1
|
Teng X, Zhao X, Dai Y, Zhang X, Zhang Q, Wu Y, Hu D, Li J. ClickRNA-PROTAC for Tumor-Selective Protein Degradation and Targeted Cancer Therapy. J Am Chem Soc 2024; 146:27382-27391. [PMID: 39320981 DOI: 10.1021/jacs.4c06402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) show promise in tumor treatment. However, the E3 ligases VHL and CRBN, commonly used in PROTAC, are highly expressed in only a few tumors, thus limiting the application scope and efficacy of PROTAC drugs. Furthermore, the lack of tumor specificity in PROTAC drugs can result in toxic side effects. Therefore, there is an urgent need to develop tumor-selective PROTAC drugs that do not rely on endogenous E3 ligases. In this study, we introduce the ClickRNA-PROTAC system, which involves the expression of a fusion protein of the E3 ubiquitin ligase SIAH1 and SNAPTag through mRNA transfection and recruits the protein of interest (POI) using bio-orthogonal click chemistry. ClickRNA-PROTAC can effectively degrade various proteins such as BRD4, KRAS, and NFκB simply by replacing the warhead molecules. By employing a tumor-specific mRNA-responsive translation strategy, ClickRNA-PROTAC can selectively degrade POIs in tumor cells. Furthermore, ClickRNA-PROTAC demonstrated strong efficacy in targeted cancer therapy in a xenograft mouse model of adrenocortical carcinoma. In conclusion, this approach offers several advantages, including independence from endogenous E3 ubiquitin ligases, tumor specificity, and programmability, thereby paving the way for the development of PROTAC drugs.
Collapse
Affiliation(s)
- Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Beijing Life Science Academy, Beijing 102209, China
- New Cornerstone Science Laboratory, Shenzhen 518054, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xuan Zhao
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yicong Dai
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Xiangdong Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Qiushuang Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yuncong Wu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Difei Hu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Beijing Life Science Academy, Beijing 102209, China
- New Cornerstone Science Laboratory, Shenzhen 518054, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Karrenbrock M, Rizzi V, Procacci P, Gervasio FL. Addressing Suboptimal Poses in Nonequilibrium Alchemical Calculations. J Phys Chem B 2024; 128:1595-1605. [PMID: 38323915 DOI: 10.1021/acs.jpcb.3c06516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Alchemical transformations can be used to quantitatively estimate absolute binding free energies at a reasonable computational cost. However, most of the approaches currently in use require knowledge of the correct (crystallographic) pose. In this paper, we present a combined Hamiltonian replica exchange nonequilibrium alchemical method that allows us to reliably calculate absolute binding free energies, even when starting from suboptimal initial binding poses. Performing a preliminary Hamiltonian replica exchange enhances the sampling of slow degrees of freedom of the ligand and the target, allowing the system to populate the correct binding pose when starting from an approximate docking pose. We apply the method on 6 ligands of the first bromodomain of the BRD4 bromodomain-containing protein. For each ligand, we start nonequilibrium alchemical transformations from both the crystallographic pose and the top-scoring docked pose that are often significantly different. We show that the method produces statistically equivalent binding free energies, making it a useful tool for computational drug discovery pipelines.
Collapse
Affiliation(s)
- Maurice Karrenbrock
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland
| | - Valerio Rizzi
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland
| | - Piero Procacci
- Chemistry Department, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Francesco Luigi Gervasio
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
- Chemistry Department, University College London (UCL), WC1E 6BT London, U.K
- Swiss Bioinformatics Institute, University of Geneva, CH-1206 Geneva, Switzerland
| |
Collapse
|
3
|
Shi M, Zheng X, Zhou Y, Yin Y, Lu Z, Zou Z, Hu Y, Liang Y, Chen T, Yang Y, Jing M, Lei D, Yang P, Li X. Selectivity Mechanism of Pyrrolopyridone Analogues Targeting Bromodomain 2 of Bromodomain-Containing Protein 4 from Molecular Dynamics Simulations. ACS OMEGA 2023; 8:33658-33674. [PMID: 37744850 PMCID: PMC10515184 DOI: 10.1021/acsomega.3c03935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Bromodomain and extra-terminal domain (BET) proteins play an important role in epigenetic regulation and are linked to several diseases; therefore, they are interesting targets. BET has two bromodomains: bromodomain 1 (BD1) and BD2. Selective targeting of BD1 or BD2 may produce different activities and greater effects than pan-BD inhibitors. However, the selective mechanism of the specific core must be studied at the atomic level. This study determined the effectiveness of pyrrolopyridone analogues to selectively inhibit BD2 using a pan-BD inhibitor (ABBV-075) and a selective-BD2 inhibitor (ABBV-744). Molecular dynamics simulations and calculations of binding free energies were used to systematically study the selectivity of BD2 inhibition by the pyrrolopyridone analogues. Overall, the pyrrolopyridone analogue inhibitors targeting BD2 interacted mainly with the following amino acid pairs between bromodomain-containing protein 4 (BRD4)-BD1 and BRD4-BD2 complexes: I146/V439, N140/N433, D144/H437, P82/P375, V87/V380, D88/D381, and Y139/Y432. The pyrrolopyridone analogues targeting BRD4-BD2 were divided into five regions based on selectivity mechanism. These results suggest that the R3 and R5 regions of pyrrolopyridone analogues can be modified to improve the selectivity between BRD4-BD1 and BRD4-BD2. The selectivity of BD2 inhibition by pyrrolopyridone analogues can be used to design novel BD2 inhibitors based on a pyrrolopyridone core.
