1
|
Chen S, Zhu H, Li J, Yin ZW, Chen T, Yao X, Zhao W, Xue H, Jiang X, Li Y, Ren H, Chen J, Li JT, Yang L, Pan F. Tailoring Sodium Carboxymethylcellulose Binders for High-Voltage LiCoO 2 via Thermal Pulse Sintering. Angew Chem Int Ed Engl 2025; 64:e202423796. [PMID: 39905634 DOI: 10.1002/anie.202423796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Polyvinylidene fluoride (PVDF), as the commercial cathode binder for lithium-ion batteries, presents several practical challenges, including insufficient conductivity, weak adhesion to active materials, and the use of toxic N-methylpyrrolidone for slurry preparation. However, while most water-soluble binders can address the aforementioned issues, they fail to meet the requirements of high-voltage cathodes. In this work, we innovatively employed a thermal pulse sintering strategy to modify carboxymethyl cellulose sodium (CMC), enabling their application in 4.6 V LiCoO2 (93 % capacity retention after 200 cycles). This strategy facilitates the decomposition of electrochemically active carboxyl groups, leading to ring opening reactions that generate numerous ether linkages (-C-O-C-) without introducing undesirable side effects on LiCoO2. The resulting components form additional charge carrier (i.e., Li+ and e-) pathways on the cathode surface. Additionally, the heating process also promotes uniform coating of the binder on the surface of LiCoO2, creating a protective layer that inhibits interfacial side reactions. Through proposing a scalable and economic manufacturing technology of multifunctional binder, this work enlightens the avenues for practical high-energy-density batteries.
Collapse
Affiliation(s)
- Shiming Chen
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Hengyao Zhu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Jiangxiao Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Zu-Wei Yin
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
- College of Energy, Xiamen University, Xiamen, 61005, P. R. China
| | - Taowen Chen
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Xiangming Yao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Wenguang Zhao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Haoyu Xue
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Xin Jiang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yongsheng Li
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Hengyu Ren
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Jun Chen
- Institute of Zhejiang, University-Quzhou, Zheda Road 99, Quzhou, 324000, P. R. China
| | - Jun-Tao Li
- College of Energy, Xiamen University, Xiamen, 61005, P. R. China
| | - Luyi Yang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| |
Collapse
|
2
|
Bartek M, Makkos E, Kelemen Z. Deciphering the direct heterometallic interaction in κ 3-bis(donor)ferrocenyl-transition-metal complexes. Dalton Trans 2025; 54:2078-2085. [PMID: 39691088 DOI: 10.1039/d4dt03019b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Ligands featuring a 1,1'-bis(donor)ferrocene motif can adopt various binding modes. Among them, the κ3 binding mode, which involves interaction between the iron center of the ferrocene unit and the transition metal is the most unique. Although various examples highlight the interaction itself, the exact quantification of its strength remains uncertain. In our computational study, we systematically investigate the nature of this unique heterometallic bond, demonstrating that the electron density at the transition metal primarily governs the heterobimetallic interaction. On the other hand, the contribution of the ipso-carbon atoms of the cyclopentadiene ring is not negligible. We demonstrated that isodesmic reactions provide the most quantifiable data regarding the interaction. If the transition metal center is complexed with good electron-donor ligands or its positive charge is compensated by the negative charge of the ligands, the interaction with the electron-rich iron center recedes into the background. Finally, we highlighted the importance of the accurate computational description of these systems.
Collapse
Affiliation(s)
- Máté Bartek
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem Rkp. 3, 1111 Budapest, Hungary.
| | - Eszter Makkos
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem Rkp. 3, 1111 Budapest, Hungary.
- HUN-REN Computation Driven Chemistry Research Group, Budapest University of Technology and Economics, Műegyetem Rkp. 3, 1111 Budapest, Hungary
| | - Zsolt Kelemen
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem Rkp. 3, 1111 Budapest, Hungary.
| |
Collapse
|
3
|
Devore DP, Ellington TL, Shuford KL. Illuminating the Performance of Electron Withdrawing Groups in Halogen Bonding. Chemphyschem 2024; 25:e202400607. [PMID: 39222401 PMCID: PMC11648845 DOI: 10.1002/cphc.202400607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Throughout the halogen bonding literature, electron withdrawing groups are relied upon heavily for tuning the interaction strength between the halogen bond donor and acceptor; however, the interplay of electronic effects associated with various substituents is less of a focus. This work utilizes computational techniques to study the degree of σ- and π-electron donating/accepting character of electron withdrawing groups in a prescribed set of halo-alkyne, halo-benzene, and halo-ethynyl benzene halogen bond donors. We examine how these factors affect the σ-hole magnitude of the donors as well as the binding strength of the corresponding complexes with an ammonia acceptor. Statistical analyses aid the interpretation of how these substituents influence the properties of the halogen bond donors and complexes, and show that the electron withdrawing groups that are both σ- and π-electron accepting form the strongest halogen bond complexes.
