1
|
Li C, Yang Q, Zhang L. Identification of putative allosteric inhibitors of BCKDK via virtual screening and biological evaluation. J Enzyme Inhib Med Chem 2024; 39:2290458. [PMID: 38059302 PMCID: PMC11721764 DOI: 10.1080/14756366.2023.2290458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Abnormal accumulation of branched-chain amino acids (BCAAs) can lead to metabolic diseases and cancers. Branched-chain α-keto acid dehydrogenase kinase (BCKDK) is a key negative regulator of BCAA catabolism, and targeting BCKDK provides a promising therapeutic approach for diseases caused by BCAA accumulation. Here, we screened PPHN and POAB as novel putative allosteric inhibitors by integrating allosteric binding site prediction, large-scale ligand database virtual screening, and bioactivity evaluation assays. Both of them showed a high binding affinity to BCKDK, with Kd values of 3.9 μM and 1.86 μM, respectively. In vivo experiments, the inhibitors demonstrated superior kinase inhibitory activity and notable antiproliferative and proapoptotic effects on diverse cancer cells. Finally, bulk RNA-seq analysis revealed that PPHN and POAB suppressed cell growth through a range of signalling pathways. Taken together, our findings highlight two novel BCKDK inhibitors as potent therapeutic candidates for metabolic diseases and cancers associated with BCAA dysfunctional metabolism.
Collapse
Affiliation(s)
- Chunqiong Li
- Genomics Center, Chinese Institute for Brain Research, Beijing, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Genomics Center, Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
2
|
Hu F, Chang F, Tao L, Sun X, Liu L, Zhao Y, Han Z, Li C. Prediction of Protein Allosteric Sites with Transfer Entropy and Spatial Neighbor-Based Evolutionary Information Learned by an Ensemble Model. J Chem Inf Model 2024; 64:6197-6204. [PMID: 39075972 DOI: 10.1021/acs.jcim.4c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Allostery is one of the most direct and efficient ways to regulate protein functions. The diverse allosteric sites make it possible to design allosteric modulators of differential selectivity and improved safety compared with those of orthosteric drugs targeting conserved orthosteric sites. Here, we develop an ensemble machine learning method AllosES to predict protein allosteric sites in which the new and effective features are utilized, including the entropy transfer-based dynamic property, secondary structure features, and our previously proposed spatial neighbor-based evolutionary information besides the traditional physicochemical properties. To overcome the class imbalance problem, the multiple grouping strategy is proposed, which is applied to feature selection and model construction. The ensemble model is constructed where multiple submodels are trained on multiple training subsets, respectively, and their results are then integrated to be the final output. AllosES achieves a prediction performance of 0.556 MCC on the independent test set D24, and additionally, AllosES can rank the real allosteric sites in the top three for 83.3/89.3% of allosteric proteins from the test set D24/D28, outperforming the state-of-the-art peer methods. The comprehensive results demonstrate that AllosES is a promising method for protein allosteric site prediction. The source code is available at https://github.com/ChunhuaLab/AllosES.
Collapse
Affiliation(s)
- Fangrui Hu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Fubin Chang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Lianci Tao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaohan Sun
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Lamei Liu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yingchun Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Zhongjie Han
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Chunhua Li
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Lv N, Cao Z. Subpocket-Based Analysis Approach for the Protein Pocket Dynamics. J Chem Theory Comput 2024; 20:4909-4920. [PMID: 38772734 DOI: 10.1021/acs.jctc.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Structural and dynamic characteristics of protein pockets remarkably influence their biological functions and are also important for enzyme engineering and new drug research and development. To date, several softwares have been developed to analyze the dynamic properties of protein pockets. However, due to the complexity and diversity of the pocket information during the kinetic relaxation, further improvement and capacity expansion of current tools are required. Here, we developed a platform software AlphaTraj in which a computational strategy that divides the whole protein pocket into subpockets and examines various properties of the subpockets such as survival time, stability, and correlation was proposed and implemented. We also proposed a scoring function for the subpockets as well as the whole pocket to visualize the quality of the pocket. Furthermore, we implemented automated conformational search functions for ligand docking and ligand optimization. These functions may help us to gain a deep understanding of the dynamic properties of protein pockets and accelerate the protein engineering and the design of inhibitors and small-molecule drugs. The software is freely available at https://github.com/dooo12332/AlphaTraj.git under the GNU GPL license.
Collapse
Affiliation(s)
- Nan Lv
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, People's Republic of China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, People's Republic of China
| |
Collapse
|
4
|
Li M, Lan X, Lu X, Zhang J. A Structure-Based Allosteric Modulator Design Paradigm. HEALTH DATA SCIENCE 2023; 3:0094. [PMID: 38487194 PMCID: PMC10904074 DOI: 10.34133/hds.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/11/2023] [Indexed: 03/17/2024]
Abstract
Importance: Allosteric drugs bound to topologically distal allosteric sites hold a substantial promise in modulating therapeutic targets deemed undruggable at their orthosteric sites. Traditionally, allosteric modulator discovery has predominantly relied on serendipitous high-throughput screening. Nevertheless, the landscape has undergone a transformative shift due to recent advancements in our understanding of allosteric modulation mechanisms, coupled with a significant increase in the accessibility of allosteric structural data. These factors have extensively promoted the development of various computational methodologies, especially for machine-learning approaches, to guide the rational design of structure-based allosteric modulators. Highlights: We here presented a comprehensive structure-based allosteric modulator design paradigm encompassing 3 critical stages: drug target acquisition, allosteric binding site, and modulator discovery. The recent advances in computational methods in each stage are encapsulated. Furthermore, we delve into analyzing the successes and obstacles encountered in the rational design of allosteric modulators. Conclusion: The structure-based allosteric modulator design paradigm holds immense potential for the rational design of allosteric modulators. We hope that this review would heighten awareness of the use of structure-based computational methodologies in advancing the field of allosteric drug discovery.
Collapse
Affiliation(s)
- Mingyu Li
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaobin Lan
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xun Lu
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
5
|
Lv Z, Meng J, Yao S, Xiao F, Li S, Shi H, Cui C, Chen K, Luo X, Ye Y, Chen C. Naringenin improves muscle endurance via activation of the Sp1-ERRγ transcriptional axis. Cell Rep 2023; 42:113288. [PMID: 37874675 DOI: 10.1016/j.celrep.2023.113288] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
Skeletal muscle function declines in the aging process or disease; however, until now, skeletal muscle has remained one of the organs most undertreated with medication. In this study, naringenin (NAR) was found to build muscle endurance in wild-type mice of different ages by increasing oxidative myofiber numbers and aerobic metabolism, and it ameliorates muscle dysfunction in mdx mice. The transcription factor Sp1 was identified as a direct target of NAR and was shown to mediate the function of NAR on muscle. Moreover, the binding site of NAR on Sp1 was further validated as GLN-110. NAR enhances the binding of Sp1 to the CCCTGCCCTC sequence of the Esrrg promoter by promoting Sp1 phosphorylation, thus upregulating Esrrg expression. The identification of the Sp1-ERRγ transcriptional axis is of great significance in basic muscle research, and this function of NAR has potential implications for the improvement of muscle function and the prevention of muscle atrophy.
Collapse
Affiliation(s)
- Zhenyu Lv
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiao Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng Yao
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Fu Xiao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Drug and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shilong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Cui
- University of Chinese Academy of Sciences, Beijing 100049, China; Drug and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kaixian Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Drug and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaomin Luo
- University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Drug and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yang Ye
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Nussinov R, Liu Y, Zhang W, Jang H. Protein conformational ensembles in function: roles and mechanisms. RSC Chem Biol 2023; 4:850-864. [PMID: 37920394 PMCID: PMC10619138 DOI: 10.1039/d3cb00114h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/02/2023] [Indexed: 11/04/2023] Open
Abstract
The sequence-structure-function paradigm has dominated twentieth century molecular biology. The paradigm tacitly stipulated that for each sequence there exists a single, well-organized protein structure. Yet, to sustain cell life, function requires (i) that there be more than a single structure, (ii) that there be switching between the structures, and (iii) that the structures be incompletely organized. These fundamental tenets called for an updated sequence-conformational ensemble-function paradigm. The powerful energy landscape idea, which is the foundation of modernized molecular biology, imported the conformational ensemble framework from physics and chemistry. This framework embraces the recognition that proteins are dynamic and are always interconverting between conformational states with varying energies. The more stable the conformation the more populated it is. The changes in the populations of the states are required for cell life. As an example, in vivo, under physiological conditions, wild type kinases commonly populate their more stable "closed", inactive, conformations. However, there are minor populations of the "open", ligand-free states. Upon their stabilization, e.g., by high affinity interactions or mutations, their ensembles shift to occupy the active states. Here we discuss the role of conformational propensities in function. We provide multiple examples of diverse systems, including protein kinases, lipid kinases, and Ras GTPases, discuss diverse conformational mechanisms, and provide a broad outlook on protein ensembles in the cell. We propose that the number of molecules in the active state (inactive for repressors), determine protein function, and that the dynamic, relative conformational propensities, rather than the rigid structures, are the hallmark of cell life.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University Tel Aviv 69978 Israel
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| |
Collapse
|
7
|
Wang S, Xie J, Pei J, Lai L. CavityPlus 2022 Update: An Integrated Platform for Comprehensive Protein Cavity Detection and Property Analyses with User-friendly Tools and Cavity Databases. J Mol Biol 2023; 435:168141. [PMID: 37356903 DOI: 10.1016/j.jmb.2023.168141] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/13/2023] [Accepted: 04/27/2023] [Indexed: 06/27/2023]
Abstract
Ligand binding sites provide essential information for uncovering protein functions and structure-based drug discovery. To facilitate cavity detection and property analysis process, we developed a comprehensive web server, CavityPlus in 2018. CavityPlus applies the CAVITY program to detect potential binding sites in a given protein structure. The CavPharmer, CorrSite, and CovCys tools can then be applied to generate receptor-based pharmacophore models, identify potential allosteric sites, or detect druggable cysteine residues for covalent drug design. While CavityPlus has been widely used, the constantly evolving knowledge and methods make it necessary to improve and extend its functions. This study presents a new version of CavityPlus, CavityPlus 2022 through a series of upgrades. We upgraded the CAVITY tool to greatly speed up cavity detection calculation. We optimized the CavPharmer tool for fast speed and more accurate results. We integrated the newly developed CorrSite2.0 into the CavityPlus 2022 web server for its improved performance of allosteric site prediction. We also added a new CavityMatch module for drug repurposing and protein function studies by searching similar cavities to a given cavity from pre-constructed cavity databases. The new version of CavityPlus is freely available at http://pkumdl.cn:8000/cavityplus/.