Collapse
Affiliation(s)
- Mingsong Shi
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
- Innovation
Center of Nursing Research, Nursing Key Laboratory of Sichuan Province,
West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xueting Zheng
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yan Zhou
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yuan Yin
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Zhou Lu
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Zhiyan Zou
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yan Hu
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yuanyuan Liang
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Tingting Chen
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yuhan Yang
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Meng Jing
- Department
of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of
China, Mianyang 621099, Sichuan, China
| | - Dan Lei
- School
of Life Science and Engineering, Southwest
University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Pei Yang
- Department
of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of
China, Mianyang 621099, Sichuan, China
| | - Xiaoan Li
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| |
Collapse
|
4
|
Çınaroğlu SS, Biggin PC. The role of loop dynamics in the prediction of ligand-protein binding enthalpy. Chem Sci 2023; 14:6792-6805. [PMID: 37350814 PMCID: PMC10284145 DOI: 10.1039/d2sc06471e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/31/2023] [Indexed: 06/24/2023] Open
Abstract
The enthalpic and entropic components of ligand-protein binding free energy reflect the interactions and dynamics between ligand and protein. Despite decades of study, our understanding and hence our ability to predict these individual components remains poor. In recent years, there has been substantial effort and success in the prediction of relative and absolute binding free energies, but the prediction of the enthalpic (and entropic) contributions in biomolecular systems remains challenging. Indeed, it is not even clear what kind of performance in terms of accuracy could currently be obtained for such systems. It is, however, relatively straight-forward to compute the enthalpy of binding. We thus evaluated the performance of absolute enthalpy of binding calculations using molecular dynamics simulation for ten inhibitors against a member of the bromodomain family, BRD4-1, against isothermal titration calorimetry data. Initial calculations, with the AMBER force-field showed good agreement with experiment (R2 = 0.60) and surprisingly good accuracy with an average of root-mean-square error (RMSE) = 2.49 kcal mol-1. Of the ten predictions, three were obvious outliers that were all over-predicted compared to experiment. Analysis of various simulation factors, including parameterization, buffer concentration and conformational dynamics, revealed that the behaviour of a loop (the ZA loop on the periphery of the binding site) strongly dictates the enthalpic prediction. Consistent with previous observations, the loop exists in two distinct conformational states and by considering one or the other or both states, the prediction for the three outliers can be improved dramatically to the point where the R2 = 0.95 and the accuracy in terms of RMSE improves to 0.90 kcal mol-1. However, performance across force-fields is not consistent: if OPLS and CHARMM are used, different outliers are observed and the correlation with the ZA loop behaviour is not recapitulated, likely reflecting parameterization as a confounding problem. The results provide a benchmark standard for future study and comparison.
Collapse
Affiliation(s)
- Süleyman Selim Çınaroğlu
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK +44 (0)1865 613238 +44 (0)1865 613305
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK +44 (0)1865 613238 +44 (0)1865 613305
| |
Collapse
|
5
|
Ajgaonkar S, Hirst JJ, Norris M, Zakar T. Regulation of inflammatory genes in decidual cells: Involvement of the bromodomain and extra-terminal family proteins. PLoS One 2023; 18:e0280645. [PMID: 36897880 PMCID: PMC10004631 DOI: 10.1371/journal.pone.0280645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/05/2023] [Indexed: 03/11/2023] Open
Abstract
The decidua undergoes proinflammatory activation in late pregnancy, promoting labor. Bromodomain and Extra-Terminal (BET) family proteins interact with acetylated histones and may control gene expression in inflammation. Here, we assessed whether BETs are involved in inflammatory gene regulation in human decidual cells. We have treated primary cultures of decidual stromal cells (DSCs) from term pregnancies with endotoxin (LPS) and measured the expression of a panel of pro-and anti-inflammatory genes. BET involvement was assessed using the selective BET inhibitors (+)-JQ1 and I-BET-762 or the negative control compound (-)-JQ1. Histone 3 and -4 acetylation and BETs binding at the target gene promoters were determined to assess whether these processes are involved in the actions of LPS, BETs, and BET inhibitors. LPS increased the expression of the proinflammatory (PTGS2, IL6, CXCL8/IL8, TNF) and the anti-inflammatory (IL10, IDO1) genes of the panel. The constitutively expressed inflammatory genes (PTGS1, PTGES) were unaffected. The BET inhibitors, but not the control compound, reduced the basal and LPS-induced expression of PTGS1, PTGS2, IL6, CXCL8/IL8, IL10, and IDO1. TNF expression was not changed by BET inhibition. The dominant BETs were Bromodomain-containing protein -2 (BRD2) and -4L (BRD4L) in DSCs. LPS increased histone 4 acetylation at the CXCL8/IL8 and TNF promoters and histone 3 and -4 acetylation at the IDO1 promoter, while (+)-JQ1 abrogated histone acetylation at several promoters. Overall, histone acetylation and promoter binding of BETs showed no consistent relationship with gene expression across the gene panel and the treatments. BET proteins, predominantly BRD2 and BRD4L, control critical pro- and anti-inflammatory genes in DSCs. TNF induction exemplifies a BET-independent pathway. Changing histone acetylation at the promoters is not a general obligatory requirement for inflammatory gene expression in response to LPS. BETs likely act at chromatin loci separate from the examined promoters. BET inhibitors may block decidual activation at labor.