Collapse
Affiliation(s)
- Daniel P. Devore
- Department of Chemistry and BiochemistryBaylor University, One Bear Place 97348WacoTX, 76798–7348USA
- Present address: Department of ChemistrySouthern Methodist UniversityP.O. Box 750314DallasTX 75205USA
| | - Thomas L. Ellington
- Department of Chemistry and BiochemistryBaylor University, One Bear Place 97348WacoTX, 76798–7348USA
- Present address: Department of Chemistry and PhysicsUniversity of Tennessee Martin554 University StreetMartinTN 38238USA
| | - Kevin L. Shuford
- Department of Chemistry and BiochemistryBaylor University, One Bear Place 97348WacoTX, 76798–7348USA
| |
Collapse
|
4
|
Devore DP, Shuford KL. Data and Molecular Fingerprint-Driven Machine Learning Approaches to Halogen Bonding. J Chem Inf Model 2024; 64:8201-8214. [PMID: 39469831 DOI: 10.1021/acs.jcim.4c01427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The ability to predict the strength of halogen bonds and properties of halogen bond (XB) donors has significant utility for medicinal chemistry and materials science. XBs are typically calculated through expensive ab initio methods. Thus, the development of tools and techniques for fast, accurate, and efficient property predictions has become increasingly more important. Herein, we employ three machine learning models to classify the XB donors and complexes by their principal halogen atom as well as predict the values of the maximum point on the electrostatic potential surface (VS,max) and interaction strength of the XB complexes through a molecular fingerprint and data-based analysis. The fingerprint analysis produces a root-mean-square error of ca. 7.5 and ca. 5.5 kcal mol-1 while predicting the VS,max for the halobenzene and haloethynylbenzene systems, respectively. However, the prediction of the binding energy between the XB donors and ammonia acceptor is shown to be within 1 kcal mol-1 of the density functional theory (DFT)-calculated energy. More accurate predictions can be made from the precalculated DFT data when compared to the fingerprint analysis.
Collapse
Affiliation(s)
- Daniel P Devore
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Kevin L Shuford
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| |
Collapse
|
5
|
Bodo F, Erba A, Kraka E, Moura RT. Chemical bonding in Uranium-based materials: A local vibrational mode case study of Cs 2 UO 2 Cl 4 and UCl 4 crystals. J Comput Chem 2024; 45:1130-1142. [PMID: 38279637 DOI: 10.1002/jcc.27311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/10/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
The Local Vibrational Mode Analysis, initially applied to diverse molecular systems, was extended to periodic systems in 2019. This work introduces an enhanced version of the LModeA software, specifically designed for the comprehensive analysis of two and three-dimensional periodic structures. Notably, a novel interface with the Crystal package was established, enabling a seamless transition from molecules to periodic systems using a unified methodology. Two distinct sets of uranium-based systems were investigated: (i) the evolution of the Uranyl ion (UO 2 2 + ) traced from its molecular configurations to the solid state, exemplified by Cs 2 UO 2 Cl 4 and (ii) Uranium tetrachloride (UCl 4 ) in both its molecular and crystalline forms. The primary focus was on exploring the impact of crystal packing on key properties, including IR and Raman spectra, structural parameters, and an in-depth assessment of bond strength utilizing local mode perspectives. This work not only demonstrates the adaptability and versatility of LModeA for periodic systems but also highlights its potential for gaining insights into complex materials and aiding in the design of new materials through fine-tuning.