Collapse
Affiliation(s)
- Shiwei Wang
- BMLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, PR China
| | - Juan Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, PR China
| | - Jianfeng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, PR China; Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014), Beijing 100871, PR China
| | - Luhua Lai
- BMLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, PR China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, PR China; Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014), Beijing 100871, PR China.
| |
Collapse
|
8
|
Xie J, Pan G, Li Y, Lai L. How protein topology controls allosteric regulations. J Chem Phys 2023; 158:105102. [PMID: 36922138 DOI: 10.1063/5.0138279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Allostery is an important regulatory mechanism of protein functions. Among allosteric proteins, certain protein structure types are more observed. However, how allosteric regulation depends on protein topology remains elusive. In this study, we extracted protein topology graphs at the fold level and found that known allosteric proteins mainly contain multiple domains or subunits and allosteric sites reside more often between two or more domains of the same fold type. Only a small fraction of fold-fold combinations are observed in allosteric proteins, and homo-fold-fold combinations dominate. These analyses imply that the locations of allosteric sites including cryptic ones depend on protein topology. We further developed TopoAlloSite, a novel method that uses the kernel support vector machine to predict the location of allosteric sites on the overall protein topology based on the subgraph-matching kernel. TopoAlloSite successfully predicted known cryptic allosteric sites in several allosteric proteins like phosphopantothenoylcysteine synthetase, spermidine synthase, and sirtuin 6, demonstrating its power in identifying cryptic allosteric sites without performing long molecular dynamics simulations or large-scale experimental screening. Our study demonstrates that protein topology largely determines how its function can be allosterically regulated, which can be used to find new druggable targets and locate potential binding sites for rational allosteric drug design.
Collapse
Affiliation(s)
- Juan Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Gaoxiang Pan
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yibo Li
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Xie J, Zhang W, Zhu X, Deng M, Lai L. Coevolution-based prediction of key allosteric residues for protein function regulation. eLife 2023; 12:81850. [PMID: 36799896 PMCID: PMC9981151 DOI: 10.7554/elife.81850] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
Allostery is fundamental to many biological processes. Due to the distant regulation nature, how allosteric mutations, modifications, and effector binding impact protein function is difficult to forecast. In protein engineering, remote mutations cannot be rationally designed without large-scale experimental screening. Allosteric drugs have raised much attention due to their high specificity and possibility of overcoming existing drug-resistant mutations. However, optimization of allosteric compounds remains challenging. Here, we developed a novel computational method KeyAlloSite to predict allosteric site and to identify key allosteric residues (allo-residues) based on the evolutionary coupling model. We found that protein allosteric sites are strongly coupled to orthosteric site compared to non-functional sites. We further inferred key allo-residues by pairwise comparing the difference of evolutionary coupling scores of each residue in the allosteric pocket with the functional site. Our predicted key allo-residues are in accordance with previous experimental studies for typical allosteric proteins like BCR-ABL1, Tar, and PDZ3, as well as key cancer mutations. We also showed that KeyAlloSite can be used to predict key allosteric residues distant from the catalytic site that are important for enzyme catalysis. Our study demonstrates that weak coevolutionary couplings contain important information of protein allosteric regulation function. KeyAlloSite can be applied in studying the evolution of protein allosteric regulation, designing and optimizing allosteric drugs, and performing functional protein design and enzyme engineering.
Collapse
Affiliation(s)
- Juan Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Weilin Zhang
- BNLMS, Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering, Peking UniversityBeijingChina
| | - Xiaolei Zhu
- School of Sciences, Anhui Agricultural UniversityHefeiChina
| | - Minghua Deng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- School of Mathematical Sciences, Peking UniversityBeijingChina
- Center for Statistical Science, Peking UniversityBeijingChina
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- BNLMS, Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering, Peking UniversityBeijingChina
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014)BeijingChina
| |
Collapse
|
10
|
Huang J, Chan KC, Zhou R. Novel Inhibitory Role of Fenofibric Acid by Targeting Cryptic Site on the RBD of SARS-CoV-2. Biomolecules 2023; 13:biom13020359. [PMID: 36830728 PMCID: PMC9953482 DOI: 10.3390/biom13020359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
The emergence of the recent pandemic causing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created an alarming situation worldwide. It also prompted extensive research on drug repurposing to find a potential treatment for SARS-CoV-2 infection. An active metabolite of the hyperlipidemic drug fenofibrate (also called fenofibric acid or FA) was found to destabilize the receptor-binding domain (RBD) of the viral spike protein and therefore inhibit its binding to human angiotensin-converting enzyme 2 (hACE2) receptor. Despite being considered as a potential drug candidate for SARS-CoV-2, FA's inhibitory mechanism remains to be elucidated. We used molecular dynamics (MD) simulations to investigate the binding of FA to the RBD of the SARS-CoV-2 spike protein and revealed a potential cryptic FA binding site. Free energy calculations were performed for different FA-bound RBD complexes. The results suggest that the interaction of FA with the cryptic binding site of RBD alters the conformation of the binding loop of RBD and effectively reduces its binding affinity towards ACE2. Our study provides new insights for the design of SARS-CoV-2 inhibitors targeting cryptic sites on the RBD of SARS-CoV-2.
Collapse
Affiliation(s)
- Jianxiang Huang
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Kevin C. Chan
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai 201203, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai 201203, China
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Chemistry, Colombia University, New York, NY 10027, USA
- Correspondence:
| |
Collapse
|
11
|
Liu R, Wang L, Meng Y, Li F, Nie H, Lu H. Role of Thylakoid Lipids in Protochlorophyllide Oxidoreductase Activation: Allosteric Mechanism Elucidated by a Computational Study. Int J Mol Sci 2022; 24:ijms24010307. [PMID: 36613752 PMCID: PMC9820216 DOI: 10.3390/ijms24010307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Light-dependent protochlorophyllide oxidoreductase (LPOR) is a chlorophyll synthetase that catalyzes the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide) with indispensable roles in regulating photosynthesis processes. A recent study confirmed that thylakoid lipids (TL) were able to allosterically enhance modulator-induced LPOR activation. However, the allosteric modulation mechanism of LPOR by these compounds remains unclear. Herein, we integrated multiple computational approaches to explore the potential cavities in the Arabidopsis thaliana LPOR and an allosteric site around the helix-G region where high affinity for phosphatidyl glycerol (PG) was identified. Adopting accelerated molecular dynamics simulation for different LPOR states, we rigorously analyzed binary LPOR/PG and ternary LPOR/NADPH/PG complexes in terms of their dynamics, energetics, and attainable allosteric regulation. Our findings clarify the experimental observation of increased NADPH binding affinity for LPOR with PGs. Moreover, the simulations indicated that allosteric regulators targeting LPOR favor a mechanism involving lid opening upon binding to an allosteric hinge pocket mechanism. This understanding paves the way for designing novel LPOR activators and expanding the applications of LPOR.
Collapse
|
12
|
Nussinov R, Zhang M, Maloney R, Liu Y, Tsai CJ, Jang H. Allostery: Allosteric Cancer Drivers and Innovative Allosteric Drugs. J Mol Biol 2022; 434:167569. [PMID: 35378118 PMCID: PMC9398924 DOI: 10.1016/j.jmb.2022.167569] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/12/2023]
Abstract
Here, we discuss the principles of allosteric activating mutations, propagation downstream of the signals that they prompt, and allosteric drugs, with examples from the Ras signaling network. We focus on Abl kinase where mutations shift the landscape toward the active, imatinib binding-incompetent conformation, likely resulting in the high affinity ATP outcompeting drug binding. Recent pharmacological innovation extends to allosteric inhibitor (GNF-5)-linked PROTAC, targeting Bcr-Abl1 myristoylation site, and broadly, allosteric heterobifunctional degraders that destroy targets, rather than inhibiting them. Designed chemical linkers in bifunctional degraders can connect the allosteric ligand that binds the target protein and the E3 ubiquitin ligase warhead anchor. The physical properties and favored conformational state of the engineered linker can precisely coordinate the distance and orientation between the target and the recruited E3. Allosteric PROTACs, noncompetitive molecular glues, and bitopic ligands, with covalent links of allosteric ligands and orthosteric warheads, increase the effective local concentration of productively oriented and placed ligands. Through covalent chemical or peptide linkers, allosteric drugs can collaborate with competitive drugs, degrader anchors, or other molecules of choice, driving innovative drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Ryan Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
13
|
Li M, Wang Y, Fan J, Zhuang H, Liu Y, Ji D, Lu S. Mechanistic Insights into the Long-range Allosteric Regulation of KRAS Via Neurofibromatosis Type 1 (NF1) Scaffold Upon SPRED1 Loading. J Mol Biol 2022; 434:167730. [PMID: 35872068 DOI: 10.1016/j.jmb.2022.167730] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 01/17/2023]
Abstract
Allosteric regulation is the most direct and efficient way of regulating protein function, wherein proteins transmit the perturbations at one site to another distinct functional site. Deciphering the mechanism of allosteric regulation is of vital importance for the comprehension of both physiological and pathological events in vivo as well as the rational allosteric drug design. However, it remains challenging to elucidate dominant allosteric signal transduction pathways, especially for large and multi-component protein machineries where long-range allosteric regulation exits. One of the quintessential examples having long-range allosteric regulation is the ternary complex, SPRED1-RAS-neurofibromin type 1 (NF1, a RAS GTPase-activating protein), in which SPRED1 facilitates RAS-GTP hydrolysis by interacting with NF1 at a distal, allosteric site from the RAS binding site. To address the underlying mechanism, we performed extensive Gaussian accelerated molecular dynamics simulations and Markov state model analysis of KRAS-NF1 complex in the presence and absence of SPRED1. Our findings suggested that SPRED1 loading allosterically enhanced KRAS-NF1 binding, but hindered conformational transformation of the NF1 catalytic center for RAS hydrolysis. Moreover, we unveiled the possible allosteric pathways upon SPRED1 binding through difference contact network analysis. This study not only provided an in-depth mechanistic insight into the allosteric regulation of KRAS by SPRED1, but also shed light on the investigation of long-range allosteric regulation among complex macromolecular systems.
