1
|
Woods CZ, Sharma K, Chen C, Yang L, Chen J, Wu YC, Farooqi NS, Zhang J, Julian RR, Hooley RJ. Solvent Effects and Internal Functions Control Molecular Recognition of Neutral Substrates in Functionalized Self-Assembled Cages. J Org Chem 2025; 90:240-249. [PMID: 39680645 DOI: 10.1021/acs.joc.4c02190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A suite of internally functionalized Fe4L6 cage complexes has been synthesized with lipophilic end groups to allow dissolution in varied solvent mixtures, and the scope of their molecular recognition of a series of neutral, nonpolar guests has been analyzed. The lipophilic end groups confer cage solubility in solvents with a wide range of polarities, from hexafluoroisopropanol (HFIP) to tetrahydrofuran, and the hosts show micromolar affinities for neutral guests, despite having no flat panels enclosing the cavity. These hosts allow interrogation of the effects of an internal functional group on guest binding properties, as well as solvent-based driving forces for recognition. Introducing polar effects to the interior of the cavity enhances guest binding affinity in nonpolar solvents; adding space-filling aliphatic groups reduces affinity in all cases. While high dielectric solvents such as acetonitrile strongly favor guest binding, "low dielectric, high polarity" solvents such as HFIP strongly occupy the cavity and prevent guest recognition. Analysis of the cage optical transitions shows that the guests interact with the central ligand cores and reside in close proximity to the internal functions. These results have implications for supramolecular catalysis: balancing directed host:guest interactions (e.g., H-bonds) with entropic effects from solvent displacement is essential for reactions in these (and related) biomimetic hosts.
Collapse
Affiliation(s)
- Connor Z Woods
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| | - Komal Sharma
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| | - Chengwei Chen
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| | - Lei Yang
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| | - Junyi Chen
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| | - Yu-Chen Wu
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| | - Naira S Farooqi
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| | - Jingsong Zhang
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| | - Ryan R Julian
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| | - Richard J Hooley
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
2
|
Oopkaew L, Injongkol Y, Kungwan N, Rungrotmongkol T. Theoretical investigation of structure and electronic properties in Cisplatin-citrate complexes. J Comput Chem 2025; 46:e27511. [PMID: 39644131 DOI: 10.1002/jcc.27511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 12/09/2024]
Abstract
Cisplatin (CDDP) is an effective Platinum (Pt) based anticancer drug used in chemotherapy. However, its effectiveness is limited due to its instability in solvents, along with the side effects it causes due to DNA damage. Nanoparticles (NPs) were developed in vitro to address these issues by loading CDDP into various types of NPs, including metal, lipid, and biological NPs. Citrate was employed as a biocompatible compound in nanomedicine to reduce cytotoxicity and enhance stability. In our study, the physicochemical and electronic properties of CDDP and citrate have been investigated using density functional theory (DFT), with a comparison of their behavior in water and DMSO. Additionally, TD-DFT was applied to analyze the UV-Vis spectra results. Six complexes have been proposed to better understand the interaction between citrate and CDDP. The results demonstrated that the CDDP could form stable complexes with citrate in both water and DMSO, and the considered complexes exhibited UV-Vis spectra within the experiment range. The frontier orbitals, electron densities mapping, and electrostatic potential analysis revealed that complex 5, where citrate di-substituted on two chlorides, is the most likely and effective complex. In summary, our investigation sheds light on the potential of CDDP-citrate complexes to address the limitations of CDDP, offering insights into their stability and interaction in solvents and highlighting the promising efficacy of specific complex formations for future therapeutic applications.
Collapse
Affiliation(s)
- Lipika Oopkaew
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Yuwanda Injongkol
- Futuristic Science Research Center, School of Science, Walailak University, Nakhon Si Thammarat, Thailand
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Youssef Z, El Eter M, Albela B, Bonneviot L. Revisited UV- spectra of chlorohydroxoaurate anions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124736. [PMID: 39137706 DOI: 10.1016/j.saa.2024.124736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/15/2024]
Abstract
The most important ionic precursor of gold, [AuCl4]-, is used in aqueous solution leading to chlorohydroxoaurates species, [AuCl4-x(OH)x]- (x = 1-4) due to partial hydrolysis. Their UV spectral signatures are still relatively unknown though very useful in many domains of application. Individual spectra of each of them are determined for the first time thanks to a thorough experimental investigation comprising the range 200-250 nm, surpringly ignored up to now. New isosbestic points useful for species partition analysis are evidenced. Electronic transition attribution is obtained from quantum chemical calculations based on TD-DFT. The prediction of the experimental blueshifted bands of the [AuCl4-x(OH)x]-1 anions was possible only after applying energy corrections calibrated on the full UV range two-band spectrum of the [AuCl4]- complex.
Collapse
Affiliation(s)
- Zeina Youssef
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, 15 Parvis René Descartes, UMR-CNRS 5182, 69342 Lyon Cedex 07, France.
| | - Mohamad El Eter
- Laboratoire de Chimie Pure et Appliquée, Lebanese University, Lebanon, Tripoli El-Kobbe, Lebanon; College of Arts and Sciences, American University of Iraq, Baghdad, Iraq.
| | - Belen Albela
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, 15 Parvis René Descartes, UMR-CNRS 5182, 69342 Lyon Cedex 07, France.
| | - Laurent Bonneviot
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, 15 Parvis René Descartes, UMR-CNRS 5182, 69342 Lyon Cedex 07, France.