Collapse
Affiliation(s)
- Filippo Bodo
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
- Dipartimento di Chimica, Università di Torino, Torino, Italy
| | - Alessandro Erba
- Dipartimento di Chimica, Università di Torino, Torino, Italy
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
| | - Renaldo T Moura
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
- Department of Chemistry and Physics, Center of Agrarian Sciences, Federal University of Paraiba, Areia, Brazil
| |
Collapse
|
6
|
Mikhailov AA, Gansmüller A, Konieczny KA, Pillet S, Kostin G, Klüfers P, Woike T, Schaniel D. Local force constants and charges of the nitrosyl ligand in photoinduced NO linkage isomers in a prototypical ruthenium nitrosyl complex. Phys Chem Chem Phys 2024; 26:15255-15267. [PMID: 38751356 DOI: 10.1039/d4cp01374c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Photoinduced linkage isomers (PLI) of the NO ligand in transition-metal nitrosyl compounds can be identified by vibrational spectroscopy due to the large shifts of the (NO) stretching vibration. We present a detailed experimental and theoretical study of the prototypical compound K2[RuCl5NO], where (NO) shifts by ≈150 cm-1 when going from the N-bound (κN) ground state (GS) to the oxygen-bound (κO) metastable linkage isomer MS1, and by ≈360 cm-1 when going to the side-on (κ2N,O) metastable linkage isomer MS2. We show that the experimentally observed N-O stretching modes of the GS, MS1, and MS2 exhibit strong coupling with the Ru-N and Ru-O stretching modes, which can be decoupled using the local mode vibrational theory formalism. From the resulting decoupled pure two-atomic harmonic oscillators the local force constants are determined, which all follow the same quadratic behavior on the wavenumber. A Bader charge analysis shows that the total charge on the NO ligand is not correlated to the observed frequency shift of (NO).
Collapse
Affiliation(s)
| | | | - Krzysztof A Konieczny
- Université de Lorraine, CNRS, CRM2, 54000 Nancy, France.
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | | | - Gennadiy Kostin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
| | - Peter Klüfers
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, München 81377, Germany
| | - Theo Woike
- Université de Lorraine, CNRS, CRM2, 54000 Nancy, France.
| | | |
Collapse
|
7
|
Scherz F, Bauer M, Domenianni LI, Hoyer C, Schmidt J, Sarkar B, Vöhringer P, Krewald V. Ultrafast photogeneration of a metal-organic nitrene from 1,1'-diazidoferrocene. Chem Sci 2024; 15:6707-6715. [PMID: 38725494 PMCID: PMC11077559 DOI: 10.1039/d4sc00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Ferrocene and its derivatives have fascinated chemists for more than 70 years, not least due to the analogies with the properties of benzene. Despite these similarities, the obvious difference between benzene and ferrocene is the presence of an iron ion and hence the availability of d-orbitals for properties and reactivity. Phenylnitrene with its rich photochemistry can be considered an analogue of nitrenoferrocene. As with most organic and inorganic nitrenes, nitrenoferrocene can be obtained by irradiating the azide precursor. We study the photophysical and photochemical processes of dinitrogen release from 1,1'-diazidoferrocene to form 1-azido-1'-nitrenoferrocene with UV-pump-mid-IR-probe transient absorption spectroscopy and time-dependent density functional theory calculations including spin-orbit coupling. An intermediate with a bent azide moiety is identified that is pre-organised for dinitrogen release via a low-lying transition state. The photochemical decay paths on the singlet and triplet surfaces including the importance of spin-orbit coupling are discussed. We compare our findings with the processes discussed for photochemical dinitrogen activation and highlight implications for the photochemistry of azides more generally.