Collapse
Affiliation(s)
- Minyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yuanhao Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Haiming Zhuang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Dong Ji
- Department of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China.
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.
| |
Collapse
|
14
|
Ning S, Wang H, Zeng C, Zhao Y. Prediction of allosteric druggable pockets of cyclin-dependent kinases. Brief Bioinform 2022; 23:6643454. [PMID: 35830869 DOI: 10.1093/bib/bbac290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclin-dependent kinase (Cdk) proteins play crucial roles in the cell cycle progression and are thus attractive drug targets for therapy against such aberrant cell cycle processes as cancer. Since most of the available Cdk inhibitors target the highly conserved catalytic ATP pocket and their lack of specificity often lead to side effects, it is imperative to identify and characterize less conserved non-catalytic pockets capable of interfering with the kinase activity allosterically. However, a systematic analysis of these allosteric druggable pockets is still in its infancy. Here, we summarize the existing Cdk pockets and their selectivity. Then, we outline a network-based pocket prediction approach (NetPocket) and illustrate its utility for systematically identifying the allosteric druggable pockets with case studies. Finally, we discuss potential future directions and their challenges.
Collapse
Affiliation(s)
- Shangbo Ning
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| | - Huiwen Wang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC 20052, USA
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
15
|
Lubbe L, Sewell BT, Woodward JD, Sturrock ED. Cryo-EM reveals mechanisms of angiotensin I-converting enzyme allostery and dimerization. EMBO J 2022; 41:e110550. [PMID: 35818993 PMCID: PMC9379546 DOI: 10.15252/embj.2021110550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/21/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Hypertension (high blood pressure) is a major risk factor for cardiovascular disease, which is the leading cause of death worldwide. The somatic isoform of angiotensin I‐converting enzyme (sACE) plays a critical role in blood pressure regulation, and ACE inhibitors are thus widely used to treat hypertension and cardiovascular disease. Our current understanding of sACE structure, dynamics, function, and inhibition has been limited because truncated, minimally glycosylated forms of sACE are typically used for X‐ray crystallography and molecular dynamics simulations. Here, we report the first cryo‐EM structures of full‐length, glycosylated, soluble sACE (sACES1211). Both monomeric and dimeric forms of the highly flexible apo enzyme were reconstructed from a single dataset. The N‐ and C‐terminal domains of monomeric sACES1211 were resolved at 3.7 and 4.1 Å, respectively, while the interacting N‐terminal domains responsible for dimer formation were resolved at 3.8 Å. Mechanisms are proposed for intradomain hinging, cooperativity, and homodimerization. Furthermore, the observation that both domains were in the open conformation has implications for the design of sACE modulators.
Collapse
Affiliation(s)
- Lizelle Lubbe
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Bryan Trevor Sewell
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Electron Microscope Unit, University of Cape Town, Cape Town, South Africa
| | - Jeremy D Woodward
- Electron Microscope Unit, University of Cape Town, Cape Town, South Africa
| | - Edward D Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Identification of novel saltiness-enhancing peptides from yeast extract and their mechanism of action for transmembrane channel-like 4 (TMC4) protein through experimental and integrated computational modeling. Food Chem 2022; 388:132993. [PMID: 35447578 DOI: 10.1016/j.foodchem.2022.132993] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/20/2022]
Abstract
Excessive consumption of sodium salt is one of the important inducers of cardiovascular and cerebrovascular diseases. The reduction of physical labor and attention to health make research on low-sodium salt imminent. Ultrafiltration, gel filtration, preparative high-performance liquid chromatography, and liquid chromatography with tandem mass spectrometry were employed for further purification and identification of the salty enhancing peptides in yeast extracts. Moreover, human transmembrane channel-like 4 (TMC4) was constructed and evaluated by computer-based methods, and salt-enhancing peptides were identified based on its allosteric sites. PN, NSE, NE and SPE were further determined to be salty enhancing peptides through sensory evaluation, and their taste mechanism was investigated. The results presented here suggest that silicon screening focused on TMC4 allosteric sites and sensory evaluation experiments can greatly increase the discoverability and identifiability of salty enhancer peptides, and this strategy is the first to be applied to the development of salty enhancer peptides.
Collapse
|
17
|
Cui W, Zhang J, Wu D, Zhang J, Zhou H, Rong Y, Liu F, Wei B, Xu X. Ponicidin suppresses pancreatic cancer growth by inducing ferroptosis: Insight gained by mass spectrometry-based metabolomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153943. [PMID: 35104766 DOI: 10.1016/j.phymed.2022.153943] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Pancreatic cancer is one of the most common malignant tumors of the digestive tract. Ponicidin, a tetracyclic diterpenoid active ingredient extracted from the traditional phytomedicine Rubescens, has high safety and great inhibitory effect on the proliferation of a variety of cancer cells, especially malignant tumor cells of the digestive tract. However, the inhibitory effect and mechanism of ponicidin on pancreatic cancer cells is still unclear. Our study aimed to use metabonomics technology to analyze and explore the suppressive effect of ponidicin against pancreatic cancer cells. METHODS MTT and flow cytometry were conducted to study the potential effect of ponicidin on SW1990 cells. Secondly, UPLC-MS/MS was used to analyze the small molecule metabolites and relevant differential metabolic pathways induced by ponicidin treatment. Furthermore, through the determination of glutathione peroxidase 4 (GPX4) activity and molecular docking simulation experiments, the effects of intracellular GPX4 activity and GSH/GSSG ratio after ponicidin were evaluated. Finally, the determination of the content of iron ions and malondialdehyde in cells, and the experiment of the effect of ferroptosis inhibitors on cell viability, the effect of ponicidin on the induction of ferroptosis in SW1990 cells was also detected. RESULTS The IC50 of ponicidin on SW1990 cells was 20 μM, which could significantly induce cell apoptosis and arrest the cells in G2/M phase. Metabolomics results showed that the contents of endogenous small molecules such as gamma-glutamylcysteine, 5-oxoproline, glutamic acid, reduced glutathione (GSH), oxidized glutathione (GSSG) and arachidonic acid have changed significantly. Main differential compounds were involved in the gamma-glutamyl cycle and polyunsaturated fatty acid metabolism of pancreatic cancer cell lines. Additionally, ponicidin could covalently bind to GSH in SW1990 cells to form a conjugate Pon-GSH, which further reduced the content of free GSH and GPX4 activity in cells. Notably, ponicidin dose-dependently increased levels of iron ions, malondialdehyde and reactive oxygen species in SW1990 cells, and the ferroptosis inhibitors could significantly block the effects of ponicidin on the proliferation of SW1990 cells. CONCLUSION Ponicidin could suppress the pancreatic cancer cell proliferation via inducing ferroptosis by inhibiting the gamma-glutamyl cycle and regulating the polyunsaturated fatty acid metabolism in SW1990 cells.
Collapse
Affiliation(s)
- Weiqi Cui
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Junwei Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Deqiao Wu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Jingxian Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Hui Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Ying Rong
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Fanglin Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China.
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China.
| |
Collapse
|
18
|
Zhang H, Zhu M, Li M, Ni D, Wang Y, Deng L, Du K, Lu S, Shi H, Cai C. Mechanistic Insights Into Co-Administration of Allosteric and Orthosteric Drugs to Overcome Drug-Resistance in T315I BCR-ABL1. Front Pharmacol 2022; 13:862504. [PMID: 35370687 PMCID: PMC8971931 DOI: 10.3389/fphar.2022.862504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm, driven by the BCR-ABL1 fusion oncoprotein. The discovery of orthosteric BCR-ABL1 tyrosine kinase inhibitors (TKIs) targeting its active ATP-binding pocket, such as first-generation Imatinib and second-generation Nilotinib (NIL), has profoundly revolutionized the therapeutic landscape of CML. However, currently targeted therapeutics still face considerable challenges with the inevitable emergence of drug-resistant mutations within BCR-ABL1. One of the most common resistant mutations in BCR-ABL1 is the T315I gatekeeper mutation, which confers resistance to most current TKIs in use. To resolve such conundrum, co-administration of orthosteric TKIs and allosteric drugs offers a novel paradigm to tackle drug resistance. Remarkably, previous studies have confirmed that the dual targeting BCR-ABL1 utilizing orthosteric TKI NIL and allosteric inhibitor ABL001 resulted in eradication of the CML xenograft tumors, exhibiting promising therapeutic potential. Previous studies have demonstrated the cooperated mechanism of two drugs. However, the conformational landscapes of synergistic effects remain unclear, hampering future efforts in optimizations and improvements. Hence, extensive large-scale molecular dynamics (MD) simulations of wide type (WT), WT-NIL, T315I, T315I-NIL, T315I-ABL001 and T315I-ABL001-NIL systems were carried out in an attempt to address such question. Simulation data revealed that the dynamic landscape of NIL-bound BCR-ABL1 was significantly reshaped upon ABL001 binding, as it shifted from an active conformation towards an inactive conformation. The community network of allosteric signaling was analyzed to elucidate the atomistic overview of allosteric regulation within BCR-ABL1. Moreover, binding free energy analysis unveiled that the affinity of NIL to BCR-ABL1 increased by the induction of ABL001, which led to its favorable binding and the release of drug resistance. The findings uncovered the in-depth structural mechanisms underpinning dual-targeting towards T315I BCR-ABL1 to overcome its drug resistance and will offer guidance for the rational design of next generations of BCR-ABL1 modulators and future combinatory therapeutic regimens.
