1
|
Sun H, Liu JY. A Pulsed Tandem Electrocatalysis Strategy for CO 2 Reduction. J Am Chem Soc 2025; 147:14388-14400. [PMID: 40249642 DOI: 10.1021/jacs.5c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Electroreduction of CO2 to value-added C2 products remains hindered by sluggish C-C coupling kinetics and competing side reactions. Inspired by the tandem catalytic mechanisms of multienzyme systems, we designed a dual-site single-atom nanozyme (DSAN) comprising FeN4 and FeO4 sites (FeN4-FeO4). Density functional theory (DFT) calculations under constant potential reveal that the FeN4 site functions as a CO generator, while the FeO4 site facilitates CO migration, C-C coupling, and subsequent C2 product formation. To further optimize the catalytic efficiency, we introduced a pulsed electrocatalysis strategy by alternating between zero potential and -0.7 V. This approach dynamically modulates active-site functions: at -0.70 V, CO2 adsorption and *CH3CH2OH formation are facilitated, while at 0 V, CO migration and C-C coupling are enhanced due to the spin-state transitions during potential switching. Additionally, the zero potential suppresses excessive hydrogenation of key intermediates, thereby improving CH3CH2OH selectivity. These findings highlight the synergistic strategy integrating tandem catalysis and pulsed potential control, offering a novel and effective approach for CO2-to-C2 conversion using SAN catalysts.
Collapse
Affiliation(s)
- Hao Sun
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Jing-Yao Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
2
|
Sun H, Gao L, Li Y, Xu Q, Li Y, Liu W. Screening of single-atomic catalysts loaded on two-dimensional transition metal dichalcogenides for electrocatalytic oxygen reduction via high throughput ab initio calculations. J Colloid Interface Sci 2025; 684:251-261. [PMID: 39832445 DOI: 10.1016/j.jcis.2025.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
The design and screening of low cost and high efficiency oxygen reduction reaction (ORR) electrocatalysts is vital in the realms of fuel cells and metal-air batteries. Existing studies largely rely on the calculation of absorption free energy, a method established 20 years ago by Jens K. Nørskov. However, the study of electrocatalysts grounded solely on free energy calculation often lacks in-depth analysis, particularly overlooking the influence of solvent and electrode potential. In this regard, we here present a novel approach using constant-potential and ab initio molecular dynamics (AIMD) simulation to screen single-atom catalysts loaded on transition metal dichalcogenides (SA@TMDs) for ORR. An extensive investigation of 1584 SA@TMDs results in 20 high performing ORR catalysts with overpotential less than 0.33 V and high working stability. In addition, our study shows that the electrode potential has different effects on the adsorption energy of *OOH, *O and *OH, which leads to a reversal of the rate-determining step (RDS) of the ORR. This work presents not only credible, high-performance catalyst candidates for experimental exploration, but also significantly improves our understanding on the reaction mechanism of ORR under realistic reaction conditions.
Collapse
Affiliation(s)
- Hao Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 China
| | - Liyao Gao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 China
| | - Yizhe Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 China
| | - Qingzhen Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 China.
| | - Wen Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 China.
| |
Collapse
|
3
|
Zhang W, Huang B, Cui Y, Shen L, Yan S. Investigation of the mechanism of methanol electrooxidation: a potential-dependent DFT study. RSC Adv 2025; 15:11056-11064. [PMID: 40201203 PMCID: PMC11976523 DOI: 10.1039/d5ra01511a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
The methanol electrooxidation reaction (MER), a critical process in direct methanol fuel cells, is systematically investigated through potential-dependent density functional theory (DFT) simulations to unravel its mechanism and potential effects on Pt-based catalysts. For pure Pt, the rate-determining steps (RDSs) are identified as methanol adsorption and CO oxidation, leading to a high overpotential of 0.9 V. Alloying Pt with Cu (PtCu) significantly reduces the overpotential to 0.7 V, with CO oxidation remaining the sole RDS. Potential-dependent analysis reveals that PtCu exhibits enhanced methanol adsorption and weakened CO binding strength due to electronic structure modulation, effectively mitigating CO poisoning. Furthermore, multiple reaction pathways occur on PtCu surfaces, accelerating intermediate consumption. This work elucidates the regulatory effects of electrode potential on reaction thermodynamics, pathway selection, and adsorption behavior, providing theoretical insights for designing efficient and CO-tolerant bimetallic catalysts.
