1
|
Raucci U. Capturing Excited State Proton Transfer Dynamics with Reactive Machine Learning Potentials. J Phys Chem Lett 2025; 16:4900-4906. [PMID: 40344586 DOI: 10.1021/acs.jpclett.5c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Excited state proton transfer is a fundamental process in photochemistry, playing a crucial role in fluorescence sensing, bioimaging, and optoelectronic applications. However, fully resolving its dynamics remains challenging due to the prohibitive computational cost of ab initio simulations and the need for ultrafast experimental techniques with high temporal resolution. Here, we tackle this challenge by using machine learning-driven excited state molecular dynamics simulations. We propose an active learning framework powered by enhanced sampling techniques for constructing a high-quality training set for excited state machine learning potentials, which we then use to map the reaction free energy landscape and capture the photorelaxation dynamics. Using 10-hydroxybenzo[h]quinoline as a test case, our simulations reveal a barrierless excited state proton transfer occurring within ∼50 fs, accompanied by a significant red shift in the emission energy (∼1 eV), in agreement with experimental findings. Furthermore, our results highlight a strong coupling between proton transfer and charge redistribution, which facilitates the rapid tautomerization process. These findings showcase the power of machine learning-driven molecular dynamics in accurately capturing photochemical dynamics while enabling large-scale statistical sampling.
Collapse
Affiliation(s)
- Umberto Raucci
- Atomistic Simulations, Italian Institute of Technology, Via Enrico Melen 83, Genoa GE 16153, Italy
| |
Collapse
|
2
|
Hawkins BA, Adair LD, Ryder WG, Du JJ, Najib E, New EJ, Gale PA, Platts JA, Groundwater PW, Hibbs DE. Influence of Halogen Substituents on the Photophysical Properties of 7-Hydroxycoumarin: Insights from Experimental and Theoretical Studies. Chemphyschem 2025; 26:e202400812. [PMID: 39615052 DOI: 10.1002/cphc.202400812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/29/2024] [Indexed: 12/13/2024]
Abstract
The benzopyrone molecule coumarin is a popular fluorescent scaffold, but how chemical modifications affect its properties is not well understood. We investigated this using halogenated 7-hydroxycoumarin, unsubstituted 4-methylumbiliferone, and ortho-chloro and bromo substitutions on the phenolic ring. Charge density data from X-Ray diffraction and computational methods revealed that halogenation at the ortho position significantly reduced quantum yield (QY). Specifically, 7-hydroxycoumarin (1) had a QY of 70 %, while ortho-chloro (2) and ortho-bromo (3) had QYs of 61 % and 30 %, respectively. Experimental data showed that these molecules excited similarly, but the electrostatic potential and dipole moments indicated that 2 and 3 dissipated excitation energy more easily due to charge separation. The heavy-atom effect of Cl and Br did not fully explain the QY reductions, suggesting other radiative decay processes were involved. By incorporating spin-orbit coupling (SOC) effects, we estimated intersystem crossing (ISC) and phosphorescence rates, providing theoretical QYs of 78 % for 1, 59 % for 2, and 15 % for 3. The large deviation for 3 was attributed to its higher SOC potential derived in computational calculations. Our overall findings indicate that 3's reduced QY results from a mix of SOC-induced ISC and charge dissipation due to the electronegativity of Br atom, while 2's reduction is primarily due to charge separation caused by Cl alone. Further studies are needed to validate this approach with other scaffolds.
Collapse
Affiliation(s)
- Bryson A Hawkins
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
- Current Address: Antimicrobial Discovery Centre, College of Science, Northeastern University, Boston, MA, 02115, USA
| | - Liam D Adair
- School of Chemistry, Faculty of Science, The University of Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Australia
| | - William G Ryder
- School of Chemistry, Faculty of Science, The University of Sydney, NSW, 2006, Australia
| | - Jonathan J Du
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Elias Najib
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Elizabeth J New
- School of Chemistry, Faculty of Science, The University of Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Australia
| | - Philip A Gale
- Faculty of Science, University of Technology Sydney, City Campus, Broadway, NSW, 2007, Australia
- School of Chemistry, Faculty of Science, The University of Sydney, NSW, 2006, Australia
| | - James A Platts
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Paul W Groundwater
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - David E Hibbs
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
3
|
Yucknovsky A, Amdursky N. Photoacids and Photobases: Applications in Functional Dynamic Systems. Angew Chem Int Ed Engl 2025; 64:e202422963. [PMID: 39888194 PMCID: PMC11848990 DOI: 10.1002/anie.202422963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Indexed: 02/01/2025]
Abstract
Brønsted photoacids and photobases are a unique class of molecules that undergo a major change in their pKa values between their ground and excited states, resulting in donating or accepting a proton, respectively, but only after light excitation. This property of photoacids/photobases makes them an attractive tool for light-gating various dynamic processes. Here, we review the use of this property to manipulate functional dynamic systems with light. We discuss how a proton transfer event that can happen upon light excitation from a photoacid to a chemical moiety of a certain system or, vice versa, from the system to a photobase, can result in a shift in the equilibrium of the system, resulting in some dynamicity. We detail various systems, including self-assembly processes of nanostructures, self-propulsion of droplets, catalysis for hydrogen evolution or CO2 capturing, nanotechnological devices based on enzymatic processes, and changes in proton-conducting ionophores and materials. We detail the basic guidelines for using Brønsted photoacids and photobases in a desired system and conclude with the current technological gaps in further using these molecules.