Collapse
Affiliation(s)
- Hao Zhang
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Mingsheng Zhu
- Department of Anesthesiology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Mingzi Li
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, China
| | - Duan Ni
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yuanhao Wang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Liping Deng
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, China
- *Correspondence: Shaoyong Lu, ; Kui Du, ; Hui Shi, ; Chen Cai,
| | - Shaoyong Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- *Correspondence: Shaoyong Lu, ; Kui Du, ; Hui Shi, ; Chen Cai,
| | - Hui Shi
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Navy Medical University, Shanghai, China
- *Correspondence: Shaoyong Lu, ; Kui Du, ; Hui Shi, ; Chen Cai,
| | - Chen Cai
- Department of VIP Clinic, Changhai Hospital, Navy Medical University, Shanghai, China
- *Correspondence: Shaoyong Lu, ; Kui Du, ; Hui Shi, ; Chen Cai,
| |
Collapse
|
19
|
Ni D, Liu Y, Kong R, Yu Z, Lu S, Zhang J. Computational elucidation of allosteric communication in proteins for allosteric drug design. Drug Discov Today 2022; 27:2226-2234. [DOI: 10.1016/j.drudis.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/22/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
|
20
|
Zha J, Li M, Kong R, Lu S, Zhang J. Explaining and Predicting Allostery with Allosteric Database and Modern Analytical Techniques. J Mol Biol 2022; 434:167481. [DOI: 10.1016/j.jmb.2022.167481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/17/2022]
|
21
|
Zhang C, Wu J, Chen Q, Tan H, Huang F, Guo J, Zhang X, Yu H, Shi W. Allosteric binding on nuclear receptors: Insights on screening of non-competitive endocrine-disrupting chemicals. ENVIRONMENT INTERNATIONAL 2022; 159:107009. [PMID: 34883459 DOI: 10.1016/j.envint.2021.107009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can compete with endogenous hormones and bind to the orthosteric site of nuclear receptors (NRs), affecting normal endocrine system function and causing severe symptoms. Recently, a series of pharmaceuticals and personal care products (PPCPs) have been discovered to bind to the allosteric sites of NRs and induce similar effects. However, it remains unclear how diverse EDCs work in this new way. Therefore, we have systematically summarized the allosteric sites and underlying mechanisms based on existing studies, mainly regarding drugs belonging to the PPCP class. Advanced methods, classified as structural biology, biochemistry and computational simulation, together with their advantages and hurdles for allosteric site recognition and mechanism insight have also been described. Furthermore, we have highlighted two available strategies for virtual screening of numerous EDCs, relying on the structural features of allosteric sites and lead compounds, respectively. We aim to provide reliable theoretical and technical support for a broader view of various allosteric interactions between EDCs and NRs, and to drive high-throughput and accurate screening of potential EDCs with non-competitive effects.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jinqiu Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Qinchang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Haoyue Tan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Fuyan Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
22
|
Xie J, Wang S, Xu Y, Deng M, Lai L. Uncovering the Dominant Motion Modes of Allosteric Regulation Improves Allosteric Site Prediction. J Chem Inf Model 2021; 62:187-195. [PMID: 34964625 DOI: 10.1021/acs.jcim.1c01267] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Allostery is an important mechanism that biological systems use to regulate function at a distant site. Allosteric drugs have attracted much attention in recent years due to their high specificity and the possibility of overcoming existing drug-resistant mutations. However, the discovery of allosteric drugs remains challenging as allosteric regulation mechanisms are not clearly understood and allosteric sites cannot be accurately predicted. In this study, we analyzed the dominant modes that determine motion correlations between allosteric and orthosteric sites using the Gaussian network model and found that motion correlations between allosteric and orthosteric sites are dominated by either fast or slow vibrational modes. This dependence of modes results from the relative locations of the two sites and local secondary structures. Based on these analyses, we developed CorrSite2.0 to predict allosteric sites by taking the maximum of the Z-scores calculated from using either slow or fast modes. The prediction accuracy of CorrSite2.0 outperformed other commonly used allosteric site prediction methods with prediction accuracy over 90.0%. Our study uncovers the relationship of protein structure, dynamics, and allosteric regulation and demonstrates that using the dominant motion modes greatly improves allosteric site prediction accuracy. CorrSite2.0 has been integrated into the CavityPlus web server, which can be accessed at http://www.pkumdl.cn/cavityplus. CorrSite2.0 provides a powerful and user-friendly tool for allosteric drug and protein design.
Collapse
Affiliation(s)
- Juan Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shiwei Wang
- PTN Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Youjun Xu
- BNLMS, Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Minghua Deng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,School of Mathematical Sciences, Peking University, Beijing 100871, China.,Center for Statistical Science, Peking University, Beijing 100871, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,BNLMS, Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
Zhang H, He J, Hu G, Zhu F, Jiang H, Gao J, Zhou H, Lin H, Wang Y, Chen K, Meng F, Hao M, Zhao K, Luo C, Liang Z. Dynamics of Post-Translational Modification Inspires Drug Design in the Kinase Family. J Med Chem 2021; 64:15111-15125. [PMID: 34668699 DOI: 10.1021/acs.jmedchem.1c01076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Post-translational modification (PTM) on protein plays important roles in the regulation of cellular function and disease pathogenesis. The systematic analysis of PTM dynamics presents great opportunities to enlarge the target space by PTM allosteric regulation. Here, we presented a framework by integrating the sequence, structural topology, and particular dynamics features to characterize the functional context and druggabilities of PTMs in the well-known kinase family. The machine learning models with these biophysical features could successfully predict PTMs. On the other hand, PTMs were identified to be significantly enriched in the reported allosteric pockets and the allosteric potential of PTM pockets were thus proposed through these biophysical features. In the end, the covalent inhibitor DC-Srci-6668 targeting the PTM pocket in c-Src kinase was identified, which inhibited the phosphorylation and locked c-Src in the inactive state. Our findings represent a crucial step toward PTM-inspired drug design in the kinase family.
Collapse
Affiliation(s)
- Huimin Zhang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.,Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China.,University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Jixiao He
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Fei Zhu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Hao Jiang
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Jing Gao
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Hu Zhou
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Hua Lin
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, 1 Keji Road, Fuzhou 350117, China
| | - Yingjuan Wang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Kaixian Chen
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China.,University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Fanwang Meng
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Minghong Hao
- Ensem Therapeutics, Inc., 200 Boston Avenue, Medford, Massachusetts 02155, United States
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China.,University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
24
|
Ni D, Chai Z, Wang Y, Li M, Yu Z, Liu Y, Lu S, Zhang J. Along the allostery stream: Recent advances in computational methods for allosteric drug discovery. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Duan Ni
- College of Pharmacy Ningxia Medical University Yinchuan China
- The Charles Perkins Centre University of Sydney Sydney New South Wales Australia
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital Second Military Medical University Shanghai China
| | - Ying Wang
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Mingyu Li
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
| | | | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Shaoyong Lu
- College of Pharmacy Ningxia Medical University Yinchuan China
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
- Medicinal Chemistry and Bioinformatics Center Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jian Zhang
- College of Pharmacy Ningxia Medical University Yinchuan China
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
- Medicinal Chemistry and Bioinformatics Center Shanghai Jiao Tong University School of Medicine Shanghai China
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou China
| |
Collapse
|
25
|
Nunes DADF, Santos FRDS, da Fonseca STD, de Lima WG, Nizer WSDC, Ferreira JMS, de Magalhães JC. NS2B-NS3 protease inhibitors as promising compounds in the development of antivirals against Zika virus: A systematic review. J Med Virol 2021; 94:442-453. [PMID: 34636434 DOI: 10.1002/jmv.27386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 01/18/2023]
Abstract
Zika virus (ZIKV) infections are associated with severe neurological complications and are a global public health concern. There are no approved vaccines or antiviral drugs to inhibit ZIKV replication. NS2B-NS3 protease (NS2B-NS3 pro), which is essential for viral replication, is a promising molecular target for anti-ZIKV drugs. We conducted a systematic review to identify compounds with promising effects against ZIKV; we discussed their pharmacodynamic and pharmacophoric characteristics. The online search, performed using the PubMed/MEDLINE and SCOPUS databases, yielded 56 articles; seven relevant studies that reported nine promising compounds with inhibitory activity against ZIKV NS2B-NS3 pro were selected. Of these, five (niclosamide, nitazoxanide, bromocriptine, temoporfin, and novobiocin) are currently available on the market and have been tested for off-label use against ZIKV. The 50% inhibitory concentration values of these compounds for the inhibition of NS2B-NS3 pro ranged at 0.38-21.6 µM; most compounds exhibited noncompetitive inhibition (66%). All compounds that could inhibit the NS2B-NS3 pro complex showed potent in vitro anti-ZIKV activity with a 50% effective concentration ranging 0.024-50 µM. The 50% cytotoxic concentration of the compounds assayed using A549, Vero, and WRL-69 cell lines ranged at 0.6-1388.02 µM and the selectivity index was 3.07-1698. This review summarizes the most promising antiviral agents against ZIKV that have inhibitory activity against viral proteases.