Collapse
Affiliation(s)
- Wei Zhang
- Nanxun Innovation Institute, Zhejiang University of Water Resources and Electric Power Hangzhou 310018 China
| | - Biyi Huang
- Nanxun Innovation Institute, Zhejiang University of Water Resources and Electric Power Hangzhou 310018 China
| | - Yang Cui
- Nanxun Innovation Institute, Zhejiang University of Water Resources and Electric Power Hangzhou 310018 China
| | - Lifang Shen
- Nanxun Innovation Institute, Zhejiang University of Water Resources and Electric Power Hangzhou 310018 China
| | - Shubin Yan
- Nanxun Innovation Institute, Zhejiang University of Water Resources and Electric Power Hangzhou 310018 China
| |
Collapse
|
4
|
Li K, Ou Y, Wang Y, Zhang J, Zhou Y. Single-atom lead ion adsorption behavior on Ti 2CO 2 MXene under different electrode potentials. Phys Chem Chem Phys 2025; 27:3083-3088. [PMID: 39831347 DOI: 10.1039/d4cp04169k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
First-principles calculations, particularly density functional theory (DFT) combined with D3 dispersion correction (DFT+D3), have proven to be valuable tools in simulating the adsorption of lead ions on Ti2CO2 surfaces. However, conventional theoretical models assume electrically neutral systems under vacuum conditions, neglecting the solvent environment and electrode potential's crucial effects. This study employed an implicit solvent model, treating the solvent as a continuous and homogeneous medium to capture the influence of different solvents by varying their dielectric constants. Additionally, the role of electrode potential on the adsorption behavior of lead ions on Ti2CO2 surfaces was explored. The findings demonstrated that electrode potential significantly affected lead ion adsorption with adsorption strength increasing as the electrode potential decreases. This observation was supported by electronic structure analyses, such as the density of states, band structure and ICOHP. This study provides important insights into the influence of electrode potential on metal ion adsorption on MXene materials, offering a theoretical foundation for the design and optimization of MXene-based adsorbents for environmental applications.
Collapse
Affiliation(s)
- Kechen Li
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
- Jiangxi Provincial Key Laboratory of Power Batteries & Energy Storage Materials, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Yang Ou
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Yongzhi Wang
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
- Jiangxi Provincial Key Laboratory of Power Batteries & Energy Storage Materials, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Jianbo Zhang
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Yang Zhou
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
- Jiangxi Provincial Key Laboratory of Power Batteries & Energy Storage Materials, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| |
Collapse
|
5
|
Hu X, Li X, Su NQ. Exploring Nitrogen Reduction Reaction Mechanisms with Graphyne-Confined Single-Atom Catalysts: A Computational Study Incorporating Electrode Potential and pH. J Phys Chem Lett 2024; 15:9692-9705. [PMID: 39284129 DOI: 10.1021/acs.jpclett.4c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This study reconciles discrepancies between practical electrochemical conditions and theoretical density functional theory (DFT) frameworks, evaluating three graphyne-confined single-atom catalysts (Mo-TEB, Mo@GY, and Mo@GDY). Using both constant charge models in vacuum and constant potential models with continuum implicit solvation, we closely mimic real-world electrochemical environments. Our findings highlight the crucial role of explicitly incorporating electrode potential and pH in the constant potential model, providing enhanced insights into the nitrogen reduction reaction (NRR) mechanisms. Notably, the superior NRR performance of Mo-TEB is attributed to the d-band center's proximity to the Fermi level and enhanced magnetic moments at the atomic center. This research advances our understanding of graphyne-confined single-atom catalysts as effective NRR platforms and underscores the significance of the constant potential model for accurate DFT studies of electrochemical reactions.