Collapse
Affiliation(s)
- Frederik Scherz
- Department of Chemistry, Theoretical Chemistry, TU Darmstadt Peter-Grünberg-Str. 4 64287 Darmstadt Germany
| | - Markus Bauer
- Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn Wegelerstraße 12 53115 Bonn Germany
| | - Luis I Domenianni
- Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn Wegelerstraße 12 53115 Bonn Germany
| | - Carolin Hoyer
- Institut für Chemie und Biochemie, Freie Universität Berlin Fabeckstraße 34-36 14195 Berlin Germany
| | - Jonas Schmidt
- Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn Wegelerstraße 12 53115 Bonn Germany
| | - Biprajit Sarkar
- Institute of Inorganic Chemistry, University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin Fabeckstraße 34-36 14195 Berlin Germany
| | - Peter Vöhringer
- Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn Wegelerstraße 12 53115 Bonn Germany
| | - Vera Krewald
- Department of Chemistry, Theoretical Chemistry, TU Darmstadt Peter-Grünberg-Str. 4 64287 Darmstadt Germany
| |
Collapse
|
8
|
Chagas JCV, Milanez BD, Oliveira VP, Pinheiro M, Ferrão LFA, Aquino AJA, Lischka H, Machado FBC. A multi-descriptor analysis of substituent effects on the structure and aromaticity of benzene derivatives: π-Conjugation versus charge effects. J Comput Chem 2024; 45:863-877. [PMID: 38153839 DOI: 10.1002/jcc.27296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 12/30/2023]
Abstract
This work provides a detailed multi-component analysis of aromaticity in monosubstituted (X = CH3, CH 2 - , CH 2 + , NH2, NH-, NH+, OH, O-, and O+) and para-homodisubstituted (X = CH3, CH2, NH2, NH, OH, and O) benzene derivatives. We investigate the effects of substituents using single-reference (B3LYP/DFT) and multireference (CASSCF/MRCI) methods, focusing on structural (HOMA), vibrational (AI(vib)), topological (ELFπ), electronic (MCI), magnetic (NICS), and stability (S0-T1 splitting) properties. The findings reveal that appropriate π-electron-donating and π-electron-accepting substituents with suitable size and symmetry can interact with the π-system of the ring, significantly influencing π-electron delocalization. While the charge factor has a minimal impact on π-electron delocalization, the presence of a pz orbital capable of interacting with the π-electron delocalization is the primary factor leading to a deviation from the typical aromaticity characteristics observed in benzene.
Collapse
Affiliation(s)
- Julio C V Chagas
- Department of Chemistry, Aeronautics Institute of Technology, São José dos Campos, São Paulo, Brazil
| | - Bruno D Milanez
- Department of Chemistry, Aeronautics Institute of Technology, São José dos Campos, São Paulo, Brazil
| | - Vytor P Oliveira
- Department of Chemistry, Aeronautics Institute of Technology, São José dos Campos, São Paulo, Brazil
| | - Max Pinheiro
- Department of Chemistry, Aeronautics Institute of Technology, São José dos Campos, São Paulo, Brazil
| | - Luiz F A Ferrão
- Department of Chemistry, Aeronautics Institute of Technology, São José dos Campos, São Paulo, Brazil
| | - Adelia J A Aquino
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Francisco B C Machado
- Department of Chemistry, Aeronautics Institute of Technology, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
9
|
Devore DP, Ellington TL, Shuford KL. Elucidating the Role of Electron-Donating Groups in Halogen Bonding. J Phys Chem A 2024; 128:1477-1490. [PMID: 38373286 DOI: 10.1021/acs.jpca.3c06894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Computational quantum chemical techniques were utilized to systematically examine how electron-donating groups affect the electronic and spectroscopic properties of halogen bond donors and their corresponding complexes. Unlike the majority of studies on halogen bonding, where electron-withdrawing groups are utilized, this work investigates the influence of electron-donating substituents within the halogen bond donors. Statistical analyses were performed on the descriptors of halogen bond donors in a prescribed set of archetype, halo-alkyne, halo-benzene, and halo-ethynyl benzene halogen bond systems. The σ-hole magnitude, binding and interaction energies, and the vibrational X···N local force constant (where X = Cl, Br, I, and At) were found to correlate very well in a monotonic and linear manner with all other properties studied. In addition, enhanced halogen bonds were found when the systems contained electron-donating groups that could form intramolecular hydrogen bonds with the electronegative belt of the halogen atom and adjacent linker features.