Collapse
Affiliation(s)
- Damiana Antônia de Fátima Nunes
- Department of Health Sciences, Laboratory of Medical Microbiology, Campus Centro Oeste Dona Lindu, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brasil
| | - Felipe Rocha da Silva Santos
- Department of Health Sciences, Laboratory of Medical Microbiology, Campus Centro Oeste Dona Lindu, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brasil
| | - Sara Thamires Dias da Fonseca
- Department of Health Sciences, Laboratory of Medical Microbiology, Campus Centro Oeste Dona Lindu, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brasil
| | - William Gustavo de Lima
- Department of Health Sciences, Laboratory of Medical Microbiology, Campus Centro Oeste Dona Lindu, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brasil
| | | | - Jaqueline Maria Siqueira Ferreira
- Department of Health Sciences, Laboratory of Medical Microbiology, Campus Centro Oeste Dona Lindu, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brasil
| | - José Carlos de Magalhães
- Laboratory of Virology and Cellular Technology, Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, Minas Gerais, Brasil
| |
Collapse
|
26
|
Civera M, Moroni E, Sorrentino L, Vasile F, Sattin S. Chemical and Biophysical Approaches to Allosteric Modulation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Monica Civera
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Elisabetta Moroni
- Istituto di Scienze e Tecnologie Chimiche Giulio Natta, SCITEC Via Mario Bianco 9 20131 Milan Italy
| | - Luca Sorrentino
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Francesca Vasile
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Sara Sattin
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
27
|
Mersmann S, Strömich L, Song FJ, Wu N, Vianello F, Barahona M, Yaliraki S. ProteinLens: a web-based application for the analysis of allosteric signalling on atomistic graphs of biomolecules. Nucleic Acids Res 2021; 49:W551-W558. [PMID: 33978752 PMCID: PMC8661402 DOI: 10.1093/nar/gkab350] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022] Open
Abstract
The investigation of allosteric effects in biomolecular structures is of great current interest in diverse areas, from fundamental biological enquiry to drug discovery. Here we present ProteinLens, a user-friendly and interactive web application for the investigation of allosteric signalling based on atomistic graph-theoretical methods. Starting from the PDB file of a biomolecule (or a biomolecular complex) ProteinLens obtains an atomistic, energy-weighted graph description of the structure of the biomolecule, and subsequently provides a systematic analysis of allosteric signalling and communication across the structure using two computationally efficient methods: Markov Transients and bond-to-bond propensities. ProteinLens scores and ranks every bond and residue according to the speed and magnitude of the propagation of fluctuations emanating from any site of choice (e.g. the active site). The results are presented through statistical quantile scores visualised with interactive plots and adjustable 3D structure viewers, which can also be downloaded. ProteinLens thus allows the investigation of signalling in biomolecular structures of interest to aid the detection of allosteric sites and pathways. ProteinLens is implemented in Python/SQL and freely available to use at: www.proteinlens.io.
Collapse
Affiliation(s)
- Sophia F Mersmann
- Department of Mathematics, Imperial College London, Huxley Building, 180 Queen’s Gate, London SW7 2AZ, UK
| | - Léonie Strömich
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Florian J Song
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Nan Wu
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Francesca Vianello
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, Huxley Building, 180 Queen’s Gate, London SW7 2AZ, UK
| | - Sophia N Yaliraki
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| |
Collapse
|
28
|
Chatzigoulas A, Cournia Z. Rational design of allosteric modulators: Challenges and successes. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1529] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexios Chatzigoulas
- Biomedical Research Foundation Academy of Athens Athens Greece
- Department of Informatics and Telecommunications National and Kapodistrian University of Athens Athens Greece
| | - Zoe Cournia
- Biomedical Research Foundation Academy of Athens Athens Greece
| |
Collapse
|
29
|
Huang Q, Song P, Chen Y, Liu Z, Lai L. Allosteric Type and Pathways Are Governed by the Forces of Protein-Ligand Binding. J Phys Chem Lett 2021; 12:5404-5412. [PMID: 34080881 DOI: 10.1021/acs.jpclett.1c01253] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Allostery is central to many cellular processes, by up- or down-regulating target function. However, what determines the allosteric type remains elusive and currently it is impossible to predict whether the allosteric compounds would activate or inhibit target function before experimental studies. We demonstrated that the allosteric type and allosteric pathways are governed by the forces imposed by ligand binding to target protein using the anisotropic network model and developed an allosteric type prediction method (AlloType). AlloType correctly predicted 13 of the 16 allosteric systems in the data set with experimentally determined protein and complex structures as well as verified allosteric types, which was also used to identify allosteric pathways. When applied to glutathione peroxidase 4, a protein with no complex structure information, AlloType could still be able to predict the allosteric type of the recently reported allosteric activators, demonstrating its potential application in designing specific allosteric drugs and uncovering allosteric mechanisms.
Collapse
Affiliation(s)
- Qiaojing Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Pengbo Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yixin Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luhua Lai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
30
|
Wang X, Gao M, Wang Z, Cui W, Zhang J, Zhang W, Xia Y, Wei B, Tang Y, Xu X. Hepatoprotective effects of oridonin against bisphenol A induced liver injury in rats via inhibiting the activity of xanthione oxidase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145301. [PMID: 33515877 DOI: 10.1016/j.scitotenv.2021.145301] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is widely used to manufacture packaging materials for various daily necessities and causes harmful effects in organs, especially liver injury, by generating oxidative stress. Oridonin, an active diterpenoid isolated from Rabdosia rubescens (Hemsl.) Hara, has been reported to possess a wide range of pharmacological activities including anti-inflammatory, antioxidative and antiapoptotic effects. However, the role of oridonin in BPA--induced liver injury and its potential protective mechanism have not been well characterized. In this research, we explored the metabolic alterations in the liver tissue of rats after exposure to BPA with or without pretreatment with oridonin for 14 days by metabolomics analysis based on UPLC-MS/MS. Rats were randomly divided into groups as follows: Control, Vehicle, Oridonin (10 mg/kg), Bisphenol A (500 mg/kg), bisphenol A + Oridonin (500 + 10 mg/kg), Bisphenol A + Diammonium glycyrrhizinate (500 + 40 mg/kg). The biochemical results showed that oridonin significantly reduced the levels of AST and ALT (P < 0.05), ameliorated the abnormal histopathological changes and reduced hepatic apoptosis compared with the BPA group. Furthermore, metabolomics results revealed that purine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis and phenylalanine metabolism were reprogrammed, based on 28 identified significant differential metabolites among the Vehicle, BPA and BPA + oridonin groups. In-depth studies demonstrated that pretreatment with oridonin may play a protective role by restoring BPA-induced changes in oxidative stress and the activity of oxidase (XOD) (P < 0.05). Additionally, oridonin could inhibit the activity of XOD by binding to it, therefore decreasing the reactive oxygen species (ROS) level, upregulating the content of hypoxanthine and xanthine, and reducing the level of uric acid in the liver (P < 0.05). This research presents the potential protective mechanisms of oridonin on BPA-induced liver injury at the metabolic level, which might be used to identify new protective agents that prevent BPA-induced liver injury.
Collapse
Affiliation(s)
- Xinying Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Ming Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Zihan Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Weiqi Cui
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Jingxian Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Weijie Zhang
- Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Key Laboratory of Rehabilitation Medicine, Department of Pediatrics, the Fifth Affiliated Hospital, Zhengzhou University, Kangfuqian Street, Zhengzhou, Henan 450052, PR China
| | - Yu Xia
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Youcai Tang
- Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Key Laboratory of Rehabilitation Medicine, Department of Pediatrics, the Fifth Affiliated Hospital, Zhengzhou University, Kangfuqian Street, Zhengzhou, Henan 450052, PR China.
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
31
|
Qiu Y, Yin X, Li X, Wang Y, Fu Q, Huang R, Lu S. Untangling Dual-Targeting Therapeutic Mechanism of Epidermal Growth Factor Receptor (EGFR) Based on Reversed Allosteric Communication. Pharmaceutics 2021; 13:747. [PMID: 34070173 PMCID: PMC8158526 DOI: 10.3390/pharmaceutics13050747] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Dual-targeting therapeutics by coadministration of allosteric and orthosteric drugs is drawing increased attention as a revolutionary strategy for overcoming the drug-resistance problems. It was further observed that the occupation of orthosteric sites by therapeutics agents has the potential to enhance allosteric ligand binding, which leads to improved potency of allosteric drugs. Epidermal growth factor receptor (EGFR), as one of the most critical anti-cancer targets belonging to the receptor tyrosine kinase family, represents a quintessential example. It was revealed that osimertinib, an ATP-competitive covalent EGFR inhibitor, remarkably enhanced the affinity of a recently developed allosteric inhibitor JBJ-04-125-02 for EGFRL858R/T790M. Here, we utilized extensive large-scale molecular dynamics simulations and the reversed allosteric communication to untangle the detailed molecular underpinning, in which occupation of osimertinib at the orthosteric site altered the overall conformational ensemble of EGFR mutant and reshaped the allosteric site via long-distance signaling. A unique intermediate state resembling the active conformation was identified, which was further stabilized by osimertinib loading. Based on the allosteric communication pathway, we predicted a novel allosteric site positioned around K867, E868, H893, and K960 within the intermediate state. Its correlation with the orthosteric site was validated by both structural and energetic analysis, and its low sequence conservation indicated the potential for selective targeting across the human kinome. Together, these findings not only provided a mechanistic basis for future clinical application of the dual-targeting therapeutics, but also explored an innovative perception of allosteric inhibition of tyrosine kinase signaling.