Collapse
Affiliation(s)
- Anna Yucknovsky
- Schulich Faculty of ChemistryTechnion – Israel Institute of TechnologyHaifa3200003Israel
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TA
| | - Nadav Amdursky
- Schulich Faculty of ChemistryTechnion – Israel Institute of TechnologyHaifa3200003Israel
- ChemistrySchool of Mathematical and Physical SciencesUniversity of SheffieldSheffieldS3 7HFUnited Kingdom
| |
Collapse
|
4
|
Sülzner N, Jung G, Nuernberger P. A dual experimental-theoretical perspective on ESPT photoacids and their challenges ahead. Chem Sci 2025; 16:1560-1596. [PMID: 39759939 PMCID: PMC11697080 DOI: 10.1039/d4sc07148d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
Photoacids undergo an increase in acidity upon electronic excitation, enabling excited-state proton transfer (ESPT) reactions. A multitude of compounds that allow ESPT has been identified and integrated in numerous applications, as is outlined by reviewing the rich history of photoacid research reaching back more than 90 years. In particular, achievements together with ambitions and challenges are highlighted from a combined experimental and theoretical perspective. Besides explicating the spectral signatures, transient ion-pair species, and electronic states involved in an ESPT, special emphasis is put on the diversity of methods used for studying photoacids as well as on the effects of the environment on the ESPT, illustrated in detail for 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) and the naphthols as examples of prototypical photoacids. The development of exceptionally acidic super-photoacids and magic photoacids is subsequently discussed, which opens the way to applications even in aprotic solvents and provides additional insight into the mechanisms underlying ESPT. In the overview of highlights from theory, a comprehensive picture of the scope of studies on HPTS is presented, along with the general conceptualization of the electronic structure of photoacids and approaches for the quantification of excited-state acidity. We conclude with a juxtaposition of established applications of photoacids together with potential open questions and prospective research directions.
Collapse
Affiliation(s)
- Niklas Sülzner
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum 44780 Bochum Germany +49 234 32 24523
| | - Gregor Jung
- Biophysikalische Chemie, Universität des Saarlandes 66123 Saarbrücken Germany +49 681 302 71320
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg 93040 Regensburg Germany +49 941 943 4487
| |
Collapse
|
5
|
Perrella F, Petrone A, Rega N. Second-Order Mass-Weighting Scheme for Atom-Centered Density Matrix Propagation Molecular Dynamics. J Chem Theory Comput 2024; 20:8820-8832. [PMID: 39382519 DOI: 10.1021/acs.jctc.4c01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The atom-centered density matrix propagation (ADMP) method is an extended Lagrangian approach to ab initio molecular dynamics, which includes the density matrix in an orthonormalized atom-centered Gaussian basis as additional, fictitious, electronic degrees of freedom, classically propagated along with the nuclear ones. A high adiabaticity between the nuclear and electronic subsystems is mandatory in order to keep the trajectory close to the Born-Oppenheimer (BO) surface. In this regard, the fictitious electronic mass μ, being a symmetric, nondiagonal matrix in its most general form, represents a free parameter, exploitable to optimize the propagation of the electronic density. Although mass-weighting schemes in ADMP exist, a systematic procedure to define an optimal value of the fictitious masses is not available yet. In this work, in order to rationally evaluate the electronic mass, fictitious electronic normal modes are defined through the diagonalization of the Hessian of the electronic density matrix. If the same frequency is imposed on all such modes (compatible with the chosen integration time step), then the corresponding μ matrix can be calculated and then employed for the following propagation. Analysis of several ADMP test simulations reveals that such Hessian-based mass-weighting approach is able to ensure, together with a 0.1/0.2 fs time steps, a high separation between the (real) nuclear and the (fictitious) electronic frequencies, which determines a high adiabaticity. This high, unprecedented, accuracy in the propagation leads, in turn, to low errors in the estimated nuclear vibrational frequencies, making the ADMP method totally comparable to a fully converged BO molecular dynamics simulation but more computationally efficient. This work, therefore, contributes to a further development of the ADMP ab initio molecular dynamics method, aimed at improving its accuracy through a more rational evaluation of the fictitious electronic mass parameter.
Collapse
Affiliation(s)
- Fulvio Perrella
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
| | - Alessio Petrone
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 21, Napoli I-80126, Italy
- Istituto Nazionale Di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, Via Cintia 21, Napoli I-80126, Italy
| | - Nadia Rega
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 21, Napoli I-80126, Italy
- Istituto Nazionale Di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, Via Cintia 21, Napoli I-80126, Italy
| |
Collapse
|
6
|
Vandaele E, Mališ M, Luber S. The Role of Aqueous Solvation on the Intersystem Crossing of Nitrophenols. J Chem Theory Comput 2024; 20:3258-3272. [PMID: 38606908 PMCID: PMC11044273 DOI: 10.1021/acs.jctc.3c01400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
The photochemistry of nitrophenols is a source of smog as nitrous acid is formed from their photolysis. Nevertheless, computational studies of the photochemistry of these widespread toxic molecules are scarce. In this work, the initial photodeactivation of ortho-nitrophenol and para-nitrophenol is modeled, both in gas phase and in aqueous solution to simulate atmospheric and aerosol environments. A large number of excited states, six for ortho-nitrophenol and 11 for para-nitrophenol, have been included and were all populated during the decay. Moreover, periodic time-dependent density functional theory (TDDFT) is used for both the explicitly included solvent and the solute. A comparison to periodic QM/MM (TDDFT/MM), with electrostatic embedding, is made, showing notable differences between the decays of solvated nitrophenols simulated with QM/MM and full (TD)DFT. A reduced intersystem crossing in aqueous solution could be observed thanks to the surface hopping approach using explicit, periodic TDDFT solvation including spin-orbit couplings.
Collapse
Affiliation(s)
- Eva Vandaele
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Momir Mališ
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
7
|
Yang X, Zhang D, Liu R, Wang L, Liu JY, Wang Z. Rapid Thalidomide Racemization Is Related to Proton Tunneling Reactions via Water Bridges. J Phys Chem Lett 2023; 14:10592-10598. [PMID: 37976462 DOI: 10.1021/acs.jpclett.3c02757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Quantum mechanical tunneling (QMT) can play an important role in light element-related chemical reactions; however, its influence on racemization is not fully understood. Herein, we demonstrate that the role of QMT is decisive for rapid racemization of the well-known thalidomide molecule in aqueous environments, increasing the reaction rate constants of the most likely racemization pathways by 87-149 times at approximately body temperature and achieving good agreement between theoretical calculations and experimental observations. In addition, the kinetic isotope effect values fit well with those of previous experiments. These results are attributed to enhanced tunneling probability due to the alteration of potential barriers for proton transfer reactions via water bridges. This work highlights the significance of the QMT effect in racemization and its potential impact on drug safety, providing a fundamental perspective for understanding chirality-related issues in biological systems.