Collapse
Affiliation(s)
- Sandeep Ajgaonkar
- College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Jonathan J. Hirst
- College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Mary Norris
- College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Tamas Zakar
- College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, New Lambton Heights, NSW, Australia
- * E-mail:
| |
Collapse
|
6
|
Mechanistic Analysis of Chemically Diverse Bromodomain-4 Inhibitors Using Balanced QSAR Analysis and Supported by X-ray Resolved Crystal Structures. Pharmaceuticals (Basel) 2022; 15:ph15060745. [PMID: 35745664 PMCID: PMC9231298 DOI: 10.3390/ph15060745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Bromodomain-4 (BRD-4) is a key enzyme in post-translational modifications, transcriptional activation, and many other cellular processes. Its inhibitors find their therapeutic usage in cancer, acute heart failure, and inflammation to name a few. In the present study, a dataset of 980 molecules with a significant diversity of structural scaffolds and composition was selected to develop a balanced QSAR model possessing high predictive capability and mechanistic interpretation. The model was built as per the OECD (Organisation for Economic Co-operation and Development) guidelines and fulfills the endorsed threshold values for different validation parameters (R2tr = 0.76, Q2LMO = 0.76, and R2ex = 0.76). The present QSAR analysis identified that anti-BRD-4 activity is associated with structural characters such as the presence of saturated carbocyclic rings, the occurrence of carbon atoms near the center of mass of a molecule, and a specific combination of planer or aromatic nitrogen with ring carbon, donor, and acceptor atoms. The outcomes of the present analysis are also supported by X-ray-resolved crystal structures of compounds with BRD-4. Thus, the QSAR model effectively captured salient as well as unreported hidden pharmacophoric features. Therefore, the present study successfully identified valuable novel pharmacophoric features, which could be beneficial for the future optimization of lead/hit compounds for anti-BRD-4 activity.
Collapse
|
7
|
Gundelach L, Fox T, Tautermann CS, Skylaris CK. BRD4: quantum mechanical protein–ligand binding free energies using the full-protein DFT-based QM-PBSA method. Phys Chem Chem Phys 2022; 24:25240-25249. [PMID: 36222107 DOI: 10.1039/d2cp03705j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fully quantum mechanical approaches to calculating protein–ligand free energies of binding have the potential to reduce empiricism and explicitly account for all physical interactions responsible for protein–ligand binding.
Collapse
Affiliation(s)
- Lennart Gundelach
- University of Southampton, Faculty of Engineering Science and Mathematics, Chemistry, University Road, Southampton, SO17 1BJ, UK
| | - Thomas Fox
- Boehringer Ingelheim Pharma GmbH & Co KG, Medicinal Chemistry, Birkendorfer Str 65, 88397, Biberach, Germany
| | - Christofer S. Tautermann
- Boehringer Ingelheim Pharma GmbH & Co KG, Medicinal Chemistry, Birkendorfer Str 65, 88397, Biberach, Germany
| | - Chris-Kriton Skylaris
- University of Southampton, Faculty of Engineering Science and Mathematics, Chemistry, University Road, Southampton, SO17 1BJ, UK
| |
Collapse
|
8
|
Recent progress on cheminformatics approaches to epigenetic drug discovery. Drug Discov Today 2020; 25:2268-2276. [PMID: 33010481 DOI: 10.1016/j.drudis.2020.09.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/31/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022]
Abstract
The ability of epigenetic markers to affect genome function has enabled transformative changes in drug discovery, especially in cancer and other emerging therapeutic areas. Concordant with the introduction of the term 'epi-informatics', the size of the epigenetically relevant chemical space has grown substantially and so did the number of applications of cheminformatic methods to epigenetics. Recent progress in epi-informatics has improved our understanding of the structure-epigenetic activity relationships and boosted the development of models predicting novel epigenetic agents. Herein, we review the advances in computational approaches to drug discovery of small molecules with epigenetic modulation profiles, summarize the current chemogenomics data available for epigenetic targets, and provide a perspective on the greater utility of biomedical knowledge mining as a means to advance the epigenetic drug discovery.
Collapse
|
9
|
Prieto-Martínez FD, Medina-Franco JL. Current advances on the development of BET inhibitors: insights from computational methods. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:127-180. [PMID: 32951810 DOI: 10.1016/bs.apcsb.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Epigenetics was coined almost 70 years ago for the description of heritable phenotype without altering DNA sequences. Research on the field has uncovered significant roles of such mechanisms, that account for the biogenesis of several diseases. Further studies have led the way for drug development which targets epi-enzymes, mainly for cancer treatment. Of the numerous epi-targets involved with histone acetylation, bromodomains have captured the spotlight of drug discovery focused on novel therapies. However, due to high sequence identity, the development of potent and selective inhibitors poses a significant challenge. Herein, we discuss recent computational developments on BET inhibitors and other methods that may be applied for drug discovery in general. As a proof-of-concept, we discuss a virtual screening to identify novel BET inhibitors based on coumarin derivatives. From public data, we identified putative structure-activity relationships of coumarin scaffold and propose R-group modifications for BET selectivity. Results showed that the optimization and design of novel coumarins could be further explored.
Collapse
Affiliation(s)
- Fernando D Prieto-Martínez
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - José L Medina-Franco
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
10
|
Shi C, Ye Z, Han J, Ye X, Lu W, Ji C, Li Z, Ma Z, Zhang Q, Zhang Y, He W, Chen Z, Cao X, Shou X, Zhou X, Wang Y, Zhang Z, Li Y, Ye H, He M, Chen H, Cheng H, Sun J, Cai J, Huang C, Ye F, Luo C, Zhou B, Ding H, Zhao Y. BRD4 as a therapeutic target for nonfunctioning and growth hormone pituitary adenoma. Neuro Oncol 2020; 22:1114-1125. [PMID: 32246150 PMCID: PMC7594556 DOI: 10.1093/neuonc/noaa084] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nonfunctioning pituitary adenoma (NFPA) and growth hormone pituitary adenoma (GHPA) are major subtypes of pituitary adenomas (PAs). The primary treatment is surgical resection. However, radical excision remains challenging, and few effective medical therapies are available. It is urgent to find novel targets for the treatment. Bromodomain-containing protein 4 (BRD4) is an epigenetic regulator that leads to aberrant transcriptional activation of oncogenes. Herein, we investigated the pathological role of BRD4 and evaluated the effectiveness of BRD4 inhibitors in the treatment of NFPA and GHPA. METHODS The expression of BRD4 was detected in NFPA, GHPA, and normal pituitary tissues. The efficacies of BRD4 inhibitors were evaluated in GH3 and MMQ cell lines, patient-derived tumor cells, and in vivo mouse xenograft models of PA. Standard western blots, real-time PCR, and flow cytometry experiments were performed to investigate the effect of BRD4 inhibitors on cell cycle progression, apoptosis, and the expression patterns of downstream genes. RESULTS Immunohistochemistry studies demonstrated the overexpression of BRD4 in NFPA and GHPA. In vitro and in vivo studies showed that treatment with the BRD4 inhibitor ZBC-260 significantly inhibited the proliferation of PA cells. Further mechanistic studies revealed that ZBC-260 could downregulate the expression of c-Myc, B-cell lymphoma 2 (Bcl2), and related genes, which are vital factors in pituitary tumorigenesis. CONCLUSION In this study, we determined the overexpression of BRD4 in NFPA and GHPA and assessed the effects of BRD4 inhibitors on PA cells in vitro and in vivo. Our findings suggest that BRD4 is a promising therapeutic target for NFPA and GHPA.