Collapse
Affiliation(s)
- Yuran Qiu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (Y.Q.); (X.L.); (Y.W.)
| | - Xiaolan Yin
- Department of Radiotherapy, Changhai Hospital (Hongkou District), Naval Medical University, Shanghai 200081, China;
| | - Xinyi Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (Y.Q.); (X.L.); (Y.W.)
| | - Yuanhao Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (Y.Q.); (X.L.); (Y.W.)
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Renhua Huang
- Department of Radiation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (Y.Q.); (X.L.); (Y.W.)
| |
Collapse
|
32
|
Zhao B, Zhang X, Yu T, Liu Y, Zhang X, Yao Y, Feng X, Liu H, Yu D, Ma L, Qin S. Discovery of thiosemicarbazone derivatives as effective New Delhi metallo- β-lactamase-1 (NDM-1) inhibitors against NDM-1 producing clinical isolates. Acta Pharm Sin B 2021; 11:203-221. [PMID: 33532189 PMCID: PMC7838035 DOI: 10.1016/j.apsb.2020.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/02/2020] [Accepted: 06/28/2020] [Indexed: 12/23/2022] Open
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) is capable of hydrolyzing nearly all β-lactam antibiotics, posing an emerging threat to public health. There are currently less effective treatment options for treating NDM-1 positive "superbug", and no promising NDM-1 inhibitors were used in clinical practice. In this study, structure-activity relationship based on thiosemicarbazone derivatives was systematically characterized and their potential activities combined with meropenem (MEM) were evaluated. Compounds 19bg and 19bh exhibited excellent activity against 10 NDM-positive isolate clinical isolates in reversing MEM resistance. Further studies demonstrated compounds 19bg and 19bh were uncompetitive NDM-1 inhibitors with Ki = 0.63 and 0.44 μmol/L, respectively. Molecular docking speculated that compounds 19bg and 19bh were most likely to bind in the allosteric pocket which would affect the catalytic effect of NDM-1 on the substrate meropenem. Toxicity evaluation experiment showed that no hemolysis activities even at concentrations of 1000 mg/mL against red blood cells. In vivo experimental results showed combination of MEM and compound 19bh was markedly effective in treating infections caused by NDM-1 positive strain and prolonging the survival time of sepsis mice. Our finding showed that compound 19bh might be a promising lead in developing new inhibitor to treat NDM-1 producing superbug.
Collapse
Key Words
- (Boc)2O, di-tert-butyl decarbonate
- 3-AP, 3-aminopyridine carboxaldehyde thiosemicarbazone
- AcOH, acetic acid
- Antibiotic resistance
- Boc, tert-butoxycarbonyl
- CLSI, Clinical and Laboratory Standards Institute
- DMAP, 4-dimethylaminopyridine
- DpC, di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone
- E. coli, Escherichia coli
- EDTA, ethylene diamine tetraacetic acid
- ESI, electrospray ionization
- HR-MS, high-resolution mass spectra
- IC50, half-maximal inhibitory concentrations
- Inhibitor
- K. pneumoniae, Klebsiella pneumoniae
- LQTS, long QT syndrome
- MBLs, metallo-β-lactamases class B
- MEM, meropenem
- MHA, Mueller-Hinton Agar
- MHB, Mueller-Hinton Broth
- MIC, minimum inhibitory concentration
- NDM-1, New Delhi metallo-β-lactamase-1
- New Delhi metallo-β-lactamase-1
- PBS, phosphate-buffered saline
- PK, pharmacokinetic
- RBCs, red blood cells
- SAR, structure–activity relationship
- THF, tetrahydrofuran
- TLC, thin layer chromatography
- TMS, tetramethylsilane
- Thiosemicarbazone derivatives
- UPLC, ultra-performance liquid chromatography
- conc. HCl, concentrated hydrochloric acid
- r.t., room temperature
Collapse
Affiliation(s)
- Bing Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treament, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinhui Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treament, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tingting Yu
- State Key Laboratory of Esophageal Cancer Prevention and Treament, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treament, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoling Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treament, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongfang Yao
- State Key Laboratory of Esophageal Cancer Prevention and Treament, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xuejian Feng
- State Key Laboratory of Esophageal Cancer Prevention and Treament, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treament, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dequan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treament, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shangshang Qin
- State Key Laboratory of Esophageal Cancer Prevention and Treament, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
33
|
Renault P, Giraldo J. Dynamical Correlations Reveal Allosteric Sites in G Protein-Coupled Receptors. Int J Mol Sci 2020; 22:ijms22010187. [PMID: 33375427 PMCID: PMC7795036 DOI: 10.3390/ijms22010187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled Receptors (GPCRs) play a central role in many physiological processes and, consequently, constitute important drug targets. In particular, the search for allosteric drugs has recently drawn attention, since they could be more selective and lead to fewer side effects. Accordingly, computational tools have been used to estimate the druggability of allosteric sites in these receptors. In spite of many successful results, the problem is still challenging, particularly the prediction of hydrophobic sites in the interface between the protein and the membrane. In this work, we propose a complementary approach, based on dynamical correlations. Our basic hypothesis was that allosteric sites are strongly coupled to regions of the receptor that undergo important conformational changes upon activation. Therefore, using ensembles of experimental structures, normal mode analysis and molecular dynamics simulations we calculated correlations between internal fluctuations of different sites and a collective variable describing the activation state of the receptor. Then, we ranked the sites based on the strength of their coupling to the collective dynamics. In the β2 adrenergic (β2AR), glucagon (GCGR) and M2 muscarinic receptors, this procedure allowed us to correctly identify known allosteric sites, suggesting it has predictive value. Our results indicate that this dynamics-based approach can be a complementary tool to the existing toolbox to characterize allosteric sites in GPCRs.
Collapse
Affiliation(s)
- Pedro Renault
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 08193 Bellaterra, Spain
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 08193 Bellaterra, Spain
- Correspondence:
| |
Collapse
|
34
|
Pitard I, Monet D, Goossens PL, Blondel A, Malliavin TE. Analyzing In Silico the Relationship Between the Activation of the Edema Factor and Its Interaction With Calmodulin. Front Mol Biosci 2020; 7:586544. [PMID: 33344505 PMCID: PMC7746812 DOI: 10.3389/fmolb.2020.586544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022] Open
Abstract
Molecular dynamics (MD) simulations have been recorded on the complex between the edema factor (EF) of Bacilllus anthracis and calmodulin (CaM), starting from a structure with the orthosteric inhibitor adefovir bound in the EF catalytic site. The starting structure has been destabilized by alternately suppressing different co-factors, such as adefovir ligand or ions, revealing several long-distance correlations between the conformation of CaM, the geometry of the CaM/EF interface, the enzymatic site and the overall organization of the complex. An allosteric communication between CaM/EF interface and the EF catalytic site, highlighted by these correlations, was confirmed by several bioinformatics approaches from the literature. A network of hydrogen bonds and stacking interactions extending from the helix V of of CaM, and the residues of the switches A, B and C, and connecting to catalytic site residues, is a plausible candidate for the mediation of allosteric communication. The greatest variability in volume between the different MD conditions was also found for cavities present at the EF/CaM interface and in the EF catalytic site. The similarity between the predictions from literature and the volume variability might introduce the volume variability as new descriptor of allostery.