Collapse
Affiliation(s)
- Daniel P Devore
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Thomas L Ellington
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Kevin L Shuford
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| |
Collapse
|
10
|
Phan Dang CT, Tam NM, Huynh TN, Trung NT. Revisiting conventional noncovalent interactions towards a complete understanding: from tetrel to pnicogen, chalcogen, and halogen bond. RSC Adv 2023; 13:31507-31517. [PMID: 37901266 PMCID: PMC10606978 DOI: 10.1039/d3ra06078k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
Typical noncovalent interactions, including tetrel (TtB), pnicogen (PniB), chalcogen (ChalB), and halogen bonds (HalB), were systematically re-investigated by modeling the N⋯Z interactions (Z = Si, P, S, Cl) between NH3 - as a nucleophilic, and SiF4, PF3, SF2, and ClF - as electrophilic components, employing highly reliable ab initio methods. The characteristics of N⋯Z interactions when Z goes from Si to Cl, were examined through their changes in stability, vibrational spectroscopy, electron density, and natural orbital analyses. The binding energies of these complexes at CCSD(T)/CBS indicate that NH3 tends to hold tightly most with ClF (-34.7 kJ mol-1) and SiF4 (-23.7 kJ mol-1) to form N⋯Cl HalB and N⋯Si TtB, respectively. Remarkably, the interaction energies obtained from various approaches imply that the strength of these noncovalent interactions follows the order: N⋯Si TtB > N⋯Cl HalB > N⋯S ChalB > N⋯P PniB, that differs the order of their corresponding complex stability. The conventional N⋯Z noncovalent interactions are characterized by the local vibrational frequencies of 351, 126, 167, and 261 cm-1 for TtB, PniB, ChalB, and HalB, respectively. The SAPT2+(3)dMP2 calculations demonstrate that the primary force controlling their strength retains the electrostatic term. Accompanied by the stronger strength of N⋯Si TtB and N⋯Cl HalB, the AIM and NBO results state that they are partly covalent in nature with amounts of 18.57% and 27.53%, respectively. Among various analysis approaches, the force constant of the local N⋯Z stretching vibration is shown to be most accurate in describing the noncovalent interactions.
Collapse
Affiliation(s)
- Cam-Tu Phan Dang
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
| | - Nguyen Minh Tam
- Faculty of Basic Sciences, University of Phan Thiet 225 Nguyen Thong Phan Thiet City Binh Thuan Vietnam
| | - Thanh-Nam Huynh
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology Eggenstein-Leopoldshafen 76344 Germany
| | - Nguyen Tien Trung
- Laboratory of Computational Chemistry and Modelling (LCCM), Quy Nhon University Quy Nhon City 590000 Vietnam
| |
Collapse
|
11
|
Jiang X, Zhao T, Wang D. Anisotropic ductility and thermoelectricity of van der Waals GeAs. Phys Chem Chem Phys 2023; 25:27542-27552. [PMID: 37801049 DOI: 10.1039/d3cp03119e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Wearable thermoelectric applications require materials with both high energy conversion efficiency and excellent flexibility/deformability. Inorganic thermoelectric materials have shown high conversion efficiency, but they are usually brittle and have poor mechanical flexibility, which makes their integration into flexible devices a challenging task. GeAs is a group IV-V binary compound with a van der Waals layered structure, and its thermoelectric response has been reported. Herein, we investigate the mechanical and thermoelectric properties of GeAs crystal by a combination of density functional theory and density functional perturbation theory methods. Our results show that GeAs features a moderately dispersive valence band and multivalley convergence, which give rise to a large Seebeck coefficient and power factor when it is properly p-doped. Remarkably, its electrical transport in the out-of-plane direction even outperforms that in the in-plane direction, while phonon transport is suppressed, leading to a predominant thermoelectric response in the vertical direction. More interestingly, GeAs demonstrates a structural stiffness higher than thermoelectric CuInTe2 and PbTe, and a ductility ratio comparable to a recently discovered plastic semiconductor, InSe. The stress-strain curve simulation reveals that GeAs can withstand deformations up to 20%. These findings showcase GeAs as a ductile thermoelectric material suitable for wearable devices and energy conversion.
Collapse
Affiliation(s)
- Xia Jiang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China.
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Tianqi Zhao
- AI for Science Institute, Beijing, 100080, P. R. China
| | - Dong Wang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China.
