1
|
Hatch J, Rask AE, Dang DK, Zimmerman PM. Many-Body Basis Set Amelioration Method for Incremental Full Configuration Interaction. J Phys Chem A 2025; 129:3743-3753. [PMID: 40227889 DOI: 10.1021/acs.jpca.5c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Incremental full configuration interaction (iFCI) is a polynomial-cost electronic structure method that systematically approaches the FCI limit by employing the method of increments to solve the Schrödinger equation through a many-body expansion. This article introduces the many-body basis set amelioration (MBBSA) method, which is designed to allow iFCI to be applicable to larger atomic orbital basis sets. MBBSA uses a series of inexpensive iFCI calculations to approximate the correlation energy that would be found using a more expensive, highly accurate iFCI calculation. When compared to standard iFCI computations on smaller molecules in triple-ζ and larger basis sets, MBBSA provides approximations to the total and relative energies within chemical accuracy. MBBSA exhibits a reduced cost of between 60 and 92% when compared to standard iFCI calculations, with larger systems experiencing the largest benefit. Tests of MBBSA on two reactions that involve highly correlated systems, the automerization of cyclobutadiene and a Criegee intermediate reaction, show that MBBSA has practical utility for studying realistic chemistries.
Collapse
Affiliation(s)
- Jeffrey Hatch
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Alan E Rask
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Duy-Khoi Dang
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Kan B, Tian Y, Wu Y, Zhang Y, Shang H. Bridging the Gap between Transformer-Based Neural Networks and Tensor Networks for Quantum Chemistry. J Chem Theory Comput 2025; 21:3426-3439. [PMID: 40196992 DOI: 10.1021/acs.jctc.4c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The neural network quantum state (NNQS) method has demonstrated promising results in ab initio quantum chemistry, achieving remarkable accuracy in molecular systems. However, efficient calculation of systems with large active spaces remains challenging. This study introduces a novel approach that bridges tensor network states with the transformer-based NNQS-Transformer (QiankunNet) to enhance accuracy and convergence for systems with relatively large active spaces. By transforming tensor network states into active space configuration interaction type wave functions, QiankunNet achieves accuracy surpassing both the pretraining density matrix renormalization group (DMRG) results and traditional coupled cluster methods, particularly in strongly correlated regimes. We investigate two configuration transformation methods: the sweep-based direct conversion (Conv.) method and the entanglement-driven genetic algorithm (EDGA) method, with Conv. showing superior efficiency. The effectiveness of this approach is validated on H2O with a large active space (10e, 24o) in the cc-pVDZ basis set, demonstrating an efficient routine between DMRG and QiankunNet and also offering a promising direction for advancing quantum state representation in complex molecular systems.
Collapse
Affiliation(s)
- Bowen Kan
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yingqi Tian
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yangjun Wu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yunquan Zhang
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Honghui Shang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Cheng Y, Xie Z, Xie X, Ma H. Efficient Simulation of Inhomogeneously Correlated Systems Using Block Interaction Product States. J Chem Theory Comput 2024; 20:9977-9990. [PMID: 39506188 DOI: 10.1021/acs.jctc.4c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The strength of the density matrix renormalization group (DMRG) in handling strongly correlated systems lies in its unbiased and simultaneous treatment of identical sites that are both energetically degenerate and spatially similar, as typically encountered in physical models. However, this very feature becomes a drawback when DMRG is applied to quantum chemistry calculations for large, realistic correlated systems. This is because entangled orbitals often span broad ranges in both energy and space, with their interactions being notably inhomogeneous. In this study, we suggest addressing the strong intrafragment correlations and weak interfragment correlations separately, utilizing a large-scale multiconfigurational calculation framework grounded in the block interaction product state formulation. The strong intrafragment correlation can be encapsulated in several electronic states located on fragments, which are obtained by considering the entanglement between fragments and their environments. Moreover, we incorporate non-Abelian spin-SU(2) symmetry in our work to target the desired states we interested with well-defined particle number and spin, providing deeper insights into the corresponding chemical processes. The described method has been examined in various chemical systems and demonstrates high efficiency in addressing the inhomogeneous effects in strong correlation quantum chemistry.