| |
Collapse
|
4
|
Lanoë PH, Philouze C, Molton F, Vanthuyne N, Kundu D, Delporte-Pebay M, Crassous J, Latouche C, Loiseau F. Phosphorescent Chiral Cationic Binuclear Iridium(III) Complexes: Boosting the Circularly Polarized Luminescence Brightness. Inorg Chem 2024; 63:24855-24866. [PMID: 39686711 DOI: 10.1021/acs.inorgchem.4c04271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
We report the synthesis and characterization of two chiral binuclear iridium(III) complexes (ΛΛ and ΔΔ) prepared from enantiopure building blocks [μ-Cl2(Δ-Ir(C^N)2)2] and [μ-Cl2(Λ-Ir(C^N)2)2]. These building blocks have been obtained by chiral preparative high-performance liquid chromatography of the neutral iridium(III) complex Irpiv (piv = 2,2,6,6-tetramethylheptane-3,5-dionate) followed by selective degradation of the ancillary ligand. For comparison purposes, we also synthesized a monomer (IrL1) and a dimer (Ir2L2, mixture). All the complexes exhibit similar emission properties, emitting in the orange-red region of the spectra with a good photoluminescence quantum yield (λmax = 610-625 nm, Φ ∼ 25%, τ ∼ 800-900 ns). However, the ΛΛ and ΔΔ complexes are optically active, indicating that no isomerization occurred during the different synthetic steps, as evidenced by both the circular dichroism spectra and their circularly polarized luminescence (CPL). The capital gain of the dimers (Ir2L2, ΛΛ, and ΔΔ) is a 4-fold brightness (B380 = ε380 nm × Φ) compared to the monomer (IrL1) and the CPL brightness (BCPL = B380 × glum/2) of the binuclear complexes being among the highest reported to date for chiral iridium(III) complexes.
Collapse
Affiliation(s)
| | | | | | - Nicolas Vanthuyne
- Aix Marseille University, CNRS, Centrale Marseille, FSCM, Chiropole, Marseille 13397, France
| | - Debsouri Kundu
- Univ Rennes, CNRS, ISCR-UMR 6226, ScanMAT-UMS 2001, Rennes F-35000, France
| | | | - Jeanne Crassous
- Univ Rennes, CNRS, ISCR-UMR 6226, ScanMAT-UMS 2001, Rennes F-35000, France
| | - Camille Latouche
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes F-44000, France
- Institut Universitaire de France (IUF), Paris 75005, France
| | | |
Collapse
|
5
|
Ramkissoon P, Armendariz-Vidales G, D'Alton L, Molino A, Agugiaro J, Wilson DJD, Hogan CF, Barnard PJ. Iridium(III) Complexes of Bifunctional 2-(2-Pyridyl)imidazole Ligands: Electrochemiluminescent Emitters in Aqueous Media. Inorg Chem 2024. [PMID: 39561212 DOI: 10.1021/acs.inorgchem.4c03121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
A series of electrochemiluminescent (ECL) iridium(III) complexes with the general formula [Ir(C∧N)2(pim)]+ (where C∧N = cyclometalating ligands 2-phenylpyridinato (ppy) or 2-(2,4-difluorophenyl)pyridinato (dFppy), and pim = 2-(2-pyridyl)imidazole) have been synthesized. In each case, the 2-(2-pyridyl)imidazole ancillary ligand has been modified to facilitate bioconjugation and ECL label development. All complexes exhibit blue-shifted optical and electro-generated phosphorescence relative to the archetypal complex [Ir(ppy)2(bpy)]+ (bpy = 2,2'-bipyridine). The emission energies for the complexes were unperturbed by functionalization of the imidazole unit of the pim ligand, whereas the emission energy was significantly blue-shifted when the pyridyl group was modified with an electron-donating oxyethanol unit. Cyclic voltammetric studies provide results consistent with fluorine substituents on the cyclometalating ligands, or an oxyethanol substituent on the neutral pim ligand, widening the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap of these complexes. Most of the complexes have high photoluminescence quantum yields (ΦPL) in acetonitrile (up to 0.91), and some have higher ECL efficiencies than [Ru(bpy)3]2+ in both acetonitrile (up to 177%) and ProCell buffer (up to 202%). Theoretical studies provide additional insights into the photophysical and electrochemical properties of this series of compounds.
Collapse
Affiliation(s)
- Pria Ramkissoon
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Georgina Armendariz-Vidales
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Laena D'Alton
- The Biomedical and Environmental Sensor Technology (BEST) Research Centre, Biosensors Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
| | - Andrew Molino
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Johnny Agugiaro
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - David J D Wilson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Conor F Hogan
- The Biomedical and Environmental Sensor Technology (BEST) Research Centre, Biosensors Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
| | - Peter J Barnard
- The Biomedical and Environmental Sensor Technology (BEST) Research Centre, Biosensors Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
6
|
Perrella F, Petrone A, Rega N. Second-Order Mass-Weighting Scheme for Atom-Centered Density Matrix Propagation Molecular Dynamics. J Chem Theory Comput 2024; 20:8820-8832. [PMID: 39382519 DOI: 10.1021/acs.jctc.4c01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The atom-centered density matrix propagation (ADMP) method is an extended Lagrangian approach to ab initio molecular dynamics, which includes the density matrix in an orthonormalized atom-centered Gaussian basis as additional, fictitious, electronic degrees of freedom, classically propagated along with the nuclear ones. A high adiabaticity between the nuclear and electronic subsystems is mandatory in order to keep the trajectory close to the Born-Oppenheimer (BO) surface. In this regard, the fictitious electronic mass μ, being a symmetric, nondiagonal matrix in its most general form, represents a free parameter, exploitable to optimize the propagation of the electronic density. Although mass-weighting schemes in ADMP exist, a systematic procedure to define an optimal value of the fictitious masses is not available yet. In this work, in order to rationally evaluate the electronic mass, fictitious electronic normal modes are defined through the diagonalization of the Hessian of the electronic density matrix. If the same frequency is imposed on all such modes (compatible with the chosen integration time step), then the corresponding μ matrix can be calculated and then employed for the following propagation. Analysis of several ADMP test simulations reveals that such Hessian-based mass-weighting approach is able to ensure, together with a 0.1/0.2 fs time steps, a high separation between the (real) nuclear and the (fictitious) electronic frequencies, which determines a high adiabaticity. This high, unprecedented, accuracy in the propagation leads, in turn, to low errors in the estimated nuclear vibrational frequencies, making the ADMP method totally comparable to a fully converged BO molecular dynamics simulation but more computationally efficient. This work, therefore, contributes to a further development of the ADMP ab initio molecular dynamics method, aimed at improving its accuracy through a more rational evaluation of the fictitious electronic mass parameter.