Collapse
Affiliation(s)
- Xiuli Hu
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiang Li
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Neil Qiang Su
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Department of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Liu G, Xie F, Cai X, Ye J. Spin Crossover and Exchange Effects on Oxygen Evolution Reaction Catalyzed by Bimetallic Metal Organic Frameworks. ACS Catal 2024; 14:8652-8665. [PMID: 38868096 PMCID: PMC11165450 DOI: 10.1021/acscatal.4c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Bimetallic metal-organic frameworks (BMOFs) have shown a superior oxygen evolution reaction (OER) performance, attributed to the synergistic effects of dual metal sites. However, the significant role of these dual-metal synergies in the OER is not yet fully understood. In this study, we employed density functional theory to systematically investigate the OER performance of NiAl- and NiFe-based BMOFs by examining all possible spin states of each intermediate across diverse external potentials and pH environments. We found that the spin state featuring a shallow hole trap state and Ni ions with a higher oxidation state serve as strong oxidizing agents, promoting the OER. An external potential-induced spin crossover was observed in each intermediate, resulting in significant changes in the overall reaction and activation energies due to altered energy levels. Combining the constant potential method and the electrochemical nudged elastic band method, we mapped the minimum free energy barriers of the OER under varied external potential and pH by considering the spin crossover effect for both NiAl and NiFe BMOFs. The results showed that NiFe exhibits better OER thermodynamics and kinetics, which is in good agreement with experimentally measured OER polarization curves and Tafel plots. Moreover, we found that the improved OER kinetics of NiFe not only is attributed to lower barriers but also is a result of improved electrical conductivity arising from the synergistic effects of Ni-Fe dual-metal sites. Specifically, replacing the second metal Al with Fe leads to two significant outcomes: a reduction in both the band gap and the effective hole mass compared to NiAl, and the initiation of super- and double-exchange interactions within the Ni-F-Fe chain, thereby enhancing electron transfer and hopping and leading to the improved OER kinetics.
Collapse
Affiliation(s)
- Guangsheng Liu
- Department
of Chemistry and Biochemistry, Duquesne
University, Pittsburgh, Pennsylvania 15282, United States
| | - Feng Xie
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Xu Cai
- State
Key Laboratory of Photocatalysis on Energy and Environment, College
of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| | - Jingyun Ye
- Department
of Chemistry and Biochemistry, Duquesne
University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
7
|
Beinlich SD, Kastlunger G, Reuter K, Hörmann NG. Controlled Electrochemical Barrier Calculations without Potential Control. J Chem Theory Comput 2023; 19:8323-8331. [PMID: 37933878 PMCID: PMC10688182 DOI: 10.1021/acs.jctc.3c00836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
The knowledge of electrochemical activation energies under applied potential conditions is a prerequisite for understanding catalytic activity at electrochemical interfaces. Here, we present a new set of methods that can compute electrochemical barriers with accuracy comparable to that of constant potential grand canonical approaches, without the explicit need for a potentiostat. Instead, we Legendre transform a set of constant charge, canonical reaction paths. Additional straightforward approximations offer the possibility to compute electrochemical barriers at a fraction of computational cost and complexity, and the analytical inclusion of geometric response highlights the importance of incorporating electronic as well as the geometric degrees of freedom when evaluating electrochemical barriers.
Collapse
Affiliation(s)
- Simeon D. Beinlich
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Technical
University of Munich, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Georg Kastlunger
- Technical
University of Denmark, Fysikvej 311, 2800 Kongens Lyngby, Denmark
| | - Karsten Reuter
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Nicolas G. Hörmann
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
8
|
Liu JC, Luo F, Li J. Electrochemical Potential-Driven Shift of Frontier Orbitals in M-N-C Single-Atom Catalysts Leading to Inverted Adsorption Energies. J Am Chem Soc 2023; 145:25264-25273. [PMID: 37939166 DOI: 10.1021/jacs.3c08697] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Electronic structure is essential to understanding the catalytic mechanism of metal single-atom catalysts (SACs), especially under electrochemical conditions. This study delves into the nuanced modulation of "frontier orbitals" in SACs on nitrogen-doped graphene (N-C) substrates by electrochemical potentials. We observe shifts in Fermi level and changes of d-orbital occupation with alterations in electrochemical potentials, emphasizing a synergy between the discretized atomic orbitals of metals and the continuous bands of the N-C based environment. Using O2 and CO2 as model adsorbates, we highlight the direct consequences of these shifts on adsorption energies, unveiling an intriguing inversion of adsorption energies on Co/N-C SAC under negative electrochemical potentials. Such insights are attributed to the role of the dxz and dz2 orbitals, pivotal for stabilizing the π* orbitals of O2. Through this exploration, our work offers insights on the interplay between electronic structures and adsorption behaviors in SACs, paving the way for enhanced catalyst design strategies in electrochemical processes.