Collapse
Affiliation(s)
- Chengzhang Shi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Zhao Ye
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Jie Han
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqing Ye
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenchao Lu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chenxing Ji
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Zizhou Li
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zengyi Ma
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Qilin Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Yichao Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Wenqiang He
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Zhengyuan Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Xiaoyun Cao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Xuefei Shou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Xiang Zhou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Yongfei Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Zhaoyun Zhang
- Shanghai Pituitary Tumor Center, Shanghai, China
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiming Li
- Shanghai Pituitary Tumor Center, Shanghai, China
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongying Ye
- Shanghai Pituitary Tumor Center, Shanghai, China
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Min He
- Shanghai Pituitary Tumor Center, Shanghai, China
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Chen
- Shanghai Pituitary Tumor Center, Shanghai, China
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haixia Cheng
- Shanghai Pituitary Tumor Center, Shanghai, China
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Sun
- Department of Neurosurgery, Central Hospital of Wenzhou, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianyong Cai
- Department of Neurosurgery, Central Hospital of Wenzhou, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chuanxin Huang
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Ye
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cheng Luo
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bing Zhou
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hong Ding
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Yao Zhao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Wu SL, Wang LF, Sun HB, Wang W, Yu YX. Probing molecular mechanism of inhibitor bindings to bromodomain-containing protein 4 based on molecular dynamics simulations and principal component analysis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:547-570. [PMID: 32657160 DOI: 10.1080/1062936x.2020.1777584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
It is well known that bromodomain-containing protein 4 (BRD4) has been thought as a promising target utilized for treating various human diseases, such as inflammatory disorders, malignant tumours, acute myelogenous leukaemia (AML), bone diseases, etc. For this study, molecular dynamics (MD) simulations, binding free energy calculations, and principal component analysis (PCA) were integrated together to uncover binding modes of inhibitors 8P9, 8PU, and 8PX to BRD4(1). The results obtained from binding free energy calculations show that van der Waals interactions act as the main regulator in bindings of inhibitors to BRD4(1). The information stemming from PCA reveals that inhibitor associations extremely affect conformational changes, internal dynamics, and movement patterns of BRD4(1). Residue-based free energy decomposition method was wielded to unveil contributions of independent residues to inhibitor bindings and the data signify that hydrogen bonding interactions and hydrophobic interactions are decisive factors affecting bindings of inhibitors to BRD4(1). Meanwhile, eight residues Trp81, Pro82, Val87, Leu92, Leu94, Cys136, Asn140, and Ile146 are recognized as the common hot interaction spots of three inhibitors with BRD4(1). The results from this work are expected to provide a meaningfully theoretical guidance for design and development of effective inhibitors inhibiting of the activity of BRD4.
Collapse
Affiliation(s)
- S L Wu
- School of Science, Shandong Jiaotong University , Jinan, China
| | - L F Wang
- School of Science, Shandong Jiaotong University , Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University , Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University , Jinan, China
| | - Y X Yu
- School of Science, Shandong Jiaotong University , Jinan, China
| |
Collapse
|
12
|
Rodríguez Y, Gerona-Navarro G, Osman R, Zhou MM. In silico design and molecular basis for the selectivity of Olinone toward the first over the second bromodomain of BRD4. Proteins 2020; 88:414-430. [PMID: 31587361 PMCID: PMC6982606 DOI: 10.1002/prot.25818] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 01/11/2023]
Abstract
Bromodomains (BrDs), a conserved structural module in chromatin-associated proteins, are well known for recognizing ε-N-acetyl lysine residues on histones. One of the most relevant BrDs is BRD4, a tandem BrD containing protein (BrD1 and BrD2) that plays a critical role in numerous diseases including cancer. Growing evidence shows that the two BrDs of BRD4 have different biological functions; hence selective ligands that can be used to study their functions are of great interest. Here, as a follow-up of our previous work, we first provide a detailed characterization study of the in silico rational design of Olinone as part of a series of five tetrahydropyrido indole-based compounds as BRD4 BrD1 inhibitors. Additionally, we investigated the molecular basis for Olinone's selective recognition by BrD1 over BrD2. Molecular dynamics simulations, free energy calculations, and conformational analyses of the apo-BRD4-BrD1|2 and BRD4-BrD1|2/Olinone complexes showed that Olinone's selectivity is facilitated by five key residues: Leu92 in BrD1|385 in BrD2 of ZA loop, Asn140|433, Asp144|His437 and Asp145|Glu438 of BC loop, and Ile146|Val49 of helix C. Furthermore, the difference in hydrogen bonds number and in mobility of the ZA and BC loops of the acetyl-lysine binding site between BRD4 BrD1/Olinone and BrD2/Olinone complexes also contribute to the difference in Olinone's binding affinity and selectivity toward BrD1 over BrD2. Altogether, our computer-aided molecular design techniques can effectively guide the development of small-molecule BRD4 BrD1 inhibitors, explain their selectivity origin, and further open doors to the design of new therapeutically improved derivatives.