Collapse
Affiliation(s)
- Fulvio Perrella
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
| | - Alessio Petrone
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 21, Napoli I-80126, Italy
- Istituto Nazionale Di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, Via Cintia 21, Napoli I-80126, Italy
| | - Nadia Rega
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 21, Napoli I-80126, Italy
- Istituto Nazionale Di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, Via Cintia 21, Napoli I-80126, Italy
| |
Collapse
|
7
|
Fedunov RG, Grivin VP, Pozdnyakov IP, Melnikov AA, Chekalin SV, Vasilchenko DB, Glebov EM. Photophysics and photochemistry of (n-Bu 4N) 2[Pt(NO 3) 6] in acetonitrile: ultrafast pump-probe spectroscopy and quantum chemical insight. Photochem Photobiol Sci 2024; 23:1957-1970. [PMID: 39405008 DOI: 10.1007/s43630-024-00645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024]
Abstract
The ultrafast processes caused by photoexcitation of (n-Bu4N)2[Pt(NO3)6] complex in acetonitrile were studied by means of transient absorption (TA) pump-probe spectroscopy and verified by quantum chemical calculations. The primary photochemical process was found to be an inner-sphere electron transfer followed by an escape of an •NO3 radical to the bulk solution. The reaction occurs via the dissociative triplet excited LMCT state of the initial complex. Based on the experimental data and quantum chemical calculations, the mechanism of ultrafast photophysical and photochemical processes is proposed.
Collapse
Affiliation(s)
- Roman G Fedunov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation
| | - Vjacheslav P Grivin
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation
| | - Ivan P Pozdnyakov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation
| | - Alexei A Melnikov
- Institute of Spectroscopy, Russian Academy of Sciences, 119333, Troitsk, Moscow, Russian Federation
| | - Sergei V Chekalin
- Institute of Spectroscopy, Russian Academy of Sciences, 119333, Troitsk, Moscow, Russian Federation
| | - Danila B Vasilchenko
- A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation
| | - Evgeni M Glebov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation.
- Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation.
| |
Collapse
|
8
|
Cui P, Wu Q, Li Z. Harnessing synergistic effects in GQD@Pt(II) nanocomposites for enhanced photovoltaic performance: a computational study. J Mol Model 2024; 30:222. [PMID: 38907083 DOI: 10.1007/s00894-024-06027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
CONTEXT The development of efficient solar energy conversion technologies is crucial for addressing global energy challenges and reducing reliance on fossil fuels. Platinum(II) complexes are promising materials for photovoltaic applications due to their strong light absorption and long-lived excited states. However, their narrow absorption in the visible spectrum and stability issues limit their performance. Combining platinum(II) complexes with graphene quantum dots (GQDs) can enhance photovoltaic performance by leveraging the complementary light harvesting and charge transfer characteristics of the two components. This study utilizes density functional theory (DFT) calculations to explore their electronic structures, charge transfer dynamics, and photoelectric performance. Specifically, it investigates the effects of incorporating different substituents, either electron-donating or electron-withdrawing, onto the fluorene motif of the Pt(II) complex. The findings reveal that combining GQDs with Pt(II) complexes extends light absorption into the UV range, enabling comprehensive solar utilization. Upon photoexcitation, electrons migrate between the GQD conduction band and the Pt(II) complex, stabilizing charges and enhancing extraction. Substituents significantly influence charge transfer dynamics: electron-withdrawing groups promote transfer to the GQD, while electron-donating groups encourage charge separation and delocalization. Nanocomposites featuring electron-donating substituents achieve the highest energy conversion efficiencies, with GQD@Pt(II)-NPh2 reaching 24.6%. This is attributed to improved light harvesting, efficient charge injection, and reduced recombination. These insights guide the rational design of GQD-Pt(II) nanocomposites, optimizing charge separation and transfer processes for enhanced photovoltaic performance. The computational approach employed here provides a robust tool for developing advanced materials in renewable energy technologies. METHODS The computational studies reported in this work were performed using the DFT approach, specifically employing the hybrid functional PBE0. The PBE0 functional's accuracy in describing electronic structures and excited-state properties is essential for understanding charge transfer processes, photoabsorption, and emission characteristics in metal-organic complexes. Geometry optimizations and time-dependent DFT (TD-DFT) calculations were carried out to investigate the properties of the nanocomposites. The effects of solvents were replicated using the conductor-like polarizable continuum model (CPCM). The charge transfer length (ΔL) and interfragment charge transfer (ΔQ) were calculated using the Multiwfn software package, and all calculations were performed using the BDF software package.
Collapse
Affiliation(s)
- Peng Cui
- School of New Materials and Shoes & Clothing Engineering, Liming Vocational University, Quanzhou, Fujian Province, China.
| | - Qiulan Wu
- School of New Materials and Shoes & Clothing Engineering, Liming Vocational University, Quanzhou, Fujian Province, China
| | - Zhiwei Li
- School of New Materials and Shoes & Clothing Engineering, Liming Vocational University, Quanzhou, Fujian Province, China
| |
Collapse
|
9
|
Di Grande S, Barone V. Toward Accurate Quantum Chemical Methods for Molecules of Increasing Dimension: The New Family of Pisa Composite Schemes. J Phys Chem A 2024; 128:4886-4900. [PMID: 38847454 DOI: 10.1021/acs.jpca.4c01673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The new versions of the Pisa composite scheme introduced in the present paper are based on the careful selection of different quantum chemical models for energies, geometries, and vibrational frequencies, with the aim of maximizing the accuracy of the overall description while retaining a reasonable cost for all the steps. In particular, the computation of accurate electronic energies has been further improved introducing more reliable complete basis set extrapolations and estimation of core-valence correlation, together with improved basis sets for third-row atoms. Furthermore, the reduced-cost frozen natural orbital (FNO) model has been introduced and validated for large molecules. Accurate molecular structures can be obtained avoiding complete basis set extrapolation and evaluating core-valence correlation at the MP2 level. Unfortunately, analytical gradients are not available for the FNO version of the model. Therefore, for large molecules, an accurate reduced-cost alternative is offered by evaluation of valence contributions with a double-hybrid functional in conjunction with the same MP2 contribution for core-valence correlation or by means of a one-parameter approximation. The same double-hybrid functional and basis set are employed to evaluate zero-point energies and partition functions. After the validation of the new models for small systems, a panel of molecular bricks of life has been used to analyze their performances for problems of current fundamental or technological interest. The fully black-box implementation of the computational workflow paves the way toward the accurate yet not prohibitively expensive study of medium- to large-sized molecules also by experimentally oriented researchers.