Collapse
Affiliation(s)
- Yifan Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhaoxuan Xie
- Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, Theresienstr. 37, München D-80333, Germany
| | - Xiaoyu Xie
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
4
|
Feldmann R, Mörchen M, Lang J, Lesiuk M, Reiher M. Complete Active Space Iterative Coupled Cluster Theory. J Phys Chem A 2024; 128:8615-8627. [PMID: 39344976 PMCID: PMC11472348 DOI: 10.1021/acs.jpca.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
In this work, we investigate the possibility of improving multireference-driven coupled cluster (CC) approaches with an algorithm that iteratively combines complete active space (CAS) calculations with tailored CC and externally corrected CC. This is accomplished by establishing a feedback loop between the CC and CAS parts of a calculation through a similarity transformation of the Hamiltonian with those CC amplitudes that are not encompassed by the active space. We denote this approach as the complete active space iterative coupled cluster (CASiCC) ansatz. We investigate its efficiency and accuracy in the singles and doubles approximation by studying the prototypical molecules H4, H8, H2O, and N2. Our results demonstrate that CASiCC systematically improves on the single-reference CCSD and the externally corrected CCSD methods across entire potential energy curves while retaining modest computational costs. However, the tailored coupled cluster method shows superior performance in the strong correlation regime, suggesting that its accuracy is based on error compensation. We find that the iterative versions of externally corrected and tailored coupled cluster methods converge to the same results.
Collapse
Affiliation(s)
- Robin Feldmann
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Maximilian Mörchen
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Jakub Lang
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Lesiuk
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Markus Reiher
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
Scheurer M, Anselmetti GLR, Oumarou O, Gogolin C, Rubin NC. Tailored and Externally Corrected Coupled Cluster with Quantum Inputs. J Chem Theory Comput 2024; 20:5068-5093. [PMID: 38829984 DOI: 10.1021/acs.jctc.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
We propose to use wave function overlaps obtained from a quantum computer as inputs for the classical split-amplitude techniques, tailored and externally corrected coupled cluster, to achieve balanced treatment of static and dynamic correlation effects in molecular electronic structure simulations. By combining insights from statistical properties of matchgate shadows, which are used to measure quantum trial state overlaps, with classical correlation diagnostics, we can provide quantum resource estimates well into the classically no longer exactly solvable regime. We find that rather imperfect wave functions and remarkably low shot counts are sufficient to cure qualitative failures of plain coupled cluster singles doubles and to obtain chemically precise dynamic correlation energy corrections. We provide insights into which wave function preparation schemes have a chance of yielding quantum advantage, and we test our proposed method using overlaps measured on Google's Sycamore device.
Collapse
|
6
|
Cheng Y, Ma H. Renormalized-Residue-Based Multireference Configuration Interaction Method for Strongly Correlated Systems. J Chem Theory Comput 2024; 20:1988-2009. [PMID: 38380619 DOI: 10.1021/acs.jctc.3c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The implementation of multireference configuration interaction (MRCI) methods in quantum systems with large active spaces is hindered by the expansion of configuration bases or the intricate handling of reduced density matrices (RDMs). In this work, we present a spin-adapted renormalized-residue-based MRCI (RR-MRCI) approach that leverages renormalized residues to effectively capture the entanglement between active and inactive orbitals. This approach is reinforced by a novel efficient algorithm, which also facilitates an efficient deployment of spin-adapted matrix product state MRCI (MPS-MRCI). The RR-MRCI framework possesses several advantages: (1) It considers the orbital entanglement and utilizes highly compressed MPS structure, improving computational accuracy and efficiency compared with internally contracted (ic) MRCI. (2) Utilizing small-sized buffer environments of a few external orbitals as probes based on quantum information theory, it enhances computational efficiency over MPS-MRCI and offers potential application to large molecular systems. (3) The RR framework can be implemented in conjunction with ic-MRCI, eliminating the need for high-rank RDMs, by using distinct renormalized residues. We evaluated this method across nine diverse molecular systems, including Cu2O22+ with an active space of (24e,24o) and two complexes of lanthanide and actinide with active space (38e,36o), demonstrating the method's versatility and efficacy.