Collapse
Affiliation(s)
- Xinrui Yang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Depeng Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- Normal School, Shenyang University, Shenyang 110044, China
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Rui Liu
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Lu Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Jing-Yao Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Zhigang Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Zhao J, Pan C, Zhang Y, Li X, Zhang G, Yang L. Proton penetration mechanism and selective hydrogen isotope separation through two-dimensional biphenylene. RSC Adv 2023; 13:27590-27598. [PMID: 37720838 PMCID: PMC10503273 DOI: 10.1039/d3ra02993j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023] Open
Abstract
Hydrogen isotope separation is of prime significance in various scientific and industrial applications. Nevertheless, the existing technologies are often expensive and energy demanding. Two-dimensional carbon materials are regarded as promising candidates for cost-effective separation of different hydrogen isotopes. Herein, based on theoretical calculations, we have systematically investigated the proton penetration mechanism and the associated isotope separation behavior through two-dimensional biphenylene, a novel graphene allotrope. The unique non-uniform rings with different sizes in the biphenylene layer resemble the topological defects of graphene, serving as proton transmission channels. We found that a proton can readily pass through biphenylene with a low energy barrier in some specific patterns. Furthermore, large kinetic isotope effect ratios for proton-deuteron (13.58) and proton-triton (53.10) were observed in an aqueous environment. We thus conclude that biphenylene would be a potential carbon material used for hydrogen isotope separation. This subtle exploitation of the natural structural specificity of biphenylene provides new insight into the search for materials for hydrogen isotope separation.
Collapse
Affiliation(s)
- Jiahui Zhao
- Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 China
| | - Changti Pan
- Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 China
| | - Yue Zhang
- Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 China
| | - Xiyu Li
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - Guozhen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - Li Yang
- Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 China
- Helmholtz-Zentrum Dresden-Rossendorf Bautzner Landstrasse 400 Dresden 01328 Germany
- Theoretical Chemistry, Technische Universität Dresden Mommsenstr. 13 Dresden 01062 Germany
| |
Collapse
|
9
|
Chen C, Henderson JN, Ruchkin DA, Kirsh JM, Baranov MS, Bogdanov AM, Mills JH, Boxer SG, Fang C. Structural Characterization of Fluorescent Proteins Using Tunable Femtosecond Stimulated Raman Spectroscopy. Int J Mol Sci 2023; 24:11991. [PMID: 37569365 PMCID: PMC10418586 DOI: 10.3390/ijms241511991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The versatile functions of fluorescent proteins (FPs) as fluorescence biomarkers depend on their intrinsic chromophores interacting with the protein environment. Besides X-ray crystallography, vibrational spectroscopy represents a highly valuable tool for characterizing the chromophore structure and revealing the roles of chromophore-environment interactions. In this work, we aim to benchmark the ground-state vibrational signatures of a series of FPs with emission colors spanning from green, yellow, orange, to red, as well as the solvated model chromophores for some of these FPs, using wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in conjunction with quantum calculations. We systematically analyzed and discussed four factors underlying the vibrational properties of FP chromophores: sidechain structure, conjugation structure, chromophore conformation, and the protein environment. A prominent bond-stretching mode characteristic of the quinoidal resonance structure is found to be conserved in most FPs and model chromophores investigated, which can be used as a vibrational marker to interpret chromophore-environment interactions and structural effects on the electronic properties of the chromophore. The fundamental insights gained for these light-sensing units (e.g., protein active sites) substantiate the unique and powerful capability of wavelength-tunable FSRS in delineating FP chromophore properties with high sensitivity and resolution in solution and protein matrices. The comprehensive characterization for various FPs across a colorful palette could also serve as a solid foundation for future spectroscopic studies and the rational engineering of FPs with diverse and improved functions.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA;
| | - J. Nathan Henderson
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.N.H.); (J.H.M.)
| | - Dmitry A. Ruchkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
| | - Jacob M. Kirsh
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (J.M.K.); (S.G.B.)
| | - Mikhail S. Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Alexey M. Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
| | - Jeremy H. Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.N.H.); (J.H.M.)
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (J.M.K.); (S.G.B.)
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA;
| |
Collapse
|
10
|
Hoberg C, Talbot JJ, Shee J, Ockelmann T, Das Mahanta D, Novelli F, Head-Gordon M, Havenith M. Caught in the act: real-time observation of the solvent response that promotes excited-state proton transfer in pyranine. Chem Sci 2023; 14:4048-4058. [PMID: 37063810 PMCID: PMC10094129 DOI: 10.1039/d2sc07126f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Photo-induced excited-state proton transfer (ESPT) reactions are of central importance in many biological and chemical processes. Identifying mechanistic details of the solvent reorganizations that facilitate proton transfer however, is challenging for current experimental and theoretical approaches. Using optical pump THz probe (OPTP) spectroscopy and molecular dynamics simulations, we were able to elucidate the ultrafast changes in the solvation environment for three derivatives of pyranine: the photoacid HPTS, the methoxy derivative MPTS, and the photobase OPTS. Experimentally, we find damped oscillations in the THz signal at short times and our simulations enable their assignment to vibrational energy transfer beatings between the photoexcited chromophore and nearby solvent molecules. The simulations of HPTS reveal strikingly efficient sub-ps energy transfer into a particular solvent mode, that is active near 4 THz, and which can provide the requisite energy required for solvent reorganization promoting proton transfer. Similar oscillations are present in the THz signal for all three derivatives, however the signal is damped rapidly for HPTS (within 0.4 ps) and more slowly for MPTS (within 1.4 ps) and OPTS (within 2.0 ps). For HPTS, we also characterize an additional phonon-like propagation of the proton into the bulk with a 140 ps period and an 83 ps damping time. Thermalization of the solvent occurs on a time scale exceeding 120 ps.