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
12
|
Li J, Wang C, Mo Y. Selectivity Rule of Cryptands for Anions: Molecular Rigidity and Bonding Site. Chemistry 2023; 29:e202203558. [PMID: 36538660 DOI: 10.1002/chem.202203558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Cryptands utilize inside CH or NH groups as hydrogen bond (H-bond) donors to capture anions such as halides. In this work, the nature and selectivity of confined hydrogen bonds inside cryptands were computationally analyzed with the energy decomposition scheme based on the block-localized wavefunction method (BLW-ED), aiming at an elucidation of governing factors in the binding between cryptands and anions. It was revealed that the intrinsic strengths of inward hydrogen bonds are dominated by the electrostatic attraction, while the anion preferences (selectivity) of inner CH and NH hydrogen bonds are governed by the Pauli exchange repulsion and electrostatic interaction, respectively. Typical conformers of cages are classified into two groups, including the C3(h) -symmetrical conformers, in which all halide anions are located near the centroids of cages, and the "semi-open" conformers, which exhibit shifted bonding sites for different halide anions. Accordingly, the difference in governing factors of selectivity is attributed to either the rigidity of cages or the binding site of anions for these two groups. In details, the C3 conformers of NH cryptands can be enlarged more remarkably than the C3(h) -symmetrical conformers of CH cryptands as the size of anion (ionic radius) increases, resulting in the relaxation of the Pauli repulsion and a dramatic reduction in electrostatic attraction, which eventually rules the selectivity of NH cryptands for halide anions. By contrary, the CH cryptands are more rigid and cannot effectively reduce the Pauli repulsion, which subsequently governs the anion preference. Unlike C3 conformers whose rigidity determines the selectivity, semi-open conformers exhibit different binding sites for different anions. From F- to I- , the bonding site shifts toward the outside end of the pocket inside the semi-open NH cryptand, leading to the significant reduction of the electrostatic interaction that dominates the anion preference. Differently, binding sites are much less affected by the size of anion inside the semi-open CH cryptand, in which the Pauli exchange repulsion remains the key factor for the selectivity of inner hydrogen bonds.
Collapse
Affiliation(s)
- Jiayao Li
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Changwei Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| |
Collapse
|
13
|
Ellington TL, Devore DP, Uvin G De Alwis WM, French KA, Shuford KL. Shedding Light on the Vibrational Signatures in Halogen-Bonded Graphitic Carbon Nitride Building Blocks. Chemphyschem 2022; 24:e202200812. [PMID: 36480235 DOI: 10.1002/cphc.202200812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
The relative contributions of halogen and hydrogen bonding to the interaction between graphitic carbon nitride monomers and halogen bond (XB) donors containing C-X and C≡C bonds were evaluated using computational vibrational spectroscopy. Conventional probes into select vibrational stretching frequencies can often lead to disconnected results. To elucidate this behavior, local mode analyses were performed on the XB donors and complexes identified previously at the M06-2X/aVDZ-PP level of theory. Due to coupling between low and high energy C-X vibrations, the C≡C stretch is deemed a better candidate when analyzing XB complex properties or detecting XB formation. The local force constants support this conclusion, as the C≡C values correlate much better with the σ-hole magnitude than their C-X counterparts. The intermolecular local stretching force constants were also assessed, and it was found that attractive forces other than halogen bonding play a supporting role in complex formation.
Collapse
Affiliation(s)
- Thomas L Ellington
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798-7348, USA
| | - Daniel P Devore
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798-7348, USA
| | - W M Uvin G De Alwis
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798-7348, USA
| | - Kirk A French
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798-7348, USA
| | - Kevin L Shuford
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798-7348, USA
| |
Collapse
|
14
|
Yadav R, Sun X, Köppe R, Gamer MT, Weigend F, Roesky PW. Stimuli Responsive Silylene: Electromerism Induced Reversible Switching Between Mono- and Bis-Silylene. Angew Chem Int Ed Engl 2022; 61:e202211115. [PMID: 36161745 PMCID: PMC9828679 DOI: 10.1002/anie.202211115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/12/2023]
Abstract
Electromerism is a very well-known phenomenon in transition metal chemistry. In main group chemistry, this concept has only started getting attention recently. We report stimuli responsive low-valent silicon compounds exhibiting electromerism. A mixed-valent silaiminyl-silylene 1, [LSi-Si(NDipp)L] (L=PhC(Nt Bu)2 ), was synthesized in a single step from amidinate-chlorosilylene. Compound 1 has two interconnected Si atoms in formally +I and +III oxidation states. Upon treatment with Lewis acidic CuI X (X=mesityl, Cl, Br, I), electron redistribution occurs resulting in the formation of [{LSi(NDipp)Si(L)}-CuX], in which both silicon atoms are in the +II formal oxidation state. Removal of the copper center from [{LSi(NDipp)Si(L)}-CuX] by using a Lewis basic carbene led to reformation of the precursor [LSi-Si(NDipp)L]. Thus, the process is fully reversible. This showcases the first example of Lewis acid/base-induced reversible electromerism in silicon chemistry.
Collapse
Affiliation(s)
- Ravi Yadav
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Xiaofei Sun
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Ralf Köppe
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Michael T. Gamer
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Florian Weigend
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Peter W. Roesky
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| |
Collapse
|