Collapse
Affiliation(s)
- Silvia Di Grande
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | | |
Collapse
|
10
|
Vigarani G, Marchini E, Previati E, Giorgini L, Zacchini S, Argazzi R, Massi M, Fiorini V, Caramori S, Stagni S. Designing Ionic Ir(III) Cyclometalated Complexes as Photocatalysts for Light Assisted ATRP of MMA. A Combined Experimental and Mechanistic Study. Chemistry 2024; 30:e202400393. [PMID: 38443315 DOI: 10.1002/chem.202400393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
A new family of ionic Ir(III) cyclometalated complexes with general formula [Ir(CN)2(NN)][Br], was designed and prepared to be assessed as photocalysts for the visible light assisted ATRP polymerization of MMA. To this purpose, our design strategy involved both: i) the decoration of the cyclometalating (CN) and the ancillary (NN) ligands with various electron withdrawing and/or electron donor substituents and, ii) the use of Br- as the counter anion for these cationic Ir(III) species. After an extensive screening in which the [Ir(CN)2(NN)][Br]-type compounds were compared to the model neutral complex fac-[Ir(ppy)3], the "fully" amino-substituted ion pairs abbreviated as [10][Br] and [11][Br], exhibited the best photocatalytic performances under irradiation with CFL lamps. It is worth noting that the outcomes of transient absorption spectroscopy (TAS) experiments combined with theoretical DFT calculations, enlightened the role played by the Ir(III) complexes in the mechanism of the photoATRP process, and suggested the rationalization of the different performances that were highlighted by our Ir(III) catalyst in the visible light assisted photopolymerization of MMA.
Collapse
Affiliation(s)
- Giulia Vigarani
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Edoardo Marchini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Eleonora Previati
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Loris Giorgini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Roberto Argazzi
- CNR-ISOF c/o Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Massimiliano Massi
- Department of Chemistry, Curtin University, Bentley, Western Australia, 6102, Australia
| | - Valentina Fiorini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Stefano Caramori
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Stefano Stagni
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| |
Collapse
|
11
|
Iuzzolino G, Perrella F, Valadan M, Petrone A, Altucci C, Rega N. Photophysics of a nucleic acid-protein crosslinking model strongly depends on solvation dynamics: an experimental and theoretical study. Phys Chem Chem Phys 2024; 26:11755-11769. [PMID: 38563904 DOI: 10.1039/d3cp06254f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We present a combined experimental and theoretical study of the photophysics of 5-benzyluracil (5BU) in methanol, which is a model system for interactions between nucleic acids and proteins. A molecular dynamics study of 5BU in solution through efficient DFT-based hybrid ab initio potentials revealed a remarkable conformational flexibility - allowing the population of two main conformers - as well as specific solute-solvent interactions, which both appear as relevant factors for the observed 5BU optical absorption properties. The simulated absorption spectrum, calculated on such an ensemble, enabled a molecular interpretation of the experimental UV-Vis lowest energy band, which is also involved in the induced photo-reactivity upon irradiation. In particular, the first two excited states (mainly involving the uracil moiety) both contribute to the 5BU lowest energy absorption. Moreover, as a key finding, the nature and brightness of such electronic transitions are strongly influenced by 5BU conformation and the microsolvation of its heteroatoms.
Collapse
Affiliation(s)
- Gabriele Iuzzolino
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
| | - Fulvio Perrella
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
| | - Mohammadhassan Valadan
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, via Pansini 5, Napoli I-80131, Italy
- Istituto Nazionale di Fisica Nucleare, Unità di Napoli, via Cintia 21, Napoli I-80126, Italy
| | - Alessio Petrone
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
- Istituto Nazionale di Fisica Nucleare, Unità di Napoli, via Cintia 21, Napoli I-80126, Italy
| | - Carlo Altucci
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, via Pansini 5, Napoli I-80131, Italy
- Istituto Nazionale di Fisica Nucleare, Unità di Napoli, via Cintia 21, Napoli I-80126, Italy
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello", URT UNINA, via Cintia 21, Napoli I-80126, Italy
| | - Nadia Rega
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
- Istituto Nazionale di Fisica Nucleare, Unità di Napoli, via Cintia 21, Napoli I-80126, Italy
| |
Collapse
|
12
|
Bols ML, Ma J, Rammal F, Plessers D, Wu X, Navarro-Jaén S, Heyer AJ, Sels BF, Solomon EI, Schoonheydt RA. In Situ UV-Vis-NIR Absorption Spectroscopy and Catalysis. Chem Rev 2024; 124:2352-2418. [PMID: 38408190 PMCID: PMC11809662 DOI: 10.1021/acs.chemrev.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This review highlights in situ UV-vis-NIR range absorption spectroscopy in catalysis. A variety of experimental techniques identifying reaction mechanisms, kinetics, and structural properties are discussed. Stopped flow techniques, use of laser pulses, and use of experimental perturbations are demonstrated for in situ studies of enzymatic, homogeneous, heterogeneous, and photocatalysis. They access different time scales and are applicable to different reaction systems and catalyst types. In photocatalysis, femto- and nanosecond resolved measurements through transient absorption are discussed for tracking excited states. UV-vis-NIR absorption spectroscopies for structural characterization are demonstrated especially for Cu and Fe exchanged zeolites and metalloenzymes. This requires combining different spectroscopies. Combining magnetic circular dichroism and resonance Raman spectroscopy is especially powerful. A multitude of phenomena can be tracked on transition metal catalysts on various supports, including changes in oxidation state, adsorptions, reactions, support interactions, surface plasmon resonances, and band gaps. Measurements of oxidation states, oxygen vacancies, and band gaps are shown on heterogeneous catalysts, especially for electrocatalysis. UV-vis-NIR absorption is burdened by broad absorption bands. Advanced analysis techniques enable the tracking of coking reactions on acid zeolites despite convoluted spectra. The value of UV-vis-NIR absorption spectroscopy to catalyst characterization and mechanistic investigation is clear but could be expanded.
