structural groups and on the testing dataset. Using experimental validated results conducted on polyadenylated nuclear element for nuclear expression triplex, RmsdXNA demonstrated better screening power for the RNA-small molecule complex compared to rDock. Molecular dynamics simulations were subsequently employed to validate the binding of top-scoring ligand candidates selected by RmsdXNA and rDock on MALAT1. The results showed that RmsdXNA has a higher success rate in identifying promising ligands that can bind well to the receptor. The development of an accurate docking score for a NA-ligand complex can aid in drug discovery and development advancements. The code to use RmsdXNA is available at the GitHub repository https://github.com/laiheng001/RmsdXNA.
Collapse
Affiliation(s)
- Lai Heng Tan
- Interdisciplinary Graduate School, Nanyang Technological University, 61 Nanyang Drive, 637335 Singapore, Singapore
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore, Singapore
| |
Collapse
|
15
|
Luo D, Liu D, Qu X, Dong L, Wang B. Enhancing Generalizability in Protein-Ligand Binding Affinity Prediction with Multimodal Contrastive Learning. J Chem Inf Model 2024; 64:1892-1906. [PMID: 38441880 DOI: 10.1021/acs.jcim.3c01961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Improving the generalization ability of scoring functions remains a major challenge in protein-ligand binding affinity prediction. Many machine learning methods are limited by their reliance on single-modal representations, hindering a comprehensive understanding of protein-ligand interactions. We introduce a graph-neural-network-based scoring function that utilizes a triplet contrastive learning loss to improve protein-ligand representations. In this model, three-dimensional complex representations and the fusion of two-dimensional ligand and coarse-grained pocket representations converge while distancing from decoy representations in latent space. After rigorous validation on multiple external data sets, our model exhibits commendable generalization capabilities compared to those of other deep learning-based scoring functions, marking it as a promising tool in the realm of drug discovery. In the future, our training framework can be extended to other biophysical- and biochemical-related problems such as protein-protein interaction and protein mutation prediction.
Collapse
Affiliation(s)
- Ding Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Dandan Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xiaoyang Qu
- School of Pharmacy and Medical Technology, Putian University, Putian 351100, P. R. China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Putian 351100, P. R. China
| | - Lina Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, P. R. China
| |
Collapse
|
16
|
Cai H, Shen C, Jian T, Zhang X, Chen T, Han X, Yang Z, Dang W, Hsieh CY, Kang Y, Pan P, Ji X, Song J, Hou T, Deng Y. CarsiDock: a deep learning paradigm for accurate protein-ligand docking and screening based on large-scale pre-training. Chem Sci 2024; 15:1449-1471. [PMID: 38274053 PMCID: PMC10806797 DOI: 10.1039/d3sc05552c] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The expertise accumulated in deep neural network-based structure prediction has been widely transferred to the field of protein-ligand binding pose prediction, thus leading to the emergence of a variety of deep learning-guided docking models for predicting protein-ligand binding poses without relying on heavy sampling. However, their prediction accuracy and applicability are still far from satisfactory, partially due to the lack of protein-ligand binding complex data. To this end, we create a large-scale complex dataset containing ∼9 M protein-ligand docking complexes for pre-training, and propose CarsiDock, the first deep learning-guided docking approach that leverages pre-training of millions of predicted protein-ligand complexes. CarsiDock contains two main stages, i.e., a deep learning model for the prediction of protein-ligand atomic distance matrices, and a translation, rotation and torsion-guided geometry optimization procedure to reconstruct the matrices into a credible binding pose. The pre-training and multiple innovative architectural designs facilitate the dramatically improved docking accuracy of our approach over the baselines in terms of multiple docking scenarios, thereby contributing to its outstanding early recognition performance in several retrospective virtual screening campaigns. Further explorations demonstrate that CarsiDock can not only guarantee the topological reliability of the binding poses but also successfully reproduce the crucial interactions in crystalized structures, highlighting its superior applicability.