Collapse
Affiliation(s)
- Yifan Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
7
|
Zhai H, Larsson HR, Lee S, Cui ZH, Zhu T, Sun C, Peng L, Peng R, Liao K, Tölle J, Yang J, Li S, Chan GKL. Block2: A comprehensive open source framework to develop and apply state-of-the-art DMRG algorithms in electronic structure and beyond. J Chem Phys 2023; 159:234801. [PMID: 38108484 DOI: 10.1063/5.0180424] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
block2 is an open source framework to implement and perform density matrix renormalization group and matrix product state algorithms. Out-of-the-box it supports the eigenstate, time-dependent, response, and finite-temperature algorithms. In addition, it carries special optimizations for ab initio electronic structure Hamiltonians and implements many quantum chemistry extensions to the density matrix renormalization group, such as dynamical correlation theories. The code is designed with an emphasis on flexibility, extensibility, and efficiency and to support integration with external numerical packages. Here, we explain the design principles and currently supported features and present numerical examples in a range of applications.
Collapse
Affiliation(s)
- Huanchen Zhai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Henrik R Larsson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zhi-Hao Cui
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Tianyu Zhu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Chong Sun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Linqing Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Ruojing Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Ke Liao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Johannes Tölle
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Junjie Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Shuoxue Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
8
|
Zhai H, Lee S, Cui ZH, Cao L, Ryde U, Chan GKL. Multireference Protonation Energetics of a Dimeric Model of Nitrogenase Iron-Sulfur Clusters. J Phys Chem A 2023; 127:9974-9984. [PMID: 37967028 PMCID: PMC10694817 DOI: 10.1021/acs.jpca.3c06142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
Characterizing the electronic structure of the iron-sulfur clusters in nitrogenase is necessary to understand their role in the nitrogen fixation process. One challenging task is to determine the protonation state of the intermediates in the nitrogen fixing cycle. Here, we use a dimeric iron-sulfur model to study relative energies of protonation at C, S, or Fe. Using a composite method based on coupled cluster and density matrix renormalization group energetics, we converge the relative energies of four protonated configurations with respect to basis set and correlation level. We find that accurate relative energies require large basis sets as well as a proper treatment of multireference and relativistic effects. We have also tested ten density functional approximations for these systems. Most of them give large errors in their relative energies. The best performing functional in this system is B3LYP, which gives mean absolute and maximum deviations of only 10 and 13 kJ/mol with respect to our correlated wave function estimates, respectively, comparable to the uncertainty in our correlated estimates. Our work provides benchmark results for the calibration of new approximate electronic structure methods and density functionals for these problems.
Collapse
Affiliation(s)
- Huanchen Zhai
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Seunghoon Lee
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Zhi-Hao Cui
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Lili Cao
- Department
of Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department
of Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Garnet Kin-Lic Chan
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Di Felice R, Mayes ML, Richard RM, Williams-Young DB, Chan GKL, de Jong WA, Govind N, Head-Gordon M, Hermes MR, Kowalski K, Li X, Lischka H, Mueller KT, Mutlu E, Niklasson AMN, Pederson MR, Peng B, Shepard R, Valeev EF, van Schilfgaarde M, Vlaisavljevich B, Windus TL, Xantheas SS, Zhang X, Zimmerman PM. A Perspective on Sustainable Computational Chemistry Software Development and Integration. J Chem Theory Comput 2023; 19:7056-7076. [PMID: 37769271 PMCID: PMC10601486 DOI: 10.1021/acs.jctc.3c00419] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 09/30/2023]
Abstract
The power of quantum chemistry to predict the ground and excited state properties of complex chemical systems has driven the development of computational quantum chemistry software, integrating advances in theory, applied mathematics, and computer science. The emergence of new computational paradigms associated with exascale technologies also poses significant challenges that require a flexible forward strategy to take full advantage of existing and forthcoming computational resources. In this context, the sustainability and interoperability of computational chemistry software development are among the most pressing issues. In this perspective, we discuss software infrastructure needs and investments with an eye to fully utilize exascale resources and provide unique computational tools for next-generation science problems and scientific discoveries.