Collapse
Affiliation(s)
- Max L Bols
- Laboratory for Chemical Technology (LCT), University of Ghent, Technologiepark Zwijnaarde 125, 9052 Ghent, Belgium
| | - Jing Ma
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Fatima Rammal
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Dieter Plessers
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xuejiao Wu
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Sara Navarro-Jaén
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Alexander J Heyer
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bert F Sels
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert A Schoonheydt
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
13
|
Martínez-Vollbert E, Philouze C, Cavignac T, Latouche C, Loiseau F, Lanoë PH. Neutral 2-phenylbenzimidazole-based iridium(III) complexes with picolinate ancillary ligand: tuning the emission properties by manipulating the substituent on the benzimidazole ring. Dalton Trans 2024; 53:4705-4718. [PMID: 38362807 DOI: 10.1039/d3dt03498d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We report the synthesis and characterization of ten neutral bisheteroleptic iridium(III) complexes with 2-phenylbenzimidazole cyclometallating ligand and picolinate as ancillary ligand. The 2-phenylbenzimidazole has been modified by selected substituents introduced on the cyclometallating ring and/or on the benzimidazole moiety. The integrity of the complexes has been assessed by NMR spectroscopy, by high-resolution mass spectrometry and by elemental analysis. The complexes are demonstrated to be highly phosphorescent at room temperature and a luminescence study with comprehensive ab initio calculations allow us to determine the lowest emitting excited state which depends on the substituent nature and its position on the cyclometallating ligand.
Collapse
Affiliation(s)
| | | | - Théo Cavignac
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France.
| | - Camille Latouche
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France.
- Insitut universitaire de France (IUF), France
| | | | | |
Collapse
|
14
|
Guerfi Z, Kribaa OK, Djouama H. Chemical-physical behavior of Hydroxyapatite: A modeling approach. J Mech Behav Biomed Mater 2024; 150:106229. [PMID: 38000164 DOI: 10.1016/j.jmbbm.2023.106229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Hydroxyapatite (HAp) is a ceramic composed of calcium phosphate, frequently employed as a bone substitute material due to its biocompatibility and bioactivity. Over the past century, there has been substantial attention in fields such as orthopedics and plastic surgery. Remarkably, synthetic HAp exhibits properties akin to those found in natural bone and teeth. Computational theoretical chemistry focuses on numerically computing molecular electronic structures and interactions. As chemistry education evolves, it's imperative to acknowledge the increasing significance of computational tools in research. Density Functional Theory (DFT) stands out as the most widely adopted method in contemporary computational chemistry. In this study, we synthesized Hydroxyapatite (HAp) via the double decomposition method using synthetic sources. The synthesized materials underwent thorough characterization, including X-ray Diffraction (XRD), UV-visible spectroscopy, and Fourier Transform Infrared (FTIR) spectroscopy under various conditions. Additionally, we performed quantum mechanical computations on the HAp molecule using density functional theory. Our results were then compared with experimental data. Our experimental findings highlight the successful synthesis of HAp, particularly under specific temperature conditions. Moreover, the quantum chemistry calculations exhibited excellent agreement with the experimental results, especially in terms of spectroscopic characterizations.
Collapse
Affiliation(s)
- Ziad Guerfi
- "LCA" Applied Chemistry Laboratory, Mohamed Khider Biskra University, Biskra, Algeria
| | - Oum Keltoum Kribaa
- "LCA" Applied Chemistry Laboratory, Mohamed Khider Biskra University, Biskra, Algeria.
| | - Hanane Djouama
- "LCA" Applied Chemistry Laboratory, Mohamed Khider Biskra University, Biskra, Algeria
| |
Collapse
|
15
|
Sarantou A, Tsipis A. Photocatalytic Reduction of CO 2 into CO with Cyclometalated Pt(II) Complexes of N^C^N Pincer Dipyridylbenzene Ligands: A DFT Study. Molecules 2024; 29:403. [PMID: 38257316 PMCID: PMC10820273 DOI: 10.3390/molecules29020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
In this work, density functional theory (DFT) calculations were employed to study the photocatalytic reduction of CO2 into CO using a series of Pt(II) square planar complexes with the general formula [Pt(5-R-dpb)Cl] (dpb = 1,3-di(2-pyridyl)benzene anion, R = H, N,N-dimethylaniline,T thiophene, diazaborinine). The CO2-into-CO conversion process is thought to proceed via two main steps, namely the photocatalytic/reduction step and the main catalytic step. The simulated absorption spectra exhibit strong bands in the range 280-460 nm of the UV-Vis region. Reductive quenching of the T1 state of the complexes under study is expected to be favorable since the calculated excited state redox potentials for the reaction with sacrificial electron donors are highly positive. The redox potentials reveal that the reductive quenching of the T1 state, important to the overall process, could be modulated by suitable changes in the N^C^N pincer ligands. The CO2 fixation and activation by the three coordinated Pt(II) catalytically active species are predicted to be favorable, with the Pt-CO2 bond dissociation energies D0 in the range of -36.9--10.3 kcal/mol. The nature of the Pt-CO2 bond of the Pt(II) square planar intermediates is complex, with covalent, hyperconjugative and H-bonding interactions prevailing over the repulsive electrostatic interactions. The main catalytic cycle is estimated to be a favorable exergonic process.