Collapse
Affiliation(s)
- Irène Pitard
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR 3528, Paris, France.,Center de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR 3756, Paris, France.,Ecole Doctorale Université Paris Sorbonne, Paris, France
| | - Damien Monet
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR 3528, Paris, France.,Center de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR 3756, Paris, France.,Ecole Doctorale Université Paris Sorbonne, Paris, France
| | | | - Arnaud Blondel
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR 3528, Paris, France.,Center de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR 3756, Paris, France
| | - Thérèse E Malliavin
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR 3528, Paris, France.,Center de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR 3756, Paris, France
| |
Collapse
|
35
|
Ni D, Wei J, He X, Rehman AU, Li X, Qiu Y, Pu J, Lu S, Zhang J. Discovery of cryptic allosteric sites using reversed allosteric communication by a combined computational and experimental strategy. Chem Sci 2020; 12:464-476. [PMID: 34163609 PMCID: PMC8178949 DOI: 10.1039/d0sc05131d] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Allostery, which is one of the most direct and efficient methods to fine-tune protein functions, has gained increasing recognition in drug discovery. However, there are several challenges associated with the identification of allosteric sites, which is the fundamental cornerstone of drug design. Previous studies on allosteric site predictions have focused on communication signals propagating from the allosteric sites to the orthosteric sites. However, recent biochemical studies have revealed that allosteric coupling is bidirectional and that orthosteric perturbations can modulate allosteric sites through reversed allosteric communication. Here, we proposed a new framework for the prediction of allosteric sites based on reversed allosteric communication using a combination of computational and experimental strategies (molecular dynamics simulations, Markov state models, and site-directed mutagenesis). The desirable performance of our approach was demonstrated by predicting the known allosteric site of the small molecule MDL-801 in nicotinamide dinucleotide (NAD+)-dependent protein lysine deacetylase sirtuin 6 (Sirt6). A potential novel cryptic allosteric site located around the L116, R119, and S120 residues within the dynamic ensemble of Sirt6 was identified. The allosteric effect of the predicted site was further quantified and validated using both computational and experimental approaches. This study proposed a state-of-the-art computational pipeline for detecting allosteric sites based on reversed allosteric communication. This method enabled the identification of a previously uncharacterized potential cryptic allosteric site on Sirt6, which provides a starting point for allosteric drug design that can aid the identification of candidate pockets in other therapeutic targets. Using reversed allosteric communication, we performed MD simulations, MSMs, and mutagenesis experiments, to discover allosteric sites. It reproduced the known allosteric site for MDL-801 on Sirt6 and uncovered a novel cryptic allosteric Pocket X.![]()
Collapse
Affiliation(s)
- Duan Ni
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China .,The Charles Perkins Centre, University of Sydney Sydney NSW 2006 Australia
| | - Jiacheng Wei
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Xinheng He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Ashfaq Ur Rehman
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Xinyi Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Yuran Qiu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine Shanghai 200120 China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China .,Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China .,Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China.,School of Pharmaceutical Sciences, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
36
|
Rodriguez Araujo N, Fabiani C, Mazzarini Dimarco A, Bouzat C, Corradi J. Orthosteric and Allosteric Activation of Human 5-HT 3A Receptors. Biophys J 2020; 119:1670-1682. [PMID: 32946769 DOI: 10.1016/j.bpj.2020.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/18/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
The serotonin type 3 receptor (5-HT3) is a ligand-gated ion channel that converts the binding of the neurotransmitter serotonin (5-HT) into a transient cation current that mediates fast excitatory responses in peripheral and central nervous systems. Information regarding the activation and modulation of the human 5-HT3 type A receptor has been based only on macroscopic current measurements because of its low ion conductance. By constructing a high-conductance human 5-HT3A receptor, we here revealed mechanistic information regarding the orthosteric activation by 5-HT and by the partial agonist tryptamine, and the allosteric activation by the terpenoids, carvacrol, and thymol. Terpenoids potentiated macroscopic currents elicited by the orthosteric agonist and directly elicited currents with slow-rising phases and submaximal amplitudes. At the single-channel level, activation by orthosteric and allosteric agonists appeared as openings in quick succession (bursts) that showed no ligand concentration dependence. Bursts were grouped into long-duration clusters in the presence of 5-HT and even longer in the presence of terpenoids, whereas they remained isolated in the presence of tryptamine. Kinetic analysis revealed that allosteric and orthosteric activation mechanisms can be described by the same scheme that includes transitions of the agonist-bound receptor to closed intermediate states before opening (priming). Reduced priming explained the partial agonism of tryptamine; however, equilibrium constants for gating and priming were similar for 5-HT and terpenoid activation. Thus, our kinetic analysis revealed that terpenoids are efficacious agonists for 5-HT3A receptors. These findings not only extend our knowledge about the human 5-HT3A molecular function but also provide novel insights into the mechanisms of action of allosteric ligands, which are of increasing interest as therapeutic drugs in all the superfamily.
Collapse
Affiliation(s)
- Noelia Rodriguez Araujo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Camila Fabiani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Albano Mazzarini Dimarco
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| |
Collapse
|
37
|
Garlick JM, Mapp AK. Selective Modulation of Dynamic Protein Complexes. Cell Chem Biol 2020; 27:986-997. [PMID: 32783965 PMCID: PMC7469457 DOI: 10.1016/j.chembiol.2020.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Dynamic proteins perform critical roles in cellular machines, including those that control proteostasis, transcription, translation, and signaling. Thus, dynamic proteins are prime candidates for chemical probe and drug discovery but difficult targets because they do not conform to classical rules of design and screening. Selectivity is pivotal for candidate probe molecules due to the extensive interaction network of these dynamic hubs. Recognition that the traditional rules of probe discovery are not necessarily applicable to dynamic proteins and their complexes, as well as technological advances in screening, have produced remarkable results in the last 2-4 years. Particularly notable are the improvements in target selectivity for small-molecule modulators of dynamic proteins, especially with techniques that increase the discovery likelihood of allosteric regulatory mechanisms. We focus on approaches to small-molecule screening that appear to be more suitable for highly dynamic targets and have the potential to streamline identification of selective modulators.
Collapse
Affiliation(s)
- Julie M Garlick
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna K Mapp
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
38
|
Shi Y, Zhang X, Mu K, Peng C, Zhu Z, Wang X, Yang Y, Xu Z, Zhu W. D3Targets-2019-nCoV: a webserver for predicting drug targets and for multi-target and multi-site based virtual screening against COVID-19. Acta Pharm Sin B 2020; 10:1239-1248. [PMID: 32318328 PMCID: PMC7169934 DOI: 10.1016/j.apsb.2020.04.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 01/16/2023] Open
Abstract
A highly effective medicine is urgently required to cure coronavirus disease 2019 (COVID-19). For the purpose, we developed a molecular docking based webserver, namely D3Targets-2019-nCoV, with two functions, one is for predicting drug targets for drugs or active compounds observed from clinic or in vitro/in vivo studies, the other is for identifying lead compounds against potential drug targets via docking. This server has its unique features, (1) the potential target proteins and their different conformations involving in the whole process from virus infection to replication and release were included as many as possible; (2) all the potential ligand-binding sites with volume larger than 200 Å3 on a protein structure were identified for docking; (3) correlation information among some conformations or binding sites was annotated; (4) it is easy to be updated, and is accessible freely to public (https://www.d3pharma.com/D3Targets-2019-nCoV/index.php). Currently, the webserver contains 42 proteins [20 severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) encoded proteins and 22 human proteins involved in virus infection, replication and release] with 69 different conformations/structures and 557 potential ligand-binding pockets in total. With 6 examples, we demonstrated that the webserver should be useful to medicinal chemists, pharmacologists and clinicians for efficiently discovering or developing effective drugs against the SARS-CoV-2 to cure COVID-19.
Collapse
Affiliation(s)
- Yulong Shi
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinben Zhang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kaijie Mu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Cheng Peng
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengdan Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Wang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanqing Yang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Xie J, Lai L. Protein topology and allostery. Curr Opin Struct Biol 2020; 62:158-165. [DOI: 10.1016/j.sbi.2020.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 01/07/2023]
|
40
|
Ni D, Li Y, Qiu Y, Pu J, Lu S, Zhang J. Combining Allosteric and Orthosteric Drugs to Overcome Drug Resistance. Trends Pharmacol Sci 2020; 41:336-348. [PMID: 32171554 DOI: 10.1016/j.tips.2020.02.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Historically, most drugs target protein orthosteric sites. The gradual emergence of resistance hampers their therapeutic effectiveness, posing a challenge to drug development. Coadministration of allosteric and orthosteric drugs provides a revolutionary strategy to circumvent drug resistance, as drugs targeting the topologically distinct allosteric sites can restore or even enhance the efficacy of orthosteric drugs. Here, we comprehensively review the latest successful examples of such combination treatments against drug resistance, with a focus on their modes of action and the underlying structural mechanisms. Our work supplies an innovative insight into such promising methodology against the recalcitrant drug resistance conundrum and will be instructive for future clinical therapeutics.
Collapse
Affiliation(s)
- Duan Ni
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yun Li
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuran Qiu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Pu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jian Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
41
|
Fogha J, Diharce J, Obled A, Aci-Sèche S, Bonnet P. Computational Analysis of Crystallization Additives for the Identification of New Allosteric Sites. ACS OMEGA 2020; 5:2114-2122. [PMID: 32064372 PMCID: PMC7016913 DOI: 10.1021/acsomega.9b02697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Allosteric effect can modulate the biological activity of a protein. Thus, the discovery of new allosteric sites is very attractive for designing new modulators or inhibitors. Here, we propose an innovative way to identify allosteric sites, based on crystallization additives (CA), used to stabilize proteins during the crystallization process. Density and clustering analyses of CA, applied on protein kinase and nuclear receptor families, revealed that CA are not randomly distributed around protein structures, but they tend to aggregate near common sites. All orthosteric and allosteric cavities described in the literature are retrieved from the analysis of CA distribution. In addition, new sites were identified, which could be associated to putative allosteric sites. We proposed an efficient and easy way to use the structural information of CA to identify allosteric sites. This method could assist medicinal chemists for the design of new allosteric compounds targeting cavities of new drug targets.
Collapse
|
42
|
Role of protein-protein interactions in allosteric drug design for DNA methyltransferases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 121:49-84. [PMID: 32312426 DOI: 10.1016/bs.apcsb.2019.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA methyltransferases (DNMTs) not only play key roles in epigenetic gene regulation, but also serve as emerging targets for several diseases, especially for cancers. Due to the multi-domains of DNMT structures, targeting allosteric sites of protein-protein interactions (PPIs) is becoming an attractive strategy in epigenetic drug discovery. This chapter aims to review the major contemporary approaches utilized for the drug discovery based on PPIs in different dimensions, from the enumeration of allosteric mechanism to the identification of allosteric pockets. These include the construction of protein structure networks (PSNs) based on molecular dynamics (MD) simulations, performing elastic network models (ENMs) and perturbation response scanning (PRS) calculation, the sequence-based conservation and coupling analysis, and the allosteric pockets identification. Furthermore, we complement this methodology by highlighting the role of computational approaches in promising practical applications for the computer-aided drug design, with special focus on two DNMTs, namely, DNMT1 and DNMT3A.
Collapse
|
43
|
Gagic Z, Ruzic D, Djokovic N, Djikic T, Nikolic K. In silico Methods for Design of Kinase Inhibitors as Anticancer Drugs. Front Chem 2020; 7:873. [PMID: 31970149 PMCID: PMC6960140 DOI: 10.3389/fchem.2019.00873] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Rational drug design implies usage of molecular modeling techniques such as pharmacophore modeling, molecular dynamics, virtual screening, and molecular docking to explain the activity of biomolecules, define molecular determinants for interaction with the drug target, and design more efficient drug candidates. Kinases play an essential role in cell function and therefore are extensively studied targets in drug design and discovery. Kinase inhibitors are clinically very important and widely used antineoplastic drugs. In this review, computational methods used in rational drug design of kinase inhibitors are discussed and compared, considering some representative case studies.