Collapse
Affiliation(s)
- Rosa Di Felice
- Departments
of Physics and Astronomy and Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, United States
- CNR-NANO
Modena, Modena 41125, Italy
| | - Maricris L. Mayes
- Department
of Chemistry and Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | | | | | - Garnet Kin-Lic Chan
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Wibe A. de Jong
- Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Niranjan Govind
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Martin Head-Gordon
- Pitzer Center
for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew R. Hermes
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Karol Kowalski
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Xiaosong Li
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hans Lischka
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Karl T. Mueller
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Erdal Mutlu
- Advanced
Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Anders M. N. Niklasson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mark R. Pederson
- Department
of Physics, The University of Texas at El
Paso, El Paso, Texas 79968, United States
| | - Bo Peng
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Ron Shepard
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Edward F. Valeev
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | | - Bess Vlaisavljevich
- Department
of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Theresa L. Windus
- Department
of Chemistry, Iowa State University and
Ames Laboratory, Ames, Iowa 50011, United States
| | - Sotiris S. Xantheas
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Advanced
Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xing Zhang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Paul M. Zimmerman
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Xu Y, Cheng Y, Song Y, Ma H. New Density Matrix Renormalization Group Approaches for Strongly Correlated Systems Coupled with Large Environments. J Chem Theory Comput 2023. [PMID: 37471519 DOI: 10.1021/acs.jctc.2c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Thanks to the high compression of the matrix product state (MPS) form of the wave function and the efficient site-by-site iterative sweeping optimization algorithm, the density matrix normalization group (DMRG) and its time-dependent variant (TD-DMRG) have been established as powerful computational tools in accurately simulating the electronic structure and quantum dynamics of strongly correlated molecules with a large number (101-2) of quantum degrees of freedom (active orbitals or vibrational modes). However, the quantitative characterization of the quantum many-body behaviors of realistic strongly correlated systems requires a further consideration of the interaction between the embedded active subsystem and the remaining correlated environment, e.g., a larger number (102-3) of external orbitals in electronic structure or infinite condensed-phase phononic modes in nucleus dynamics. To this end, we introduced three new post-DMRG and TD-DMRG approaches, namely (1) DMRG2sCI-MRCI and DMRG2sCI-ENPT by the reconstruction of selected configuration interaction (sCI) type of compact reference function from DMRG coefficients and the use of externally contracted MRCI (multireference configuration interaction) and Epstein-Nesbet perturbation theory (ENPT), without recourse to the expensive high order n-electron reduced density matrices (n-RDMs). (2) DMRG combined with RR-MRCI (renormalized residue-based MRCI), which improves the computational accuracy and efficiency of internally contracted (ic) MRCI by renormalizing the contracted bases with small-sized buffer environment(s) of a few external orbitals as probes based on quantum information theory. (3) HM (hierarchical mapping)-TD-DMRG in which a large environment is reduced to a small number of renormalized environmental modes (which accounts for the most vital system-environment interactions) through stepwise mapping transformation. These advances extend the efficacy of highly accurate DMRG/TD-DMRG computations to the quantitative characterization of the electronic structure and quantum dynamics in realistic strongly correlated systems coupled with large environments and are reviewed in this paper.