Collapse
Affiliation(s)
- Yoel Rodríguez
- Department of Natural Sciences, Hostos Community
College of CUNY, Bronx, NY 10451, USA,Department of Pharmacological Sciences, Icahn School
of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Corresponding Authors: Yoel Rodríguez.
Address: Department of Natural Sciences, Room A-507F, Hostos Community College
of CUNY, Bronx, NY 10451, USA. Phone: +1 (718) 518-4134, Fax: +1 (718) 518-1120.
- ; Ming-Ming Zhou. Address: Department
of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425
Madison Avenue, Box 1677, New York, NY 10029, USA. Phone: +1 (212) 659-8652.
Fax: +1 (212) 849-2456.
| | - Guillermo Gerona-Navarro
- Department of Chemistry, Brooklyn College, 2900
Bedford Avenue, Room 351 NE, Brooklyn, NY 11210, USA,Ph.D. Program in Chemistry. The Graduate Center of
The City University of New York, NY 10016, USA
| | - Roman Osman
- Department of Pharmacological Sciences, Icahn School
of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School
of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Corresponding Authors: Yoel Rodríguez.
Address: Department of Natural Sciences, Room A-507F, Hostos Community College
of CUNY, Bronx, NY 10451, USA. Phone: +1 (718) 518-4134, Fax: +1 (718) 518-1120.
- ; Ming-Ming Zhou. Address: Department
of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425
Madison Avenue, Box 1677, New York, NY 10029, USA. Phone: +1 (212) 659-8652.
Fax: +1 (212) 849-2456.
| |
Collapse
|
13
|
Wang L, Wang Y, Sun H, Zhao J, Wang Q. Theoretical insight into molecular mechanisms of inhibitor bindings to bromodomain-containing protein 4 using molecular dynamics simulations and calculations of binding free energies. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Zhang D, Han J, Lu W, Lian F, Wang J, Lu T, Tao H, Xiao S, Zhang F, Liu YC, Liu R, Zhang N, Jiang H, Chen K, Zhao C, Luo C. Discovery of alkoxy benzamide derivatives as novel BPTF bromodomain inhibitors via structure-based virtual screening. Bioorg Chem 2019; 86:494-500. [PMID: 30780018 DOI: 10.1016/j.bioorg.2019.01.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/10/2019] [Accepted: 01/21/2019] [Indexed: 12/24/2022]
Abstract
Bromodomain PHD finger transcription factor (BPTF), a bromodomain-containing protein, plays a crucial role in the regulation of downstream gene expression through the specific recognition of lysine acetylation on bulk histones. The dysfunction of BPTF is closely involved with the development and progression of many human diseases, especially cancer. Therefore, BPTF bromodomain has become a promising drug target for epigenetic cancer therapy. However, unlike BET family inhibitors, few BPTF bromodomain inhibitors have been reported. In this study, by integrating docking-based virtual screening with biochemical analysis, we identified a novel selective BPTF bromodomain inhibitor DCB29 with the IC50 value of 13.2 ± 1.6 μM by homogenous time-resolved fluorescence resonance energy transfer (HTRF) assays. The binding between DCB29 and BPTF was confirmed by NMR and SPR. Molecular docking disclosed that DCB29 occupied the pocket of acetylated H4 peptide substrate and provided detailed SAR explanations for its derivatives. Collectively, DCB29 presented great potential as a powerful tool for BPTF-related biological research and further medicinal chemistry optimization.
Collapse
Affiliation(s)
- Dan Zhang
- Guizhou Engineering Laboratory for Synthetic Drugs, Key Laboratory of Guizhou for Fermentation Engineering and Biomedicine, School of Pharmaceutical Sciences, Guizhou University, Guizhou 550025, China; State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China
| | - Jie Han
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China
| | - Wenchao Lu
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China
| | - Fulin Lian
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jun Wang
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Tian Lu
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Hongru Tao
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Senhao Xiao
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Fengcai Zhang
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Yu-Chih Liu
- Shanghai ChemPartner Co., LTD., Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Rongfeng Liu
- Shanghai ChemPartner Co., LTD., Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Naixia Zhang
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China
| | - Chunshen Zhao
- Guizhou Engineering Laboratory for Synthetic Drugs, Key Laboratory of Guizhou for Fermentation Engineering and Biomedicine, School of Pharmaceutical Sciences, Guizhou University, Guizhou 550025, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China.
| |
Collapse
|
15
|
Song LT, Tu J, Liu RR, Zhu M, Meng YJ, Zhai HL. Molecular mechanism study of several inhibitors binding to BRD9 bromodomain based on molecular simulations. J Biomol Struct Dyn 2018; 37:2970-2979. [DOI: 10.1080/07391102.2018.1502097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Li Ting Song
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Jing Tu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Rui Rui Liu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Min Zhu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Ya Jie Meng
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Hong Lin Zhai
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
16
|
From bench to bedside, via desktop. Recent advances in the application of cutting-edge in silico tools in the research of drugs targeting bromodomain modules. Biochem Pharmacol 2018; 159:40-51. [PMID: 30414936 DOI: 10.1016/j.bcp.2018.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/07/2018] [Indexed: 11/22/2022]
Abstract
The discipline of drug discovery has greatly benefited by computational tools and in silico algorithms aiming at rationalization of many related processes, from the stage of early hit identification to the preclinical phases of drug candidate validation. The various methodologies referred to as molecular modeling tools span a broad spectrum of applications, from straightforward approaches such as virtual screening of compound libraries to more advanced techniques involving the precise estimation of free energy upon binding of the candidate drug to its macromolecular target. To this end, we report an overview of specific studies where implementation of such sophisticated modeling algorithms has shown to be indispensable for addressing challenging systems and biological questions otherwise difficult to answer. We focus our attention on the emerging field of bromodomain inhibitors. Bromodomains are small modules involved in epigenetic signaling and currently comprise high-priority targets for developing both drug candidates and chemical probes for basic biomedical research. We attempt a critical presentation of selected cases utilizing cutting-edge in silico methodologies, with our main emphasis being on absolute or relative free energy simulations, on implementation of quantum-mechanics level calculations and on characterization of solvent thermodynamics. We discuss the advantages and strengths as well as the drawbacks and weaknesses of computational tools utilized in those works and we attempt to comment on specific issues related to their integration into the regular medicinal chemistry practice. Our conclusion is that while such methods indeed represent highly promising resources for further advancing the discipline, their application is not always trivial.