Collapse
Affiliation(s)
- Claudius Hoberg
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum Germany
| | - Justin J Talbot
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - James Shee
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Thorsten Ockelmann
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum Germany
| | - Debasish Das Mahanta
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum Germany
| | - Fabio Novelli
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum Germany
| | - Martin Head-Gordon
- Department of Chemistry, University of California Berkeley California 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum Germany
| |
Collapse
|
11
|
Perrella F, Coppola F, Rega N, Petrone A. An Expedited Route to Optical and Electronic Properties at Finite Temperature via Unsupervised Learning. Molecules 2023; 28:3411. [PMID: 37110644 PMCID: PMC10144358 DOI: 10.3390/molecules28083411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Electronic properties and absorption spectra are the grounds to investigate molecular electronic states and their interactions with the environment. Modeling and computations are required for the molecular understanding and design strategies of photo-active materials and sensors. However, the interpretation of such properties demands expensive computations and dealing with the interplay of electronic excited states with the conformational freedom of the chromophores in complex matrices (i.e., solvents, biomolecules, crystals) at finite temperature. Computational protocols combining time dependent density functional theory and ab initio molecular dynamics (MD) have become very powerful in this field, although they require still a large number of computations for a detailed reproduction of electronic properties, such as band shapes. Besides the ongoing research in more traditional computational chemistry fields, data analysis and machine learning methods have been increasingly employed as complementary approaches for efficient data exploration, prediction and model development, starting from the data resulting from MD simulations and electronic structure calculations. In this work, dataset reduction capabilities by unsupervised clustering techniques applied to MD trajectories are proposed and tested for the ab initio modeling of electronic absorption spectra of two challenging case studies: a non-covalent charge-transfer dimer and a ruthenium complex in solution at room temperature. The K-medoids clustering technique is applied and is proven to be able to reduce by ∼100 times the total cost of excited state calculations on an MD sampling with no loss in the accuracy and it also provides an easier understanding of the representative structures (medoids) to be analyzed on the molecular scale.
Collapse
Affiliation(s)
- Fulvio Perrella
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy; (F.P.); (F.C.); (N.R.)
| | - Federico Coppola
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy; (F.P.); (F.C.); (N.R.)
| | - Nadia Rega
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy; (F.P.); (F.C.); (N.R.)
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di M.S. Angelo ed. 6, via Cintia 21, I-80126 Napoli, Italy
| | - Alessio Petrone
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy; (F.P.); (F.C.); (N.R.)
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di M.S. Angelo ed. 6, via Cintia 21, I-80126 Napoli, Italy
| |
Collapse
|
12
|
Lama B, Sarma M. Unraveling the Mechanistic Pathway for the Dual Fluorescence in Green Fluorescent Protein (GFP) Chromophore Analogue: A Detailed Theoretical Investigation. J Phys Chem B 2022; 126:9930-9944. [PMID: 36354358 DOI: 10.1021/acs.jpcb.2c03842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The photophysical properties of the para-sulfonamide (p-TsABDI) analogue of the green fluorescent protein (GFP) chromophore with both proton donating and accepting sites have been exploited in polar solvents to understand the origin of the unusual dual fluorescence nature of the chromophore. In the polar solvents, the compound undergoes structural rearrangement upon photoexcitation, leading to the ultrafast excited-state intermolecular proton transfer (ESIPT) phenomenon at the S1 surface. In this work, we employed both the static electronic structure calculations and on-the-fly molecular dynamics simulation to unravel the underlying reason for this peculiar behavior of the p-TsABDI analogue in polar solvents. To represent this adequately and provide extensive information on the ESIPT mechanism mediated by the solvent molecules, we considered explicit solvent molecules using the integral equation formalism variant of polarizable continuum (IEFPCM) model. From the static calculation analysis, we can conclude that the dual emissive behavior of the compound is ascribed to the proton transfer (PT) phenomena in the excited-state. However, based on the static calculation exclusively, it is hard to ascertain the mechanistic pathway of the PT phenomena. Hence, to investigate the dynamics and reaction mechanism for the ESIPT process, we performed the on-the-fly dynamics simulation for p-TsABDI in solvent clusters. Dynamics simulation results reveal that, based on the time lag between all the proton transfer processes, the ESIPT mechanism occurs in a stepwise manner from the benzylidene moiety of the chromophore to its imidazolinone moiety. However, the nonexistence of crossings between the S1- and S0-states confirms the PT characteristics of the reactions.
Collapse
Affiliation(s)
- Bittu Lama
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam781039, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam781039, India
| |
Collapse
|
13
|
Nandi R, Amdursky N. The Dual Use of the Pyranine (HPTS) Fluorescent Probe: A Ground-State pH Indicator and an Excited-State Proton Transfer Probe. Acc Chem Res 2022; 55:2728-2739. [PMID: 36053265 PMCID: PMC9494743 DOI: 10.1021/acs.accounts.2c00458] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 01/19/2023]
Abstract
Molecular fluorescent probes are an essential experimental tool in many fields, ranging from biology to chemistry and materials science, to study the localization and other environmental properties surrounding the fluorescent probe. Thousands of different molecular fluorescent probes can be grouped into different families according to their photophysical properties. This Account focuses on a unique class of fluorescent probes that distinguishes itself from all other probes. This class is termed photoacids, which are molecules exhibiting a change in their acid-base transition between the ground and excited states, resulting in a large change in their pKa values between these two states, which is thermodynamically described using the Förster cycle. While there are many different photoacids, we focus only on pyranine, which is the most used photoacid, with pKa values of ∼7.4 and ∼0.4 for its ground and excited states, respectively. Such a difference between the pKa values is the basis for the dual use of the pyranine fluorescent probe. Furthermore, the protonated and deprotonated states of pyranine absorb and emit at different wavelengths, making it easy to focus on a specific state. Pyranine has been used for decades as a fluorescent pH indicator for physiological pH values, which is based on its acid-base equilibrium in the ground state. While the unique excited-state proton transfer (ESPT) properties of photoacids have been explored for more than a half-century, it is only recently that photoacids and especially pyranine have been used as fluorescent probes for the local environment of the probe, especially the hydration layer surrounding it and related proton diffusion properties. Such use of photoacids is based on their capability for ESPT from the photoacid to a nearby proton acceptor, which is usually, but not necessarily, water. In this Account, we detail the photophysical properties of pyranine, distinguishing between the processes in the ground state and the ones in the excited state. We further review the different utilization of pyranine for probing different properties of the environment. Our main perspective is on the emerging use of the ESPT process for deciphering the hydration layer around the probe and other parameters related to proton diffusion taking place while the molecule is in the excited state, focusing primarily on bio-related materials. Special attention is given to how to perform the experiments and, most importantly, how to interpret their results. We also briefly discuss the breadth of possibilities in making pyranine derivatives and the use of pyranine for controlling dynamic reactions.