Collapse
Affiliation(s)
- Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yifan Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yinxuan Song
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, Qingdao Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
11
|
Liao K, Zhai H, Christlmaier EM, Schraivogel T, Ríos PL, Kats D, Alavi A. Density Matrix Renormalization Group for Transcorrelated Hamiltonians: Ground and Excited States in Molecules. J Chem Theory Comput 2023; 19:1734-1743. [PMID: 36912635 DOI: 10.1021/acs.jctc.2c01207] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
We present the theory of a density matrix renormalization group (DMRG) algorithm which can solve for both the ground and excited states of non-Hermitian transcorrelated Hamiltonians and show applications in molecular systems. Transcorrelation (TC) accelerates the basis set convergence rate by including known physics (such as, but not limited to, the electron-electron cusp) in the Jastrow factor used for the similarity transformation. It also improves the accuracy of approximate methods such as coupled cluster singles and doubles (CCSD) as shown by recent studies. However, the non-Hermiticity of the TC Hamiltonians poses challenges for variational methods like DMRG. Imaginary-time evolution on the matrix product state (MPS) in the DMRG framework has been proposed to circumvent this problem, but this is currently limited to treating the ground state and has lower efficiency than the time-independent DMRG (TI-DMRG) due to the need to eliminate Trotter errors. In this work, we show that with minimal changes to the existing TI-DMRG algorithm, namely, replacing the original Davidson solver with the general Davidson solver to solve the non-Hermitian effective Hamiltonians at each site for a few low-lying right eigenstates, and following the rest of the original DMRG recipe, one can find the ground and excited states with improved efficiency compared to the original DMRG when extrapolating to the infinite bond dimension limit in the same basis set. An accelerated basis set convergence rate is also observed, as expected, within the TC framework.
Collapse
Affiliation(s)
- Ke Liao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Huanchen Zhai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | - Thomas Schraivogel
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Pablo López Ríos
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Daniel Kats
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Ali Alavi
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany.,Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
12
|
Baiardi A, Lesiuk M, Reiher M. Explicitly Correlated Electronic Structure Calculations with Transcorrelated Matrix Product Operators. J Chem Theory Comput 2022; 18:4203-4217. [PMID: 35666238 DOI: 10.1021/acs.jctc.2c00167] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we present the first implementation of the transcorrelated electronic Hamiltonian in an optimization procedure for matrix product states by the density matrix renormalization group (DMRG) algorithm. In the transcorrelation ansatz, the electronic Hamiltonian is similarity-transformed with a Jastrow factor to describe the cusp in the wave function at electron-electron coalescence. As a result, the wave function is easier to approximate accurately with the conventional expansion in terms of one-particle basis functions and Slater determinants. The transcorrelated Hamiltonian in first quantization comprises up to three-body interactions, which we deal with in the standard way by applying robust density fitting to two- and three-body integrals entering the second-quantized representation of this Hamiltonian. The lack of hermiticity of the transcorrelated Hamiltonian is taken care of along the lines of the first work on transcorrelated DMRG [ J. Chem. Phys. 2020, 153, 164115] by encoding it as a matrix product operator and optimizing the corresponding ground state wave function with imaginary-time time-dependent DMRG. We demonstrate our quantum chemical transcorrelated DMRG approach at the example of several atoms and first-row diatomic molecules. We show that transcorrelation improves the convergence rate to the complete basis set limit in comparison to conventional DMRG. Moreover, we study extensions of our approach that aim at reducing the cost of handling the matrix product operator representation of the transcorrelated Hamiltonian.
Collapse
Affiliation(s)
- Alberto Baiardi
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Michał Lesiuk
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
13
|
Kossoski F, Damour Y, Loos PF. Hierarchy Configuration Interaction: Combining Seniority Number and Excitation Degree. J Phys Chem Lett 2022; 13:4342-4349. [PMID: 35537704 PMCID: PMC9125689 DOI: 10.1021/acs.jpclett.2c00730] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
We propose a novel partitioning of the Hilbert space, hierarchy configuration interaction (hCI), where the excitation degree (with respect to a given reference determinant) and the seniority number (i.e., the number of unpaired electrons) are combined in a single hierarchy parameter. The key appealing feature of hCI is that each hierarchy level accounts for all classes of determinants whose number shares the same scaling with system size. By surveying the dissociation of multiple molecular systems, we found that the overall performance of hCI usually exceeds or, at least, parallels that of excitation-based CI. For higher orders of hCI and excitation-based CI, the additional computational burden related to orbital optimization usually does not compensate the marginal improvements compared with results obtained with Hartree-Fock orbitals. The exception is orbital-optimized CI with single excitations, a minimally correlated model displaying the qualitatively correct description of single bond breaking at a very modest computational cost.