Collapse
|
17
|
Theoretical research in structure characteristics of different inhibitors and differences of binding modes with CBP bromodomain. Bioorg Med Chem 2018; 26:712-720. [DOI: 10.1016/j.bmc.2017.12.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/18/2017] [Accepted: 12/24/2017] [Indexed: 12/12/2022]
|
18
|
Wang Q, Li Y, Xu J, Wang Y, Leung ELH, Liu L, Yao X. Selective inhibition mechanism of RVX-208 to the second bromodomain of bromo and extraterminal proteins: insight from microsecond molecular dynamics simulations. Sci Rep 2017; 7:8857. [PMID: 28821780 PMCID: PMC5562737 DOI: 10.1038/s41598-017-08909-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/14/2017] [Indexed: 11/09/2022] Open
Abstract
RVX-208 is a recently reported inhibitor of bromo and extraterminal (BET) family proteins (including BRD2-4 and BRDT) with selectivity for the second bromodomain (BD2), currently in phase III clinical trials. Despite of its promising antitumor activity, due to the conserved folds of the first and second bromodomains (BD1 and BD2), the detailed selectivity mechanism of RVX-208 towards BD2 over BD1 is still unknown. To elucidate selective inhibition mechanism of RVX-208 to BD2, microsecond molecular dynamics simulations were performed in this study for BRD2-BD1, BRD2-BD2 and BRD4-BD1 with and without RVX-208, respectively. Binding free energy calculations show that there exists strongest interaction between RVX-208 and BRD2-BD2. Leu383 and Asn429 are two most important residues of BRD2-BD2 for binding to RVX-208. Structural network analysis reveals that RVX-208 can shorten the communication path of ZA and BC loops in BRD2-BD2 pocket, making pocket more suitable to accommodate RVX-208. Additionally, different behaviors of His433 (Asp160 in BRD2-BD1) and Val435 (Ile162 in BRD2-BD1) in BRD2-BD2 are key factors responsible for selective binding of RVX-208 to BRD2-BD2. The proposed selective inhibition mechanism of RVX-208 to BRD2-BD2 can be helpful for rational design of novel selective inhibitors of the second bromodomain of BET family proteins.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Ying Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Jiahui Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Yuwei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| |
Collapse
|
19
|
Wu VM, Mickens J, Uskoković V. Bisphosphonate-Functionalized Hydroxyapatite Nanoparticles for the Delivery of the Bromodomain Inhibitor JQ1 in the Treatment of Osteosarcoma. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25887-25904. [PMID: 28731328 PMCID: PMC5794714 DOI: 10.1021/acsami.7b08108] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Osteosarcoma (OS) is one of the most common neoplasia among children, and its survival statistics have been stagnating since the combinatorial anticancer therapy triad was first introduced. Here, we report on the assessment of the effect of hydroxyapatite (HAp) nanoparticles loaded with medronate, the simplest bisphosphonate, as a bone-targeting agent and JQ1, a small-molecule bromodomain inhibitor, as a chemotherapeutic in different 2D and 3D K7M2 OS in vitro models. Both additives decreased the crystallinity of HAp, but the effect was more intense for medronate because of its higher affinity for HAp. As the result of PO43--NH+ binding, JQ1 shielded the surface phosphates of HAp and pushed its surface charge to more positive values, exhibiting the opposite effect from calcium-blocking medronate. In contrast to the faster and more exponential release of JQ1 from monetite, its release from HAp nanoparticles followed a zero-order kinetics, but 98% of the payload was released after 48 h. The apoptotic effect of HAp nanoparticles loaded with JQ1, with medronate and with both JQ1 and medronate, was selective in 2D culture: pronounced against the OS cells and nonexistent against the healthy fibroblasts. While OS cell invasion was significantly inhibited by all of the JQ1-containing HAp formulations, that is, with and without medronate, all of the combinations of the targeting compound, medronate, and the chemotherapeutic, JQ1, delivered using HAp, but not HAp alone, inhibited OS cell migration from the tumor spheroids. JQ1 delivered using HAp had an effect on tumor migration, invasion, and apoptosis even at extremely low, subnanomolar concentrations, at which no effect of JQ1 per se was observed, meaning that this form of delivery could help achieve a multifold increase of this drug's efficacy. More than 80% of OS cells internalized JQ1-loaded HAp nanoparticles after 24 h of coincubation, suggesting that this augmentation of the activity of JQ1 may be due to the intracellular delivery and sustained release of the drug enabled by HAp. In addition to the reduction of the OS cell viability, the reduction of the migration and invasion radii was observed in OS tumor spheroids challenged with even JQ1-free medronate-functionalized HAp nanoparticles, demonstrating a definite anticancer activity of medronate alone when combined with HAp. The effect of medronate-functionalized JQ1-loaded HAp nanoparticles was most noticeable against OS cells differentiated into an osteoblastic lineage, in which case they surpassed in effect pure JQ1 and medronate-free compositions. The activity of JQ1 was mediated through increased Ezrin expression and decreased RUNX2 expression and was MYC and FOSL1 independent, but these patterns of gene expression changed in cells challenged with the nanoparticulate form of delivery, having been accompanied by the upregulation of RUNX2 and downregulation of Ezrin in OS cells treated with medronate-functionalized JQ1-loaded HAp nanoparticles.