Collapse
Affiliation(s)
- Heng Cai
- Hangzhou Carbonsilicon AI Technology Co., Ltd Hangzhou 310018 Zhejiang China
| | - Chao Shen
- Hangzhou Carbonsilicon AI Technology Co., Ltd Hangzhou 310018 Zhejiang China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Tianye Jian
- Hangzhou Carbonsilicon AI Technology Co., Ltd Hangzhou 310018 Zhejiang China
| | - Xujun Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Tong Chen
- Hangzhou Carbonsilicon AI Technology Co., Ltd Hangzhou 310018 Zhejiang China
| | - Xiaoqi Han
- Hangzhou Carbonsilicon AI Technology Co., Ltd Hangzhou 310018 Zhejiang China
| | - Zhuo Yang
- Hangzhou Carbonsilicon AI Technology Co., Ltd Hangzhou 310018 Zhejiang China
| | - Wei Dang
- Hangzhou Carbonsilicon AI Technology Co., Ltd Hangzhou 310018 Zhejiang China
| | - Chang-Yu Hsieh
- Hangzhou Carbonsilicon AI Technology Co., Ltd Hangzhou 310018 Zhejiang China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Peichen Pan
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Xiangyang Ji
- Department of Automation, Tsinghua University Beijing 100084 China
| | - Jianfei Song
- Hangzhou Carbonsilicon AI Technology Co., Ltd Hangzhou 310018 Zhejiang China
| | - Tingjun Hou
- Hangzhou Carbonsilicon AI Technology Co., Ltd Hangzhou 310018 Zhejiang China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Yafeng Deng
- Hangzhou Carbonsilicon AI Technology Co., Ltd Hangzhou 310018 Zhejiang China
| |
Collapse
|
17
|
Flachsenberg F, Ehrt C, Gutermuth T, Rarey M. Redocking the PDB. J Chem Inf Model 2024; 64:219-237. [PMID: 38108627 DOI: 10.1021/acs.jcim.3c01573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Molecular docking is a standard technique in structure-based drug design (SBDD). It aims to predict the 3D structure of a small molecule in the binding site of a receptor (often a protein). Despite being a common technique, it often necessitates multiple tools and involves manual steps. Here, we present the JAMDA preprocessing and docking workflow that is easy to use and allows fully automated docking. We evaluate the JAMDA docking workflow on binding sites extracted from the complete PDB and derive key factors determining JAMDA's docking performance. With that, we try to remove most of the bias due to manual intervention and provide a realistic estimate of the redocking performance of our JAMDA preprocessing and docking workflow for any PDB structure. On this large PDBScan22 data set, our JAMDA workflow finds a pose with an RMSD of at most 2 Å to the crystal ligand on the top rank for 30.1% of the structures. When applying objective structure quality filters to the PDBScan22 data set, the success rate increases to 61.8%. Given the prepared structures from the JAMDA preprocessing pipeline, both JAMDA and the widely used AutoDock Vina perform comparably on this filtered data set (the PDBScan22-HQ data set).
Collapse
Affiliation(s)
- Florian Flachsenberg
- Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| | - Christiane Ehrt
- Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| | - Torben Gutermuth
- Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| | - Matthias Rarey
- Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| |
Collapse
|
18
|
Dong T, Yang Z, Zhou J, Chen CYC. Equivariant Flexible Modeling of the Protein-Ligand Binding Pose with Geometric Deep Learning. J Chem Theory Comput 2023; 19:8446-8459. [PMID: 37938978 DOI: 10.1021/acs.jctc.3c00273] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Flexible modeling of the protein-ligand complex structure is a fundamental challenge for in silico drug development. Recent studies have improved commonly used docking tools by incorporating extra-deep learning-based steps. However, such strategies limit their accuracy and efficiency because they retain massive sampling pressure and lack consideration for flexible biomolecular changes. In this study, we propose FlexPose, a geometric graph network capable of direct flexible modeling of complex structures in Euclidean space without the following conventional sampling and scoring strategies. Our model adopts two key designs: scalar-vector dual feature representation and SE(3)-equivariant network, to manage dynamic structural changes, as well as two strategies: conformation-aware pretraining and weakly supervised learning, to boost model generalizability in unseen chemical space. Benefiting from these paradigms, our model dramatically outperforms all tested popular docking tools and recently advanced deep learning methods, especially in tasks involving protein conformation changes. We further investigate the impact of protein and ligand similarity on the model performance with two conformation-aware strategies. Moreover, FlexPose provides an affinity estimation and model confidence for postanalysis.
Collapse
Affiliation(s)
- Tiejun Dong
- Intelligent Medical Research Center, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, Guangdong 510275, China
| | - Ziduo Yang
- Intelligent Medical Research Center, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, Guangdong 510275, China
| | - Jun Zhou
- Intelligent Medical Research Center, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, Guangdong 510275, China
| | - Calvin Yu-Chian Chen
- Intelligent Medical Research Center, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, Guangdong 510275, China
- AI for Science (AI4S)-Preferred Program, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
19
|
Tan H, Wang Z, Hu G. GAABind: a geometry-aware attention-based network for accurate protein-ligand binding pose and binding affinity prediction. Brief Bioinform 2023; 25:bbad462. [PMID: 38102069 PMCID: PMC10724026 DOI: 10.1093/bib/bbad462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Protein-ligand interactions are increasingly profiled at high-throughput, playing a vital role in lead compound discovery and drug optimization. Accurate prediction of binding pose and binding affinity constitutes a pivotal challenge in advancing our computational understanding of protein-ligand interactions. However, inherent limitations still exist, including high computational cost for conformational search sampling in traditional molecular docking tools, and the unsatisfactory molecular representation learning and intermolecular interaction modeling in deep learning-based methods. Here we propose a geometry-aware attention-based deep learning model, GAABind, which effectively predicts the pocket-ligand binding pose and binding affinity within a multi-task learning framework. Specifically, GAABind comprehensively captures the geometric and topological properties of both binding pockets and ligands, and employs expressive molecular representation learning to model intramolecular interactions. Moreover, GAABind proficiently learns the intermolecular many-body interactions and simulates the dynamic conformational adaptations of the ligand during its interaction with the protein through meticulously designed networks. We trained GAABind on the PDBbindv2020 and evaluated it on the CASF2016 dataset; the results indicate that GAABind achieves state-of-the-art performance in binding pose prediction and shows comparable binding affinity prediction performance. Notably, GAABind achieves a success rate of 82.8% in binding pose prediction, and the Pearson correlation between predicted and experimental binding affinities reaches up to 0.803. Additionally, we assessed GAABind's performance on the severe acute respiratory syndrome coronavirus 2 main protease cross-docking dataset. In this evaluation, GAABind demonstrates a notable success rate of 76.5% in binding pose prediction and achieves the highest Pearson correlation coefficient in binding affinity prediction compared with all baseline methods.