Collapse
Affiliation(s)
| | - Athanassios Tsipis
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
16
|
Yang G, Shillito GE, Zens C, Dietzek-Ivanšić B, Kupfer S. The three kingdoms-Photoinduced electron transfer cascades controlled by electronic couplings. J Chem Phys 2023; 159:024109. [PMID: 37428052 DOI: 10.1063/5.0156279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Excited states are the key species in photocatalysis, while the critical parameters that govern their applications are (i) excitation energy, (ii) accessibility, and (iii) lifetime. However, in molecular transition metal-based photosensitizers, there is a design tension between the creation of long-lived excited (triplet), e.g., metal-to-ligand charge transfer (3MLCT) states and the population of such states. Long-lived triplet states have low spin-orbit coupling (SOC) and hence their population is low. Thus, a long-lived triplet state can be populated but inefficiently. If the SOC is increased, the triplet state population efficiency is improved-coming at the cost of decreasing the lifetime. A promising strategy to isolate the triplet excited state away from the metal after intersystem crossing (ISC) involves the combination of transition metal complex and an organic donor/acceptor group. Here, we elucidate the excited state branching processes in a series of Ru(II)-terpyridyl push-pull triads by quantum chemical simulations. Scalar-relativistic time-dependent density theory simulations reveal that efficient ISC takes place along 1/3MLCT gateway states. Subsequently, competitive electron transfer (ET) pathways involving the organic chromophore, i.e., 10-methylphenothiazinyl and the terpyridyl ligands are available. The kinetics of the underlying ET processes were investigated within the semiclassical Marcus picture and along efficient internal reaction coordinates that connect the respective photoredox intermediates. The key parameter that governs the population transfer away from the metal toward the organic chromophore either by means of ligand-to-ligand (3LLCT; weakly coupled) or intra-ligand charge transfer (3ILCT; strongly coupled) states was determined to be the magnitude of the involved electronic coupling.
Collapse
Affiliation(s)
- Guangjun Yang
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Georgina E Shillito
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Clara Zens
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT) e.V. Department Functional Interfaces, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
17
|
Tauchi D, Koida T, Nojima Y, Hasegawa M, Mazaki Y, Inagaki A, Sugiura KI, Nagaya Y, Tsubaki K, Shiga T, Nagata Y, Nishikawa H. Aggregation-induced circularly polarized phosphorescence of Pt(II) complexes with an axially chiral BINOL ligand. Chem Commun (Camb) 2023; 59:4004-4007. [PMID: 36917013 DOI: 10.1039/d2cc06198h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
A pair of chiral Pt(II) complexes coordinated by simple BINOL and bipyridine ligands displaying aggregation-induced phosphorescence and circularly polarized luminescence were characterized by X-ray crystallography and absorption and emission spectroscopies. The emission of the powder sample was reddish whereas the thin film dispersed in PMMA (fPf = 1 wt%) exhibited a white emission.
Collapse
Affiliation(s)
- Daiki Tauchi
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan.
| | - Taiki Koida
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan.
| | - Yuki Nojima
- Graduate School of Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Masahi Hasegawa
- Graduate School of Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Yasuhiro Mazaki
- Graduate School of Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Akiko Inagaki
- Faculty of Science and Technology, Seikei University, Tokyo, 180-8633, Japan
| | - Ken-Ichi Sugiura
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Yuki Nagaya
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Kazunori Tsubaki
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Takuya Shiga
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Yuuya Nagata
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Hiroyuki Nishikawa
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan.
| |
Collapse
|
18
|
Mackenzie CFR, Kwak SY, Kim S, Zysman-Colman E. The design and synthesis of green emissive iridium(III) complexes guided by calculations of the vibrationally-resolved emission spectra. Dalton Trans 2023; 52:4112-4121. [PMID: 36883433 DOI: 10.1039/d3dt00304c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A key challenge in developing emissive materials for organic light-emitting diodes is to optimize their colour saturation, which means targeting narrowband emitters. In this combined theoretical and experimental study, we investigate the use of heavy atoms in the form of trimethylsilyl groups as a tool to reduce the intensity of the vibrations in the 2-phenylpyridinato ligands of emissive iridium(III) complexes that contribute to the vibrationally coupled modes that broaden the emission profile. An underutilised computational technique, Frank-Condon vibrationally coupled electronic spectral modelling, was used to identify the key vibrational modes that contribute to the broadening of the emission spectra in known benchmark green-emitting iridium(III) complexes. Based on these results, a family of eight new green-emitting iridium complexes containing trimethylsilyl groups substituted at different positions of the cyclometalating ligands has been prepared to explore the impact that these substituents have on reducing the intensity of the vibrations and the resulting reduction in the contribution of vibrationally coupled emission modes to the shape of the emission spectra. We have demonstrated that locating a trimethylsilyl group at the N4 or N5 position of the 2-phenylpyridine ligand damps the vibrational modes of the iridium complex and provides a modest narrowing of the emission spectrum of 8-9 nm (or 350 cm-1). The strong correlation between experimental and calculated emission spectra highlights the utility of this computational method to understand how the vibrational modes contribute to the profile of the emission spectra in phosphorescent iridium(III) emitters.
Collapse
Affiliation(s)
- Campbell Frank Ross Mackenzie
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
| | - Seung-Yeon Kwak
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Suwon, Gyeonggi-do 16678, Republic of Korea
| | - Sungmin Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Suwon, Gyeonggi-do 16678, Republic of Korea
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
19
|
Creutzberg J, Hedegård ED. A method to capture the large relativistic and solvent effects on the UV-vis spectra of photo-activated metal complexes. Phys Chem Chem Phys 2023; 25:6153-6163. [PMID: 36752122 DOI: 10.1039/d2cp04937f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have recently developed a method based on relativistic time-dependent density functional theory (TD-DFT) that allows the calculation of electronic spectra in solution (Creutzberg, Hedegård, J. Chem. Theory Comput.18, 2022, 3671). This method treats the solvent explicitly with a classical, polarizable embedding (PE) description. Furthermore, it employs the complex polarization propagator (CPP) formalism which allows calculations on complexes with a dense population of electronic states (such complexes are known to be problematic for conventional TD-DFT). Here, we employ this method to investigate both the dynamic and electronic effects of the solvent for the excited electronic states of trans-trans-trans-[Pt(N3)2(OH)2(NH3)2] in aqueous solution. This complex decomposes into species harmful to cancer cells under light irradiation. Thus, understanding its photo-physical properties may lead to a more efficient method to battle cancer. We quantify the effect of the underlying structure and dynamics by classical molecular mechanics simulations, refined with a subsequent DFT or semi-empirical optimization on a cluster. Moreover, we quantify the effect of employing different methods to set up the solvated system, e.g., how sensitive the results are to the method used for the refinement, and how large a solvent shell that is required. The electronic solvent effect is always included through a PE potential.