Collapse
Affiliation(s)
- Ramesh Nandi
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
14
|
Sülzner N, Hättig C. Theoretical Study on the Photoacidity of Hydroxypyrene Derivatives in DMSO Using ADC(2) and CC2. J Phys Chem A 2022; 126:5911-5923. [PMID: 36037028 DOI: 10.1021/acs.jpca.2c04436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work applies the thermodynamic Förster cycle to theoretically investigate the pKa*, i.e., excited-state pKa values of pyranine-derived superphotoacids developed by Jung and co-workers. The latter photoacids are strong enough to transfer a proton to the aprotic solvent dimethyl sulfoxide (DMSO). The Förster cycle provides access to pKa* via the ground-state pKa and the electronic excitation energies. We use the conductor-like screening model for real solvents (COSMO-RS) to compute the ground-state pKa and the correlated wavefunction-based methods ADC(2) and CC2 with the continuum solvation model COSMO to calculate the pKa change upon excitation. A comparison of the calculated UV/Vis absorption and fluorescence emission energies to the experimental results leads us to infer that this approach allows for a proper description of the electronic excitations. In particular, implicit solvation by means of the COSMO model appears to be sufficient for the treatment of these photoacids in DMSO. The calculations confirm the presumption that a charge redistribution from the hydroxy group to the aromatic ring and the electron-withdrawing substituents is the origin of photoacidity for these photoacids. Moreover, the calculations with the continuum solvation model predict that the pKa jump upon excitation decreases with increasing solvent polarity, as rationalized based on the Förster cycle.
Collapse
Affiliation(s)
- Niklas Sülzner
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
15
|
Saha S, Dutta B, Ghosh M, Chowdhury J. Adsorption of 4-Mercapto Pyridine with Gold Nanoparticles Embedded in the Langmuir-Blodgett Film Matrix of Stearic Acid: SERS, XPS Studies Aided by Born-Oppenheimer on the Fly Dynamics, Time-Resolved Wavelet Transform Theory, and DFT. ACS OMEGA 2022; 7:27818-27830. [PMID: 35990435 PMCID: PMC9386704 DOI: 10.1021/acsomega.1c07321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This paper reports the adsorptive behavior of the 4-mercaptopyridine (4MPy) molecule soaked in gold nanoparticles (AuNPs) that remain embedded in the bilayer Langmuir-Blodgett (LB) film matrix of stearic acid (SA) for various soaking times (STs). The as-fabricated substrate proved to be an efficient SERS sensing platform that can sense the analyte 4MPy molecules at trace concentrations of ∼1.0 × 10-9 M. The XPS study not only reveals the adsorption of 4Mpy molecules with AuNPs via a sulfur atom but also suggests partial degradation of the analyte molecule upon adsorption. This observation is further substantiated from the SERS spectral profile, which shows unusual broadening of the enhanced Raman bands of the molecule at higher STs. The experimental observations are supported by Born-Oppenheimer on-the-fly molecular dynamics (BO-OF-MD), time-resolved wavelet transform theory (WT), and the DFT calculations based on adcluster models. Selective enhancements of Raman bands in the SERS spectra further suggest the involvement of charge transfer (CT) interaction to the overall enhancements of Raman bands of the analyte molecule. The molecule → CT contribution has been estimated from electron density difference calculations and the corresponding CT distance; the amount of CT is also envisaged.
Collapse
Affiliation(s)
- Somsubhra Saha
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata 700032, India
| | - Bipan Dutta
- Department of Physics, Sammilani Mahavidyalaya, Baghajatin Station, E. M. Bypass, Kolkata 700094, India
| | - Manash Ghosh
- Department of Spectroscopy, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Joydeep Chowdhury
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata 700032, India
| |
Collapse
|
16
|
Yucknovsky A, Rich BB, Gutkin S, Ramanthrikkovil Variyam A, Shabat D, Pokroy B, Amdursky N. Application of Super Photoacids in Controlling Dynamic Processes: Light-Triggering the Self-Propulsion of Oil Droplets. J Phys Chem B 2022; 126:6331-6337. [PMID: 35959566 DOI: 10.1021/acs.jpcb.2c04020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dynamic control of pH-responsive systems is at the heart of many natural and artificial processes. Here, we use photoacids, molecules that dissociate only in their excited state and transfer their proton to nearby proton acceptors, for the dynamic control of processes. A problem arises when there is a need to protonate highly acidic acceptors. We solve this problem using super photoacids that have an excited-state pKa of -8, thus enabling them to protonate very weak proton acceptors. The process that we target is the light-triggered self-propulsion of droplets, initiated by an excited-state proton transfer (ESPT) from a super photoacid donor to a surfactant acceptor situated on the surface of the droplet with a pKa of ∼0. We first confirm using steady-state and time-resolved spectroscopy that a super photoacid can undergo ESPT to the acidic surfactant, whereas a "regular" photoacid cannot. Next, we show self-propulsion of the droplet upon irradiating the solvated super photoacid. We further confirm the protonation of the surfactant on the surface of the droplet using transient surface tension measurements. Our system is the first example of the application of super photoacids to control dynamic processes and opens new possibilities in the field of light-triggered dynamic systems.
Collapse
Affiliation(s)
- Anna Yucknovsky
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Benjamin B Rich
- Department of Materials Science & Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Sara Gutkin
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | | | - Doron Shabat
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Boaz Pokroy
- Department of Materials Science & Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
17
|
Pan X, Han T, Long J, Xie B, Du Y, Zhao Y, Zheng X, Xue J. Excited state proton transfer of triplet state p-nitrophenylphenol to amine and alcohol: a spectroscopic and kinetic study. Phys Chem Chem Phys 2022; 24:18427-18434. [PMID: 35881619 DOI: 10.1039/d2cp02503e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydroxyaromatic compounds (ArOHs) have a wide range of applications in catalytic synthesis and biological processes due to their increased acidity upon photo-excitation. The proton transfer of ArOHs via the excited singlet state has been extensively studied. However, there has still been a debate on the unique type of ArOH that can undergo an ultrafast intersystem crossing. The nitro group in p-nitrophenylphenol (NO2-Bp-OH) enhances the spin-orbit coupling between excited singlet states and the triplet manifold, enabling ultrafast intersystem crossing and the formation of the long-lived lowest excited triplet state (T1) with a high yield. In this work, we used time-resolved transient absorption to investigate the excited state proton transfer of NO2-Bp-OH in its T1 state to t-butylamine, methanol, and ethanol. The T1 state of the deprotonated form NO2-Bp-O- was first observed and identified in the case of t-butylamine. Kinetic analysis demonstrates that the formation of the hydrogen-bonded complex with methanol and ethanol as proton acceptors involves their trimers. The alcohol oligomer size required in the excited state proton transfer process is dependent on the excited acidity of photoacid.