Collapse
Affiliation(s)
- Huishuang Tan
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhixin Wang
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Guang Hu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| |
Collapse
|
20
|
Runcie N, Mey AS. SILVR: Guided Diffusion for Molecule Generation. J Chem Inf Model 2023; 63:5996-6005. [PMID: 37724771 PMCID: PMC10565820 DOI: 10.1021/acs.jcim.3c00667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 09/21/2023]
Abstract
Computationally generating new synthetically accessible compounds with high affinity and low toxicity is a great challenge in drug design. Machine learning models beyond conventional pharmacophoric methods have shown promise in the generation of novel small-molecule compounds but require significant tuning for a specific protein target. Here, we introduce a method called selective iterative latent variable refinement (SILVR) for conditioning an existing diffusion-based equivariant generative model without retraining. The model allows the generation of new molecules that fit into a binding site of a protein based on fragment hits. We use the SARS-CoV-2 main protease fragments from Diamond XChem that form part of the COVID Moonshot project as a reference dataset for conditioning the molecule generation. The SILVR rate controls the extent of conditioning, and we show that moderate SILVR rates make it possible to generate new molecules of similar shape to the original fragments, meaning that the new molecules fit the binding site without knowledge of the protein. We can also merge up to 3 fragments into a new molecule without affecting the quality of molecules generated by the underlying generative model. Our method is generalizable to any protein target with known fragments and any diffusion-based model for molecule generation.
Collapse
Affiliation(s)
- Nicholas
T. Runcie
- EaSTCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| | - Antonia S.J.S. Mey
- EaSTCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| |
Collapse
|
21
|
Hagg A, Kirschner KN. Open-Source Machine Learning in Computational Chemistry. J Chem Inf Model 2023; 63:4505-4532. [PMID: 37466636 PMCID: PMC10430767 DOI: 10.1021/acs.jcim.3c00643] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Indexed: 07/20/2023]
Abstract
The field of computational chemistry has seen a significant increase in the integration of machine learning concepts and algorithms. In this Perspective, we surveyed 179 open-source software projects, with corresponding peer-reviewed papers published within the last 5 years, to better understand the topics within the field being investigated by machine learning approaches. For each project, we provide a short description, the link to the code, the accompanying license type, and whether the training data and resulting models are made publicly available. Based on those deposited in GitHub repositories, the most popular employed Python libraries are identified. We hope that this survey will serve as a resource to learn about machine learning or specific architectures thereof by identifying accessible codes with accompanying papers on a topic basis. To this end, we also include computational chemistry open-source software for generating training data and fundamental Python libraries for machine learning. Based on our observations and considering the three pillars of collaborative machine learning work, open data, open source (code), and open models, we provide some suggestions to the community.
Collapse
Affiliation(s)
- Alexander Hagg
- Institute
of Technology, Resource and Energy-Efficient Engineering (TREE), University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
- Department
of Electrical Engineering, Mechanical Engineering and Technical Journalism, University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
| | - Karl N. Kirschner
- Institute
of Technology, Resource and Energy-Efficient Engineering (TREE), University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
- Department
of Computer Science, University of Applied
Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
| |
Collapse
|
22
|
Abstract
Drug development is a wide scientific field that faces many challenges these days. Among them are extremely high development costs, long development times, and a small number of new drugs that are approved each year. New and innovative technologies are needed to solve these problems that make the drug discovery process of small molecules more time and cost efficient, and that allow previously undruggable receptor classes to be targeted, such as protein-protein interactions. Structure-based virtual screenings (SBVSs) have become a leading contender in this context. In this review, we give an introduction to the foundations of SBVSs and survey their progress in the past few years with a focus on ultralarge virtual screenings (ULVSs). We outline key principles of SBVSs, recent success stories, new screening techniques, available deep learning-based docking methods, and promising future research directions. ULVSs have an enormous potential for the development of new small-molecule drugs and are already starting to transform early-stage drug discovery.
Collapse
Affiliation(s)
- Christoph Gorgulla
- Harvard Medical School and Physics Department, Harvard University, Boston, Massachusetts, USA;
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Current affiliation: Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|