Collapse
Affiliation(s)
- Jin-Cheng Liu
- Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Feng Luo
- Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Abidi N, Steinmann SN. An Electrostatically Embedded QM/MM Scheme for Electrified Interfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25009-25017. [PMID: 37163568 DOI: 10.1021/acsami.3c01430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Atomistic modeling of electrified interfaces remains a major issue for detailed insights in electrocatalysis, corrosion, electrodeposition, batteries, and related devices such as pseudocapacitors. In these domains, the use of grand-canonical density functional theory (GC-DFT) in combination with implicit solvation models has become popular. GC-DFT can be conveniently applied not only to metallic surfaces but also to semiconducting oxides and sulfides and is, furthermore, sufficiently robust to achieve a consistent description of reaction pathways. However, the accuracy of implicit solvation models for solvation effects at interfaces is in general unknown. One promising way to overcome the limitations of implicit solvents is going toward hybrid quantum mechanical (QM)/molecular mechanics (MM) models. For capturing the electrochemical potential dependence, the key quantity is the capacitance, i.e., the relation between the surface charge and the electrochemical potential. In order to retrieve the electrochemical potential from a QM/MM hybrid scheme, an electrostatic embedding is required. Furthermore, the charge of the surface and of the solvent regions has to be strictly opposite in order to consistently simulate charge-neutral unit cells in MM and in QM. To achieve such a QM/MM scheme, we present the implementation of electrostatic embedding in the VASP code. This scheme is broadly applicable to any neutral or charged solid/liquid interface. Here, we demonstrate its use in the context of GC-DFT for the hydrogen evolution reaction (HER) over a noble-metal-free electrocatalyst, MoS2. We investigate the effect of electrostatic embedding compared to the implicit solvent model for three contrasting active sites on MoS2: (i) the sulfur vacancy defect, which is rather apolar; (ii) a Mo antisite defect, where the active site is a surface bound highly polar OH group; and (iii) a reconstructed edge site, which is generally believed to be responsible for most of the catalytic activity. According to our results, the electrostatic embedding leads to almost indistinguishable results compared to the implicit solvent for the apolar system but has a significant effect on polar sites. This demonstrates the reliability of the hybrid QM/MM, electrostatically embedded solvation model for electrified interfaces.
Collapse
Affiliation(s)
- Nawras Abidi
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, F-69364 Lyon, France
| | - Stephan N Steinmann
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, F-69364 Lyon, France
| |
Collapse
|
10
|
First-principles theory of electrochemical capacitance. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
11
|
Binninger T, Doublet ML. The Ir-OOOO-Ir transition state and the mechanism of the oxygen evolution reaction on IrO 2(110). ENERGY & ENVIRONMENTAL SCIENCE 2022; 15:2519-2528. [PMID: 36204599 PMCID: PMC9450941 DOI: 10.1039/d2ee00158f] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/04/2022] [Indexed: 05/14/2023]
Abstract
Carefully assessing the energetics along the pathway of the oxygen evolution reaction (OER), our computational study reveals that the "classical" OER mechanism on the (110) surface of iridium dioxide (IrO2) must be reconsidered. We find that the OER follows a bi-nuclear mechanism with adjacent top surface oxygen atoms as fixed adsorption sites, whereas the iridium atoms underneath play an indirect role and maintain their saturated 6-fold oxygen coordination at all stages of the reaction. The oxygen molecule is formed, via an Ir-OOOO-Ir transition state, by association of the outer oxygen atoms of two adjacent Ir-OO surface entities, leaving two intact Ir-O entities at the surface behind. This is drastically different from the commonly considered mono-nuclear mechanism where the O2 molecule evolves by splitting of the Ir-O bond in an Ir-OO entity. We regard the rather weak reducibility of crystalline IrO2 as the reason for favoring the novel pathway, which allows the Ir-O bonds to remain stable and explains the outstanding stability of IrO2 under OER conditions. The establishment of surface oxygen atoms as fixed electrocatalytically active sites on a transition-metal oxide represents a paradigm shift for the understanding of water oxidation electrocatalysis, and it reconciles the theoretical understanding of the OER mechanism on iridium oxide with recently reported experimental results from operando X-ray spectroscopy. The novel mechanism provides an efficient OER pathway on a weakly reducible oxide, defining a new strategy towards the design of advanced OER catalysts with combined activity and stability.
Collapse
|
12
|
Schmickler W, Santos E. Desorption of hydrogen from graphene induced by charge injection. ChemElectroChem 2022. [DOI: 10.1002/celc.202200511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Elizabeth Santos
- Ulm University: Universitat Ulm Instiitute of Theoretical Chemistry Albert Einstein Allee 11 89089 Ulm GERMANY
| |
Collapse
|