Collapse
Affiliation(s)
- Joel Creutzberg
- Division of Theoretical Chemistry, Lund University, Lund, Sweden.
| | - Erik Donovan Hedegård
- Division of Theoretical Chemistry, Lund University, Lund, Sweden. .,Department of Physics, Chemistry and Pharmacy, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
20
|
Khaoua O, Benbellat N, Zeroual S, Mouffouk S, Golhen S, Gouasmia A, Chermette H, Haba H. Combined experimental, computational studies (synthesis, crystal structural, DFT calculations, spectral analysis) and biological evaluation of the new homonuclear complex Di-µ-benzoato-bis [benzoatodipyridine-cobalt (II)]. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Alp M, Yurdakul S. Experimental and Theoretical Vibrational Spectroscopic, Quantum Chemical Analysis, and Electronic Properties Investigations of Novel Ruthenium Complexes (RuLCl2.2H2O; L: 4,4´-Dimethoxy-2,2´-Bipyridine, 4,4´-Dimethyl-2,2´-Bipyridine). Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Hu W, Wang D, Ma Q, Reinhart BJ, Zhang X, Huang J. The Impact of Axial Ligation on the Excited State Dynamics of Cobalt(II) Phthalocyanine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
23
|
Moss A, Jang Y, Arvidson J, Nesterov VN, D'Souza F, Wang H. Aromatic heterobicycle-fused porphyrins: impact on aromaticity and excited state electron transfer leading to long-lived charge separation. Chem Sci 2022; 13:9880-9890. [PMID: 36199634 PMCID: PMC9431455 DOI: 10.1039/d2sc03238d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
A new synthetic method to fuse benzo[4,5]imidazo[2,1-a]isoindole to the porphyrin periphery at the β,β-positions has been developed, and its impact on the aromaticity and electronic structures is investigated. Reactivity investigation of the fused benzoimidazo-isoindole component reveals fluorescence quenching of a zinc porphyrin (AMIm-2) upon treatment with a Brønsted acid. The reaction of the zinc porphyrin (AMIm-2) with methyl iodide initiated a new organic transformation, resulting in the ring-opening of isoindole with the formation of an aldehyde and dimethylation of the benzoimidazo component. The fused benzoimidazo-isoindole component acted as a good ligand to bind platinum(ii), forming novel homobimetallic and heterobimetallic porphyrin complexes. The fusion of benzoimidazo-isoindole on the porphyrin ring resulted in bathochromically shifted absorptions and emissions, reflecting the extended conjugation of the porphyrin π-system. Time-resolved emission and transient absorption spectroscopy revealed stable excited state species of the benzoimidazo-isoindole fused porphyrins. Zinc porphyrin AMIm-2 promoted excited state electron transfer upon coordinating with an electron acceptor, C60, generating a long-lived charge-separated state, in the order of 37.4 μs. The formation of the exceptionally long-lived charge-separated state is attributed to the involvement of both singlet and triplet excited states of AMIm-2, which is rarely reported in porphyrins.
Collapse
Affiliation(s)
- Austen Moss
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Youngwoo Jang
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Jacob Arvidson
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Vladimir N Nesterov
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Hong Wang
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| |
Collapse
|
24
|
Redjem N, Lakehal S, Lakehal A, Morell C, Merzoud L, Chermette H. Reactivity and a Charge-Transfer Model Analysis in Aminopolycarboxylic-Metal Complexes. Inorg Chem 2022; 61:4673-4680. [PMID: 35254062 DOI: 10.1021/acs.inorgchem.1c03860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present work, we have calculated several density functional theory (DFT) reactivity descriptors for the aminopolycarboxylate (APC) acids at the B3LYP/6311++G (d,p) levels of theory, aiming to analyze their reactivity. Reactivity descriptors such as ionization energy, molecular hardness, electrophilicity, and condensed Fukui function local indices have been determined to predict the reactivity of APCs. The influence of the solvent was taken into account by employing the CPCM model. The results indicate that the solvation slightly modifies the tendency of the reactivity of the APCs studied. On the other hand, we applied a global and local charge-transfer partitioning model, which introduces two charge-transfer channels [one for accepting electrons (electrophilic) and another for donating one (nucleophilic)] to the complexation reaction of a set of APC acids with transition metals (Mn, Co, and Ni targets enlarged by Fe, Cu, and Zn). The correlation between the charges obtained for the interaction between APC acids and transition metal stability constants provides support for their interpretation as measures of the electrophilicity and nucleophilicity of a chemical species and, at the same time, allows one to describe the donation and back-donation processes in terms of the DFT of chemical reactivity. Also, the application of dual descriptors for these acids provides valuable information concerning the atoms in the reactants playing the most important roles in the reaction, thus helping to improve our understanding of the reaction under study.
Collapse
Affiliation(s)
- Nawel Redjem
- Laboratoire de Chimie Appliquée et Technologie des Matériaux, Université Larbi Ben M'hidi Oum el Bouaghi, 04000 Oum El Bouaghi, Algeria
| | - Salima Lakehal
- Laboratoire de Chimie des Matériaux et des Vivants: Activité & Réactivité, Université Batna 1, 05000 Batna, Algeria.,Institut des Sciences de la Terre et de l'univers, Université de Batna 2, 05001 Batna, Algeria
| | - Aicha Lakehal
- Faculté des Sciences Techniques, Université de Batna 2, 05000 Batna, Algeria
| | - Christophe Morell
- Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5280, Institut des Sciences Analytiques, 69622 Villeurbanne Cedex, France
| | - Lynda Merzoud
- Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5280, Institut des Sciences Analytiques, 69622 Villeurbanne Cedex, France
| | - Henry Chermette
- Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5280, Institut des Sciences Analytiques, 69622 Villeurbanne Cedex, France
| |
Collapse
|
25
|
Theoretical investigation on orange-emitting cyclometalated platinum (II) complexes containing organosilyl/organocarbon-substituted 2-(2-thienyl)pyridine ligands. Photochem Photobiol Sci 2022; 21:1041-1053. [PMID: 35247170 DOI: 10.1007/s43630-022-00192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/17/2022] [Indexed: 10/18/2022]
Abstract
This paper presents a theoretical investigation of structural, optical, and phosphorescence properties of four cyclometalated Pt(II) complexes containing substituted 2-(2-thienyl)pyridine ligands using DFT and TD-DFT methods. Geometrical parameters of ground states were calculated and compared with available experimental data. Electronic absorptions were studied and assigned in terms of natural transition orbitals. Phosphorescence spectra have been simulated with adiabatic Hessian and adiabatic shift approaches according to the Franck-Condon approximation. Theoretical and experimental results agree and show that the four complexes exhibit two intense bands in orange region. Main normal modes involved in phosphorescence bands were analyzed and assigned.