Collapse
Affiliation(s)
- Zarko Gagic
- Department of Pharmaceutical Chemistry, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Nemanja Djokovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Teodora Djikic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
44
|
Wang H, Guan Z, Qiu J, Jia Y, Zeng C, Zhao Y. Novel method to identify group-specific non-catalytic pockets of human kinome for drug design. RSC Adv 2020; 10:2004-2015. [PMID: 35494619 PMCID: PMC9047066 DOI: 10.1039/c9ra07471f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/27/2019] [Indexed: 01/11/2023] Open
Abstract
Kinase proteins have been intensively investigated as drug targets for decades because of their crucial involvement in many biological pathways. We developed hybrid approach to identify non-catalytic pockets and will benefit the kinome drug design.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Physics
- Institute of Biophysics
- Central China Normal University
- Wuhan 430079
- China
| | - Zeyu Guan
- Department of Physics
- Institute of Biophysics
- Central China Normal University
- Wuhan 430079
- China
| | - Jiadi Qiu
- Department of Physics
- Institute of Biophysics
- Central China Normal University
- Wuhan 430079
- China
| | - Ya Jia
- Department of Physics
- Institute of Biophysics
- Central China Normal University
- Wuhan 430079
- China
| | - Chen Zeng
- Department of Physics
- Institute of Biophysics
- Central China Normal University
- Wuhan 430079
- China
| | - Yunjie Zhao
- Department of Physics
- Institute of Biophysics
- Central China Normal University
- Wuhan 430079
- China
| |
Collapse
|
45
|
Essential site scanning analysis: A new approach for detecting sites that modulate the dispersion of protein global motions. Comput Struct Biotechnol J 2020; 18:1577-1586. [PMID: 32637054 PMCID: PMC7330491 DOI: 10.1016/j.csbj.2020.06.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Despite the wealth of methods developed for exploring the molecular basis of allostery in biomolecular systems, there is still a need for structure-based predictive tools that can efficiently detect susceptible sites for triggering allosteric responses. Toward this goal, we introduce here an elastic network model (ENM)-based method, Essential Site Scanning Analysis (ESSA). Essential sites are here defined as residues that would significantly alter the protein's global dynamics if bound to a ligand. To mimic the crowding induced upon substrate binding, the heavy atoms of each residue are incorporated as additional network nodes into the α-carbon-based ENM, and the resulting shifts in soft mode frequencies are used as a metric for evaluating the essentiality of each residue. Results on a dataset of monomeric proteins indicate the enrichment of allosteric and orthosteric binding sites, as well as global hinge regions among essential residues, highlighting the significant role of these sites in controlling the overall structural dynamics. Further integration of ESSA with information on predicted pockets and their local hydrophobicity density enables successful predictions of allosteric pockets for both ligand-bound and -unbound structures. ESSA can be efficiently applied to large multimeric systems. Three case studies, namely (i) G-protein binding to a GPCR, (ii) heterotrimeric assembly of the Ser/Thr protein phosphatase PP2A, and (iii) allo-targeting of AMPA receptor, demonstrate the utility of ESSA for identifying essential sites and narrowing down target allosteric sites identified by druggability simulations.
Collapse
|
46
|
Lee JY, Krieger JM, Li H, Bahar I. Pharmmaker: Pharmacophore modeling and hit identification based on druggability simulations. Protein Sci 2019; 29:76-86. [PMID: 31576621 PMCID: PMC6933858 DOI: 10.1002/pro.3732] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
Recent years have seen progress in druggability simulations, that is, molecular dynamics simulations of target proteins in solutions containing drug‐like probe molecules to characterize their drug‐binding abilities, if any. An important consecutive step is to analyze the trajectories to construct pharmacophore models (PMs) to use for virtual screening of libraries of small molecules. While considerable success has been observed in this type of computer‐aided drug discovery, a systematic tool encompassing multiple steps from druggability simulations to pharmacophore modeling, to identifying hits by virtual screening of libraries of compounds, has been lacking. We address this need here by developing a new tool, Pharmmaker, building on the DruGUI module of our ProDy application programming interface. Pharmmaker is composed of a suite of steps: (Step 1) identification of high affinity residues for each probe molecule type; (Step 2) selecting high affinity residues and hot spots in the vicinity of sites identified by DruGUI; (Step 3) ranking of the interactions between high affinity residues and specific probes; (Step 4) obtaining probe binding poses and corresponding protein conformations by collecting top‐ranked snapshots; and (Step 5) using those snapshots for constructing PMs. The PMs are then used as filters for identifying hits in structure‐based virtual screening. Pharmmaker, accessible online at http://prody.csb.pitt.edu/pharmmaker/, can be used in conjunction with other tools available in ProDy.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James M Krieger
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hongchun Li
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
47
|
Zhang Y, Doruker P, Kaynak B, Zhang S, Krieger J, Li H, Bahar I. Intrinsic dynamics is evolutionarily optimized to enable allosteric behavior. Curr Opin Struct Biol 2019; 62:14-21. [PMID: 31785465 DOI: 10.1016/j.sbi.2019.11.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
Allosteric behavior is central to the function of many proteins, enabling molecular machinery, metabolism, signaling and regulation. Recent years have shown that the intrinsic dynamics of allosteric proteins defined by their 3-dimensional architecture or by the topology of inter-residue contacts favors cooperative motions that bear close similarity to structural changes they undergo during their allosteric actions. These conformational motions are usually driven by energetically favorable or soft modes at the low frequency end of the mode spectrum, and they are evolutionarily conserved among orthologs. These observations brought into light evolutionary adaptation mechanisms that help maintain, optimize or regulate allosteric behavior as the evolution from bacterial to higher organisms introduces sequential heterogeneities and structural complexities.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - Pemra Doruker
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - Burak Kaynak
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - She Zhang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - James Krieger
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - Hongchun Li
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA; Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA.
| |
Collapse
|
48
|
Xu Y, Wang S, Hu Q, Gao S, Ma X, Zhang W, Shen Y, Chen F, Lai L, Pei J. CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Nucleic Acids Res 2019; 46:W374-W379. [PMID: 29750256 PMCID: PMC6031032 DOI: 10.1093/nar/gky380] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/30/2018] [Indexed: 12/02/2022] Open
Abstract
CavityPlus is a web server that offers protein cavity detection and various functional analyses. Using protein three-dimensional structural information as the input, CavityPlus applies CAVITY to detect potential binding sites on the surface of a given protein structure and rank them based on ligandability and druggability scores. These potential binding sites can be further analysed using three submodules, CavPharmer, CorrSite, and CovCys. CavPharmer uses a receptor-based pharmacophore modelling program, Pocket, to automatically extract pharmacophore features within cavities. CorrSite identifies potential allosteric ligand-binding sites based on motion correlation analyses between cavities. CovCys automatically detects druggable cysteine residues, which is especially useful to identify novel binding sites for designing covalent allosteric ligands. Overall, CavityPlus provides an integrated platform for analysing comprehensive properties of protein binding cavities. Such analyses are useful for many aspects of drug design and discovery, including target selection and identification, virtual screening, de novo drug design, and allosteric and covalent-binding drug design. The CavityPlus web server is freely available at http://repharma.pku.edu.cn/cavityplus or http://www.pkumdl.cn/cavityplus.
Collapse
Affiliation(s)
- Youjun Xu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shiwei Wang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Qiwan Hu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuaishi Gao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaomin Ma
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Weilin Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yihang Shen
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fangjin Chen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianfeng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
49
|
Chen Z, Zhang X, Peng C, Wang J, Xu Z, Chen K, Shi J, Zhu W. D3Pockets: A Method and Web Server for Systematic Analysis of Protein Pocket Dynamics. J Chem Inf Model 2019; 59:3353-3358. [DOI: 10.1021/acs.jcim.9b00332] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhaoqiang Chen
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xinben Zhang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Peng
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jinan Wang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Kaixian Chen
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China
| | - Jiye Shi
- UCB Biopharma SPRL, Chemin du Foriest, Braine-l’ Alleud B-1420, Belgium
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China
| |
Collapse
|
50
|
Li M, Cao H, Lai L, Liu Z. Disordered linkers in multidomain allosteric proteins: Entropic effect to favor the open state or enhanced local concentration to favor the closed state? Protein Sci 2019; 27:1600-1610. [PMID: 30019371 DOI: 10.1002/pro.3475] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022]
Abstract
There are many multidomain allosteric proteins where an allosteric signal at the allosteric domain modifies the activity of the functional domain. Intrinsically disordered regions (linkers) are widely involved in this kind of regulation process, but the essential role they play therein is not well understood. Here, we investigated the effect of linkers in stabilizing the open or the closed states of multidomain proteins using combined thermodynamic deduction and coarse-grained molecular dynamics simulations. We revealed that the influence of linker can be fully characterized by an effective local concentration [B]0 . When Kd is smaller than [B]0 , the closed state would be favored; while the open state would be preferred when Kd is larger than [B]0 . We used four protein systems with markedly different domain-domain binding affinity and structural order/disorder as model systems to understand the relationship between [B]0 and the linker length as well as its flexibility. The linker length is the main practical determinant of [B]0 . [B]0 of a flexible linker with 40-60 residues was determined to be in a narrow range of 0.2-0.6 mM, while a too short or too long length would dramatically decrease [B]0 . With the revealed [B]0 range, the introduction of a flexible linker makes the regulation of weakly interacting partners possible.
Collapse
Affiliation(s)
- Maodong Li
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Huaiqing Cao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Luhua Lai
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing, 100871, China
| | - Zhirong Liu
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing, 100871, China
| |
Collapse
|