Collapse
Affiliation(s)
- Victoria M. Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, California 92618-1908, United States
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, Illinois 60607-7052, United States
| | - Jarrett Mickens
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, Illinois 60607-7052, United States
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, California 92618-1908, United States
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, Illinois 60607-7052, United States
- Corresponding Author:
| |
Collapse
|
20
|
Xing J, Lu W, Liu R, Wang Y, Xie Y, Zhang H, Shi Z, Jiang H, Liu YC, Chen K, Jiang H, Luo C, Zheng M. Machine-Learning-Assisted Approach for Discovering Novel Inhibitors Targeting Bromodomain-Containing Protein 4. J Chem Inf Model 2017; 57:1677-1690. [PMID: 28636361 DOI: 10.1021/acs.jcim.7b00098] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bromodomain-containing protein 4 (BRD4) is implicated in the pathogenesis of a number of different cancers, inflammatory diseases and heart failure. Much effort has been dedicated toward discovering novel scaffold BRD4 inhibitors (BRD4is) with different selectivity profiles and potential antiresistance properties. Structure-based drug design (SBDD) and virtual screening (VS) are the most frequently used approaches. Here, we demonstrate a novel, structure-based VS approach that uses machine-learning algorithms trained on the priori structure and activity knowledge to predict the likelihood that a compound is a BRD4i based on its binding pattern with BRD4. In addition to positive experimental data, such as X-ray structures of BRD4-ligand complexes and BRD4 inhibitory potencies, negative data such as false positives (FPs) identified from our earlier ligand screening results were incorporated into our knowledge base. We used the resulting data to train a machine-learning model named BRD4LGR to predict the BRD4i-likeness of a compound. BRD4LGR achieved a 20-30% higher AUC-ROC than that of Glide using the same test set. When conducting in vitro experiments against a library of previously untested, commercially available organic compounds, the second round of VS using BRD4LGR generated 15 new BRD4is. Moreover, inverting the machine-learning model provided easy access to structure-activity relationship (SAR) interpretation for hit-to-lead optimization.
Collapse
Affiliation(s)
- Jing Xing
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Xue Yuan Road 38, Beijing 100191, China
- Department of Pharmacy, University of Chinese Academy of Sciences , 19A Yuquan Road, Beijing 100049, China
| | - Wenchao Lu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
- Department of Pharmacy, University of Chinese Academy of Sciences , 19A Yuquan Road, Beijing 100049, China
| | - Rongfeng Liu
- Shanghai ChemPartner Co., LTD. , #5 Building, 998 Halei Road, Shanghai 201203, China
| | - Yulan Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
- Department of Pharmacy, University of Chinese Academy of Sciences , 19A Yuquan Road, Beijing 100049, China
| | - Yiqian Xie
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
- Department of Pharmacy, University of Chinese Academy of Sciences , 19A Yuquan Road, Beijing 100049, China
| | - Hao Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
- Department of Pharmacy, University of Chinese Academy of Sciences , 19A Yuquan Road, Beijing 100049, China
| | - Zhe Shi
- Shanghai ChemPartner Co., LTD. , #5 Building, 998 Halei Road, Shanghai 201203, China
| | - Hao Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
- Department of Pharmacy, University of Chinese Academy of Sciences , 19A Yuquan Road, Beijing 100049, China
| | - Yu-Chih Liu
- Shanghai ChemPartner Co., LTD. , #5 Building, 998 Halei Road, Shanghai 201203, China
| | - Kaixian Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
21
|
Heinzelmann G, Henriksen NM, Gilson MK. Attach-Pull-Release Calculations of Ligand Binding and Conformational Changes on the First BRD4 Bromodomain. J Chem Theory Comput 2017; 13:3260-3275. [PMID: 28564537 PMCID: PMC5541932 DOI: 10.1021/acs.jctc.7b00275] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bromodomains, protein domains involved in epigenetic regulation, are able to bind small molecules with high affinity. In the present study, we report free energy calculations for the binding of seven ligands to the first BRD4 bromodomain, using the attach-pull-release (APR) method to compute the reversible work of removing the ligands from the binding site and then allowing the protein to relax conformationally. We test three different water models, TIP3P, TIP4PEw, and SPC/E, as well as the GAFF and GAFF2 parameter sets for the ligands. Our simulations show that the apo crystal structure of BRD4 is only metastable, with a structural transition happening in the absence of the ligand typically after 20 ns of simulation. We compute the free energy change for this transition with a separate APR calculation on the free protein and include its contribution to the ligand binding free energies, which generally causes an underestimation of the affinities. By testing different water models and ligand parameters, we are also able to assess their influence in our results and determine which one produces the best agreement with the experimental data. Both free energies associated with the conformational change and ligand binding are affected by the choice of water model, with the two sets of ligand parameters affecting their binding free energies to a lesser degree. Across all six combinations of water model and ligand potential function, the Pearson correlation coefficients between calculated and experimental binding free energies range from 0.55 to 0.83, and the root-mean-square errors range from 1.4-3.2 kcal/mol. The current protocol also yields encouraging preliminary results when used to assess the relative stability of ligand poses generated by docking or other methods, as illustrated for two different ligands. Our method takes advantage of the high performance provided by graphics processing units and can readily be applied to other ligands as well as other protein systems.