Collapse
Affiliation(s)
- Xinghang Pan
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Ting Han
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jing Long
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Binbin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, 310018, China
| | - Yong Du
- Centre for THz Research, China Jiliang University, Hangzhou, 310018, China
| | - Yanying Zhao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China. .,Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xuming Zheng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jiadan Xue
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China. .,Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
18
|
Hawkins BA, Najib E, Du JJ, Lai F, Platts JA, Groundwater PW, Hibbs DE. Exploring the excited-state charge transfer fluorescence profile of 7-hydroxycoumarin and 2-methylimidazole - a combined X-ray diffraction and theoretical approach. Phys Chem Chem Phys 2022; 24:13015-13025. [PMID: 35583143 DOI: 10.1039/d2cp01235a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study investigated the effect of 2-methylimidazole (2-MIM) addition on the fluorescence of ethyl-7-hydroxy-2-oxo-2H-chromene-3-carboxylate using low-cost density functional theory (DFT) and Time-Dependent DFT calculations on single crystal X-ray geometries of ethyl-7-hydroxy-2-oxo-2H-chromene-3-carboxylate hydrate (1), 2-MIM (2), and the 1 : 1 co-crystal of (1) and (2), (3). At low concentrations (1 : 1-1 : 10) of 2-MIM, the fluorophore shows a decrease in the fluorescence intensity, but at higher concentrations (above 1 : 10) the fluorescence excitation maximum shifted from 354 nm to 405 nm, with a significant emission intensity increase. The changed excitation and emission profile at high concentrations is due to the deprotonation of the coumarin's phenolic group, which was confirmed by the increased shielding of the aromatic protons in the titration 1H NMR spectra. The experimental fluorescence data between the 1 : 1 and 1 : 10 ratios agreed with the theoretical fluorescence data, with a redshift and decreased intensity when comparing (1) and (3). The data indicated that combining the fluorophore with 2-MIM increased levels of vibronic coupling between 2-MIM and the fluorophore decreasing de-excitation efficiency. These increased vibronic changes were due to charge transfer between the fluorophore and 2-MIM in (3). The subtle movement of the proton, H(5) toward N(2') (0.07 Å) caused a significant decrease in fluorescence due to electron density distribution (EDD) changes. This was identified by comparison of the EDD in the excited (S1) and ground (S0) states plotted as an isosurface of EDD difference. For the higher concentrations, an alternative excitation pathway was explored by modifying the crystal geometry of (3) based on 1H NMR spectroscopy data to resemble excitoplexes. Theses excitoplex geometries reflected the fluorescence profile of the fluorophore with high concentrations of 2-MIM; there were dramatic changes in the theoretical fluorescence pathway, which was 100% vibronic coupling compared to 15.31% in the free fluorophore. At this concentration, the de-excitation pathway causes remodelling of the lactone ring via stretching/breaking the CO bond in the S1 causing increased fluorescence by movement of the transition dipole moment. These results reflect previous studies, but the methods used are less experimentally and computationally expensive. This study is among the first to explain charge transfer fluorescence using crystalline geometries. This study will be of interest to the fields of crystal engineering and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Bryson A Hawkins
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| | - Elias Najib
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| | - Jonathan J Du
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Felcia Lai
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| | - James A Platts
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Paul W Groundwater
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| | - David E Hibbs
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
19
|
Hruska E, Gale A, Huang X, Liu F. AutoSolvate: A toolkit for automating quantum chemistry design and discovery of solvated molecules. J Chem Phys 2022; 156:124801. [PMID: 35364887 DOI: 10.1063/5.0084833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The availability of large, high-quality datasets is crucial for artificial intelligence design and discovery in chemistry. Despite the essential roles of solvents in chemistry, the rapid computational dataset generation of solution-phase molecular properties at the quantum mechanical level of theory was previously hampered by the complicated simulation procedure. Software toolkits that can automate the procedure to set up high-throughput explicit-solvent quantum chemistry (QC) calculations for arbitrary solutes and solvents in an open-source framework are still lacking. We developed AutoSolvate, an open-source toolkit, to streamline the workflow for QC calculation of explicitly solvated molecules. It automates the solvated-structure generation, force field fitting, configuration sampling, and the final extraction of microsolvated cluster structures that QC packages can readily use to predict molecular properties of interest. AutoSolvate is available through both a command line interface and a graphical user interface, making it accessible to the broader scientific community. To improve the quality of the initial structures generated by AutoSolvate, we investigated the dependence of solute-solvent closeness on solute/solvent identities and trained a machine learning model to predict the closeness and guide initial structure generation. Finally, we tested the capability of AutoSolvate for rapid dataset curation by calculating the outer-sphere reorganization energy of a large dataset of 166 redox couples, which demonstrated the promise of the AutoSolvate package for chemical discovery efforts.
Collapse
Affiliation(s)
- Eugen Hruska
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Ariel Gale
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Xiao Huang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Fang Liu
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
20
|
Brémond É, Savarese M, Rega N, Ciofini I, Adamo C. Free Energy Profiles of Proton Transfer Reactions: Density Functional Benchmark from Biased Ab Initio Dynamics. J Chem Theory Comput 2022; 18:1501-1511. [PMID: 35129987 DOI: 10.1021/acs.jctc.1c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By coupling an enhanced sampling algorithm with an orbital-localized variant of Car-Parrinello molecular dynamics, the so-called atomic centered density matrix propagation model, we reconstruct the free energy profiles along reaction pathways using different density functional approximations (DFAs) ranging from locals to hybrids. In particular, we compare the computed free energy barrier height of proton transfer (PT) reactions to those obtained by a more traditional static approach, based on the intrinsic reaction coordinate (IRC), for two case systems, namely malonaldehyde and formic acid dimer. The obtained results show that both the IRC profiles and the potentials of mean force, derived from biased dynamic trajectories, are very sensitive to the density functional approximation applied. More precisely, we observe that, with the notable exception of M06-L, local density functionals always strongly underestimate the reaction barrier heights. More generally, we find that also the shape of the free energy profile is very sensitive to the density functional choice, thus highlighting the effect, often neglected, that the choice of DFA has also in the case of dynamics simulations.