Collapse
Affiliation(s)
- Fábris Kossoski
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Yann Damour
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
14
|
Vitale E, Li Manni G, Alavi A, Kats D. FCIQMC-Tailored Distinguishable Cluster Approach: Open-Shell Systems. J Chem Theory Comput 2022; 18:3427-3437. [PMID: 35522217 PMCID: PMC9202306 DOI: 10.1021/acs.jctc.2c00059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A recently proposed
tailored approach based on the distinguishable
cluster method and the stochastic FCI solver, FCIQMC [J. Chem.
Theory Comput. 2020, 16, 5621], is extended to open-shell
molecular systems. The method is employed to calculate spin gaps of
various Fe(II) complexes, including a Fe(II) porphyrin model system.
Both distinguishable cluster and fully relaxed CASSCF natural orbitals
were used in this work as reference for the subsequent tailored distinguishable
cluster calculations. The distinguishable cluster natural orbitals
occupation numbers were also used as an aid to the selection of the
active space. The effect of the active space sizes and of the explicit
correlation correction (F12) onto the predicted spin gaps is investigated.
The tailored distinguishable cluster with singles and doubles yields
consistently more accurate results compared to the tailored coupled
cluster with singles and doubles.
Collapse
Affiliation(s)
- Eugenio Vitale
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Giovanni Li Manni
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Ali Alavi
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Daniel Kats
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
15
|
Magoulas I, Shen J, Piecuch P. Addressing strong correlation by approximate coupled-pair methods with active-space and full treatments of three-body clusters. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2057365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ilias Magoulas
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jun Shen
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
16
|
Cheng Y, Xie Z, Ma H. Post-Density Matrix Renormalization Group Methods for Describing Dynamic Electron Correlation with Large Active Spaces. J Phys Chem Lett 2022; 13:904-915. [PMID: 35049302 DOI: 10.1021/acs.jpclett.1c04078] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ab initio density matrix renormalization group (DMRG) method has been well-established and has become one of the most accurate numerical methods for the precise electronic structure solution of large active spaces. In the past few years, to capture the missing dynamic correlation, various post-DMRG approaches have been proposed through the combination of DMRG and multireference quantum chemical methods or density functional theory. With this in mind, this work provides a brief overview of ab initio DMRG principles and the new developments within post-DMRG methods. For clarity, post-DMRG methods are classified into two main categories depending on whether high-order n-electron reduced density matrices are used, and their merits and disadvantages are properly discussed. Finally, we conclude by discussing unsolved bottlenecks and giving development perspectives of post-DMRG approaches, which are expected to yield quantitative descriptions of complex electronic structures in large strongly correlated molecules and materials.
Collapse
Affiliation(s)
- Yifan Cheng
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Zhaoxuan Xie
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Leszczyk A, Máté M, Legeza Ö, Boguslawski K. Assessing the Accuracy of Tailored Coupled Cluster Methods Corrected by Electronic Wave Functions of Polynomial Cost. J Chem Theory Comput 2021; 18:96-117. [PMID: 34965121 DOI: 10.1021/acs.jctc.1c00284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tailored coupled cluster theory represents a computationally inexpensive way to describe static and dynamical electron correlation effects. In this work, we scrutinize the performance of various coupled cluster methods tailored by electronic wave functions of polynomial cost. Specifically, we focus on frozen-pair coupled cluster (fpCC) methods, which are tailored by pair-coupled cluster doubles (pCCD), and coupled cluster theory tailored by matrix product state wave functions optimized by the density matrix renormalization group (DMRG) algorithm. As test system, we selected a set of various small- and medium-sized molecules containing diatomics (N2, F2, C2, CN+, CO, BN, BO+, and Cr2) and molecules (ammonia, ethylene, cyclobutadiene, benzene, hydrogen chains, rings, and cuboids) for which the conventional single-reference coupled cluster singles and doubles (CCSD) method is not able to produce accurate results for spectroscopic constants, potential energy surfaces, and barrier heights. Most importantly, DMRG-tailored and pCCD-tailored approaches yield similar errors in spectroscopic constants and potential energy surfaces compared to accurate theoretical and/or experimental reference data. Although fpCC methods provide a reliable description for the dissociation pathway of molecules featuring single and quadruple bonds, they fail in the description of triple or hextuple bond-breaking processes or avoided crossing regions.