Collapse
Affiliation(s)
- Germano Heinzelmann
- Departamento de Fı́sica, Universidade Federal de Santa Catarina , Florianópolis, Santa Catarina 88040-900, Brazil
| | - Niel M Henriksen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|
22
|
Su J, Liu X, Zhang S, Yan F, Zhang Q, Chen J. A computational insight into binding modes of inhibitors XD29, XD35, and XD28 to bromodomain-containing protein 4 based on molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:1212-1224. [DOI: 10.1080/07391102.2017.1317666] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jing Su
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Fangfang Yan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| |
Collapse
|
23
|
Cheng C, Diao H, Zhang F, Wang Y, Wang K, Wu R. Deciphering the mechanisms of selective inhibition for the tandem BD1/BD2 in the BET-bromodomain family. Phys Chem Chem Phys 2017; 19:23934-23941. [DOI: 10.1039/c7cp04608a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The bromodomain and extra terminal domain (BET) family of bromodomains (BRDs) are well-known drug targets for many human diseases.
Collapse
Affiliation(s)
- Chunyan Cheng
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Hongjuan Diao
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Fan Zhang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Yongheng Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Kai Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| |
Collapse
|
24
|
Raux B, Voitovich Y, Derviaux C, Lugari A, Rebuffet E, Milhas S, Priet S, Roux T, Trinquet E, Guillemot JC, Knapp S, Brunel JM, Fedorov AY, Collette Y, Roche P, Betzi S, Combes S, Morelli X. Exploring Selective Inhibition of the First Bromodomain of the Human Bromodomain and Extra-terminal Domain (BET) Proteins. J Med Chem 2016; 59:1634-41. [PMID: 26735842 DOI: 10.1021/acs.jmedchem.5b01708] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A midthroughput screening follow-up program targeting the first bromodomain of the human BRD4 protein, BRD4(BD1), identified an acetylated-mimic xanthine derivative inhibitor. This compound binds with an affinity in the low micromolar range yet exerts suitable unexpected selectivity in vitro against the other members of the bromodomain and extra-terminal domain (BET) family. A structure-based program pinpointed a role of the ZA loop, paving the way for the development of potent and selective BET-BRDi probes.
Collapse
Affiliation(s)
- Brigitt Raux
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie de Marseille (CRCM), UMR 7258; INSERM U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM105 , 13273 Marseille, France
| | - Yuliia Voitovich
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie de Marseille (CRCM), UMR 7258; INSERM U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM105 , 13273 Marseille, France.,Department of Organic Chemistry, Lobachevsky State University of Nizhni Novgorod , Gagarina av. 23, Nizhni Novgorod 603950, Russia
| | - Carine Derviaux
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie de Marseille (CRCM), UMR 7258; INSERM U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM105 , 13273 Marseille, France
| | - Adrien Lugari
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie de Marseille (CRCM), UMR 7258; INSERM U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM105 , 13273 Marseille, France
| | - Etienne Rebuffet
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie de Marseille (CRCM), UMR 7258; INSERM U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM105 , 13273 Marseille, France
| | - Sabine Milhas
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie de Marseille (CRCM), UMR 7258; INSERM U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM105 , 13273 Marseille, France.,Screening Platform AD2P, CNRS, AFMB UMR 7257, Aix-Marseille Université , 13288 Marseille, France
| | - Stéphane Priet
- Screening Platform AD2P, CNRS, AFMB UMR 7257, Aix-Marseille Université , 13288 Marseille, France
| | - Thomas Roux
- Cisbio Bioassays, R&D , Parc Marcel Boiteux, BP 84175, 30200 Codolet, France
| | - Eric Trinquet
- Cisbio Bioassays, R&D , Parc Marcel Boiteux, BP 84175, 30200 Codolet, France
| | - Jean-Claude Guillemot
- Screening Platform AD2P, CNRS, AFMB UMR 7257, Aix-Marseille Université , 13288 Marseille, France
| | - Stefan Knapp
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, U.K.,Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.,Goethe-University , Institute for Pharmaceutical Chemistry and Buchmann Institute for Life Science, Campus Riedberg, Max-von Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Jean-Michel Brunel
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie de Marseille (CRCM), UMR 7258; INSERM U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM105 , 13273 Marseille, France
| | - Alexey Yu Fedorov
- Department of Organic Chemistry, Lobachevsky State University of Nizhni Novgorod , Gagarina av. 23, Nizhni Novgorod 603950, Russia
| | - Yves Collette
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie de Marseille (CRCM), UMR 7258; INSERM U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM105 , 13273 Marseille, France
| | - Philippe Roche
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie de Marseille (CRCM), UMR 7258; INSERM U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM105 , 13273 Marseille, France
| | - Stéphane Betzi
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie de Marseille (CRCM), UMR 7258; INSERM U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM105 , 13273 Marseille, France
| | - Sébastien Combes
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie de Marseille (CRCM), UMR 7258; INSERM U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM105 , 13273 Marseille, France
| | - Xavier Morelli
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie de Marseille (CRCM), UMR 7258; INSERM U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM105 , 13273 Marseille, France
| |
Collapse
|
25
|
Cortopassi WA, Kumar K, Paton RS. Cation–π interactions in CREBBP bromodomain inhibition: an electrostatic model for small-molecule binding affinity and selectivity. Org Biomol Chem 2016; 14:10926-10938. [DOI: 10.1039/c6ob02234k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new model is presented to explain and predict binding affinity of aromatic and heteroaromatic ligands for the CREBBP bromodomain based on cation–π interaction strength.
Collapse
Affiliation(s)
| | - Kiran Kumar
- Chemistry Research Laboratory
- University of Oxford
- Oxford OX1 3TA
- UK
| | - Robert S. Paton
- Chemistry Research Laboratory
- University of Oxford
- Oxford OX1 3TA
- UK
| |
Collapse
|