Collapse
Affiliation(s)
- Éric Brémond
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - Marika Savarese
- Chimie ParisTech-PSL, CNRS, Institute of Chemistry for Health and Life Sciences, F-75005 Paris, France
| | - Nadia Rega
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia, I-80126 Napoli, Italy.,Scuola Superiore Meridionale, Largo S. Marcellino 10, I-80138 Napoli, Italy.,Centro Interdipartimentale di Ricerca sui Biomateriali (CRIB), Piazzale Tecchio 80, I-80125, Napoli, Italy
| | - Ilaria Ciofini
- Chimie ParisTech-PSL, CNRS, Institute of Chemistry for Health and Life Sciences, F-75005 Paris, France
| | - Carlo Adamo
- Chimie ParisTech-PSL, CNRS, Institute of Chemistry for Health and Life Sciences, F-75005 Paris, France.,Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| |
Collapse
|
21
|
Abstract
Photochemical reactions are increasingly being used for chemical and materials synthesis, for example, in photoredox catalysis, and generally involve photoexcitation of molecular chromophores dissolved in a liquid solvent. The choice of solvent influences the outcomes of the photochemistry because solute-solvent interactions modify the energies of and crossings between electronic states of the chromophores, and they affect the evolving structures of the photoexcited molecules. Ultrafast laser spectroscopy methods with femtosecond to picosecond time resolution can resolve the dynamics of these photoexcited molecules as they undergo structural and electronic changes, relax back to the ground state, dissipate their excess internal energy to the surrounding solvent, or undergo photochemical reactions. In this Account, we illustrate how experimental studies using ultrafast lasers can reveal the influences that different solvents or cosolutes exert on the photoinduced nonadiabatic dynamics of internal conversion and intersystem crossing in nonradiative relaxation pathways. Although the environment surrounding a solute molecule is rapidly changing, with fluctuations in the coordination to neighboring solvent molecules occurring on femtosecond or picosecond time scales, we show that it is possible to photoexcite selectively only those molecular chromophores transiently experiencing specific solute-solvent interactions such as intermolecular hydrogen bonding.The effects of different solvation environments on the photodynamics are illustrated using four selected examples of photochemical processes in which the solvent has a marked effect on the outcomes. We first consider two aromatic carbonyl compounds, benzophenone and acetophenone, which are known to undergo fast intersystem crossing to populate the first excited triplet state on time scales of a few picoseconds. We show that the nonadiabatic excited-state dynamics are modified by transient hydrogen bonding of the carbonyl group to a protic solvent or by coordination to a metal cation cosolute. We then examine how different solvents modify the competition between two alternative relaxation pathways in a photoexcited UVA-sunscreen molecule, diethylamino hydroxybenzoyl hexyl benzoate (DHHB). This relaxation back to the ground electronic state is an essential part of the effective operation of the sunscreen compound, but the dynamics are sensitive to the surrounding environment. Finally, we consider how solvents of different polarity affect the energies and lifetimes of excited states with locally excited or charge-transfer character in heterocyclic organic compounds used as excited-state electron donors for photoredox catalysis. With these and other examples, we seek to develop a molecular level understanding of how the choice of solution environment might be used to control the outcomes of photochemical reactions.
Collapse
Affiliation(s)
- Ravi Kumar Venkatraman
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Andrew J. Orr-Ewing
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
22
|
Walker AR, Wu B, Meisner J, Fayer MD, Martínez TJ. Proton Transfer from a Photoacid to a Water Wire: First Principles Simulations and Fast Fluorescence Spectroscopy. J Phys Chem B 2021; 125:12539-12551. [PMID: 34743512 DOI: 10.1021/acs.jpcb.1c07254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proton transfer reactions are ubiquitous in chemistry, especially in aqueous solutions. We investigate photoinduced proton transfer between the photoacid 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) and water using fast fluorescence spectroscopy and ab initio molecular dynamics simulations. Photoexcitation causes rapid proton release from the HPTS hydroxyl. Previous experiments on HPTS/water described the progress from photoexcitation to proton diffusion using kinetic equations with two time constants. The shortest time constant has been interpreted as protonated and photoexcited HPTS evolving into an "associated" state, where the proton is "shared" between the HPTS hydroxyl and an originally hydrogen bonded water. The longer time constant has been interpreted as indicating evolution to a "solvent separated" state where the shared proton undergoes long distance diffusion. In this work, we refine the previous experimental results using very pure HPTS. We then use excited state ab initio molecular dynamics to elucidate the detailed molecular mechanism of aqueous excited state proton transfer in HPTS. We find that the initial excitation results in rapid rearrangement of water, forming a strong hydrogen bonded network (a "water wire") around HPTS. HPTS then deprotonates in ≤3 ps, resulting in a proton that migrates back and forth along the wire before localizing on a single water molecule. We find a near linear relationship between the emission wavelength and proton-HPTS distance over the simulated time scale, suggesting that the emission wavelength can be used as a ruler for the proton distance. Our simulations reveal that the "associated" state corresponds to a water wire with a mobile proton and that the diffusion of the proton away from this water wire (to a generalized "solvent-separated" state) corresponds to the longest experimental time constant.
Collapse
Affiliation(s)
- Alice R Walker
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Boning Wu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jan Meisner
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Todd J Martínez
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
23
|
Chiariello MG, Donati G, Raucci U, Perrella F, Rega N. Structural Origin and Vibrational Fingerprints of the Ultrafast Excited State Proton Transfer of the Pyranine-Acetate Complex in Aqueous Solution. J Phys Chem B 2021; 125:10273-10281. [PMID: 34472354 DOI: 10.1021/acs.jpcb.1c05590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The excited state proton transfer (ESPT) reaction from the photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS or pyranine) to an acetate molecule has been investigated in explicit aqueous solution via excited state ab initio molecular dynamics simulations based on hybrid quantum/molecular mechanics (QM/MM) potentials. In all the trajectories, the direct proton transfer has been observed in the excited state within 1 ps. We find that the initial structural configuration extracted from the ground state distribution strongly affects the ESPT kinetics. Indeed, the relative orientation of the proton donor-acceptor pair and the presence of a water molecule hydrogen bonded to the phenolic acid group of the pyranine are the key factors to facilitate the ESPT. Furthermore, we analyze the vibrational fingerprints of the ESPT reaction, reproducing the blue shift of the acetate CO stretching (COac), from 1666 to 1763 cm-1 testifying the transformation of acetate to acetic acid. Finally, our findings suggest that the acetate CC stretching (CCac) is also sensitive to the progress of the ESPT reaction. The CCac stretching is indeed ruled by the two vibrational modes (928 and 1426 cm-1), that in the excited state are alternately activated when the proton is shared or bound to the donor/acceptor, respectively.