Collapse
Affiliation(s)
- Aleksandra Leszczyk
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Mihály Máté
- Strongly Correlated Systems "Lendület" Research Group, Wigner Research Center for Physics, H-1525 Budapest, Hungary.,Department of Physics of Complex Systems, Eötvös Loránd University, Pf. 32, H-1518 Budapest, Hungary
| | - Örs Legeza
- Strongly Correlated Systems "Lendület" Research Group, Wigner Research Center for Physics, H-1525 Budapest, Hungary.,Institute for Advanced Study, Technical University of Munich, 80333 Munich, Germany
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| |
Collapse
|
18
|
Damour Y, Véril M, Kossoski F, Caffarel M, Jacquemin D, Scemama A, Loos PF. Accurate full configuration interaction correlation energy estimates for five- and six-membered rings. J Chem Phys 2021; 155:134104. [PMID: 34624964 DOI: 10.1063/5.0065314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Following our recent work on the benzene molecule [P.-F. Loos, Y. Damour, and A. Scemama, J. Chem. Phys. 153, 176101 (2020)], motivated by the blind challenge of Eriksen et al. [J. Phys. Chem. Lett. 11, 8922 (2020)] on the same system, we report accurate full configuration interaction (FCI) frozen-core correlation energy estimates for 12 five- and six-membered ring molecules (cyclopentadiene, furan, imidazole, pyrrole, thiophene, benzene, pyrazine, pyridazine, pyridine, pyrimidine, s-tetrazine, and s-triazine) in the standard correlation-consistent double-ζ Dunning basis set (cc-pVDZ). Our FCI correlation energy estimates, with an estimated error smaller than 1 millihartree, are based on energetically optimized-orbital selected configuration interaction calculations performed with the configuration interaction using a perturbative selection made iteratively algorithm. Having at our disposal these accurate reference energies, the respective performance and convergence properties of several popular and widely used families of single-reference quantum chemistry methods are investigated. In particular, we study the convergence properties of (i) the Møller-Plesset perturbation series up to fifth-order (MP2, MP3, MP4, and MP5), (ii) the iterative approximate coupled-cluster series CC2, CC3, and CC4, and (iii) the coupled-cluster series CCSD, CCSDT, and CCSDTQ. The performance of the ground-state gold standard CCSD(T) as well as the completely renormalized CC model, CR-CC(2,3), is also investigated. We show that MP4 provides an interesting accuracy/cost ratio, while MP5 systematically worsens the correlation energy estimates. In addition, CC3 outperforms CCSD(T) and CR-CC(2,3), as well as its more expensive parent CCSDT. A similar trend is observed for the methods including quadruple excitations, where the CC4 model is shown to be slightly more accurate than CCSDTQ, both methods providing correlation energies within 2 millihartree of the FCI limit.
Collapse
Affiliation(s)
- Yann Damour
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mickaël Véril
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Michel Caffarel
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
19
|
Magoulas I, Gururangan K, Piecuch P, Deustua JE, Shen J. Is Externally Corrected Coupled Cluster Always Better Than the Underlying Truncated Configuration Interaction? J Chem Theory Comput 2021; 17:4006-4027. [PMID: 34160202 DOI: 10.1021/acs.jctc.1c00181] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The short answer to the question in the title is "no". We identify classes of truncated configuration interaction (CI) wave functions for which the externally corrected coupled-cluster (ec-CC) approach using the three-body (T3) and four-body (T4) components of the cluster operator extracted from CI does not improve the results of the underlying CI calculations. Implications of our analysis, illustrated by numerical examples, for the ec-CC computations using truncated and selected CI methods are discussed. We also introduce a novel ec-CC approach using the T3 and T4 amplitudes obtained with the selected CI scheme abbreviated as CIPSI, correcting the resulting energies for the missing T3 correlations not captured by CIPSI with the help of moment expansions similar to those employed in the completely renormalized CC methods.
Collapse
Affiliation(s)
- Ilias Magoulas
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Karthik Gururangan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - J Emiliano Deustua
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jun Shen
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|