Collapse
Affiliation(s)
- Maria Gabriella Chiariello
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia, I-80126 Napoli, Italy
| | - Greta Donati
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia, I-80126 Napoli, Italy
| | - Umberto Raucci
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia, I-80126 Napoli, Italy
| | - Fulvio Perrella
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia, I-80126 Napoli, Italy
| | - Nadia Rega
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia, I-80126 Napoli, Italy.,CRIB Center for Advanced Biomaterials for Healthcare, Piazzale Tecchio, 80-80125 Napoli, Italy
| |
Collapse
|
24
|
Chansen W, Kungwan N. Theoretical Insights into Excited-State Intermolecular Proton Transfers of 2,7-Diazaindole in Water Using a Microsolvation Approach. J Phys Chem A 2021; 125:5314-5325. [PMID: 34125551 DOI: 10.1021/acs.jpca.1c03120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The detailed excited-state intermolecular proton transfer (ESInterPT) mechanism of 2,7-diazaindole with water wires consisting of either one or two shells [2,7-DAI(H2O)n; n = 1-5] has been theoretically explored by time-dependent density functional theory using microsolvation with an implicit solvent model. On the basis of the excited-state potential energy surfaces along the proton transfer (PT) coordinates, among all 2,7-DAI(H2O)n, the multiple ESInterPT of 2,7-DAI(H2O)2+3 through the first hydration shell (inner circuit) is the most easy process to occur with the lowest PT barrier and a highly exothermic reaction. The lowest PT barrier resulted from the outer three waters pushing the inner circuit waters to be much closer to 2,7-DAI, leading to the enhanced intermolecular hydrogen-bonding strength of the inner two waters. Moreover, on-the-fly dynamic simulations show that the multiple ESInterPT mechanism of 2,7-DAI(H2O)2+3 is the triple PT in a stepwise mechanism with the highest PT probability. This solvation effect using microsolvation and dynamic simulation is a cost-effect approach to reveal the solvent-assisted multiple proton relay of chromophores based on excited-state proton transfer.
Collapse
Affiliation(s)
- Warinthon Chansen
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nawee Kungwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Material Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
25
|
Nottoli M, Bondanza M, Lipparini F, Mennucci B. An enhanced sampling QM/AMOEBA approach: The case of the excited state intramolecular proton transfer in solvated 3-hydroxyflavone. J Chem Phys 2021; 154:184107. [PMID: 34241028 DOI: 10.1063/5.0046844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We present an extension of the polarizable quantum mechanical (QM)/AMOEBA approach to enhanced sampling techniques. This is achieved by connecting the enhanced sampling PLUMED library to the machinery based on the interface of Gaussian and Tinker to perform QM/AMOEBA molecular dynamics. As an application, we study the excited state intramolecular proton transfer of 3-hydroxyflavone in two solvents: methanol and methylcyclohexane. By using a combination of molecular dynamics and umbrella sampling, we find an ultrafast component of the transfer, which is common to the two solvents, and a much slower component, which is active in the protic solvent only. The mechanisms of the two components are explained in terms of intramolecular vibrational redistribution and intermolecular hydrogen-bonding, respectively. Ground and excited state free energies along an effective reaction coordinate are finally obtained allowing for a detailed analysis of the solvent mediated mechanism.
Collapse
Affiliation(s)
- Michele Nottoli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Mattia Bondanza
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
26
|
Chiariello MG, Raucci U, Donati G, Rega N. Water-Mediated Excited State Proton Transfer of Pyranine-Acetate in Aqueous Solution: Vibrational Fingerprints from Ab Initio Molecular Dynamics. J Phys Chem A 2021; 125:3569-3578. [PMID: 33900071 PMCID: PMC8279639 DOI: 10.1021/acs.jpca.1c00692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In this work, we
simulate the excited state proton transfer (ESPT)
reaction involving the pyranine photoacid and an acetate molecule
as proton acceptor, connected by a bridge water molecule. We employ
ab initio molecular dynamics combined with an hybrid quantum/molecular
mechanics (QM/MM) framework. Furthermore, a time-resolved vibrational
analysis based on the wavelet-transform allows one to identify two
low frequency vibrational modes that are fingerprints of the ESPT
event: a ring wagging and ring breathing. Their composition suggests
their key role in optimizing the structure of the proton donor–acceptor
couple and promoting the ESPT event. We find that the choice of the
QM/MM partition dramatically affects the photoinduced reactivity of
the system. The QM subspace was gradually extended including the water
molecules directly interacting with the pyranine–water–acetate
system. Indeed, the ESPT reaction takes place when the hydrogen bond
network around the reactive system is taken into account at full QM
level.
Collapse
Affiliation(s)
- Maria Gabriella Chiariello
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia, I-80126 Napoli, Italy
| | - Umberto Raucci
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia, I-80126 Napoli, Italy
| | - Greta Donati
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia, I-80126 Napoli, Italy
| | - Nadia Rega
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia, I-80126 Napoli, Italy.,Centro Interdipartimentale di Ricerca sui Biomateriali (CRIB) Piazzale Tecchio, Largo Barsanti e Matteucci, I-80125 Napoli, Italy
| |
Collapse
|
27
|
Santoro F, Green JA, Martinez-Fernandez L, Cerezo J, Improta R. Quantum and semiclassical dynamical studies of nonadiabatic processes in solution: achievements and perspectives. Phys Chem Chem Phys 2021; 23:8181-8199. [PMID: 33875988 DOI: 10.1039/d0cp05907b] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We concisely review the main methodological approaches to model nonadiabatic dynamics in isotropic solutions and their applications. Three general classes of models are identified as the most used to include solvent effects in the simulations. The first model describes the solvent as a set of harmonic collective modes coupled to the solute degrees of freedom, and the second as a continuum, while the third explicitly includes solvent molecules in the calculations. The issues related to the use of these models in semiclassical and quantum dynamical simulations are discussed, as well as the main limitations and perspectives of each approach.
Collapse
Affiliation(s)
- Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - James A Green
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Javier Cerezo
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Roberto Improta
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| |
Collapse
|