Collapse
|
26
|
Kupfer S, Wächtler M, Guthmuller J. Light‐Driven Multi‐Charge Separation in a Push‐Pull Ruthenium‐based Photosensitizer – Assessed by RASSCF and TDDFT Simulations. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Stephan Kupfer
- Friedrich Schiller Universitat Jena Chemisch Geowissenschaftliche Fakultat Institute of Physical Chemistry Helmholtzweg 1 07743 Jena GERMANY
| | - Maria Wächtler
- Leibniz Institute of Photonic Technology: Leibniz-Institut fur Photonische Technologien Functional Interfaces GERMANY
| | - Julien Guthmuller
- Gdansk University of Technology: Politechnika Gdanska Institute of Physics and Computer Science POLAND
| |
Collapse
|
27
|
Martìnez-Vollbert E, Ciambrone C, Lafargue-Dit-Hauret W, Latouche C, Loiseau F, Lanoë PH. Bis-Heteroleptic Cationic Iridium(III) Complexes Featuring Cyclometalating 2-Phenylbenzimidazole Ligands: A Combined Experimental and Theoretical Study. Inorg Chem 2022; 61:3033-3049. [PMID: 35143722 DOI: 10.1021/acs.inorgchem.1c02968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this report, we investigate a new family of cationic iridium(III) complexes featuring the cyclometalating ligand 2-phenylbenzimidazole and ancillary ligand 4,4'-dimethyl-2,2'-bipyridine. Our benchmark complex IrL12 (L1 = 2-phenylbenzimidazole) displays emission properties similar to those of the archetypical complex 2,2'-dipyridylbis(2',4'-phenylpyridine)iridium(III) in deaerated CH3CN (Φ = 0.20, λem = 584 nm and Φ = 0.14, λem = 585 nm, respectively) but exhibits a higher photoluminescence quantum yield in deaerated CH2Cl2 (Φ = 0.32, λem = 566 nm and Φ = 0.20, λem = 595 nm, respectively) and especially a lower nonradiative constant (knr = 6.6 × 105 s-1 vs knr = 1.4 × 106 s-1, respectively). As a primary investigation, we explored the influence of the introduction of electron-donating and electron-withdrawing groups on the benzimidazole moiety and the synergetic effect of the substitution of the cyclometalating phenyl moiety at the para position with the same substituents. The emission energy displays very good correlation with the Hammett constants of the introduced substituents as well as with ΔEredox values, which allow us to ascribe the phosphorescence of these series to emanate mainly from a mixed metal/ligand to ligand charge transfer triplet excited state (3M/LLCT*). Two complexes (IrL52 and IrL82) display a switch of the lowest triplet excited state from 3M/LLCT* to ligand centered (3LC*), from the less polar CH2Cl2 to the more polar CH3CN. The observed results are supported by (TD)-DFT computations considering the vibrational contributions to the electronic transitions. Chromaticity diagrams based on the maximum emission wavelength of the recorded and simulated phosphorescence spectra demonstrate the strong promise of our complexes as emitting materials, together with the very good agreement between experimental and theoretical results.
Collapse
Affiliation(s)
| | | | | | - Camille Latouche
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | | | | |
Collapse
|
28
|
Nguyen TLA, Dao DQ. From green to near-infrared emission of cyclometalated Iridium (III) complexes modified with flavonoids: a theoretical insight. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2026509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, Danang, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Danang, Vietnam
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Danang, Vietnam
| |
Collapse
|
29
|
Mendes RA, Haiduke RLA. Performance of new exchange–correlation functionals in providing vertical excitation energies of metal complexes. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02844-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Soriano-Díaz I, Ortí E, Giussani A. On the Importance of Ligand-Centered Excited States in the Emission of Cyclometalated Ir(III) Complexes. Inorg Chem 2021; 60:13222-13232. [PMID: 34492762 PMCID: PMC8424641 DOI: 10.1021/acs.inorgchem.1c01604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
The photophysical
behavior of the cyclometalating Ir(III) complexes
[Ir(ppy)2(bpy)]+, where Hppy is 2-phenylpyridine
and bpy is 2,2′-bipyridine (complex 1), and [Ir(diFppy)2(dtb-bpy)]+, where diFppy is 2-(2,4-difluorophenyl)pyridine
and dtb-bpy is 4,4′-di-tert-butyl-2,2′-bipyridine
(complex 2), has been theoretically investigated by performing
density functional theory calculations. The two complexes share the
same molecular skeleton, complex 2 being derived from
complex 1 through the addition of fluoro and tert-butyl substituents, but present notable differences
in their photophysical properties. The remarkable difference in their
emission quantum yields (0.196 for complex 1 in dichloromethane
and 0.71 for complex 2 in acetonitrile) has been evaluated
by characterizing both radiative and nonradiative decay paths. It
has emerged that the probability of decaying through the nonradiative
triplet metal-centered state, normally associated with the loss of
the emission quantum yield, does not appear to be the reason behind
the reported substantially different emission efficiency. A more critical
factor appears to be the ability of complex 2 to emit
from both the usual metal-to-ligand charge-transfer state and from
two additional ligand-centered states, as supported by the fact that
the respective minima belong to the potential energy surface of the
lowest triplet T1 state and that their phosphorescence
lifetimes are in the same order of magnitude. In contrast, the emission
of complex 1 can be originated only from the metal-to-ligand
charge-transfer state, being the only emissive T1 minimum.
The results constitute a significant case in which the emission from
ligand-centered states is the key for determining the high emission
quantum yield of a complex. The
reasons behind the significant increase in the emission
quantum yield of the [Ir(diFppy)2(dtb-bpy)]+ complex with respect to [Ir(ppy)2(bpy)]+ are
rationalized on the basis of DFT, TDDFT, and TDDFT-SOC calculations,
revealing the key role that low-lying LC states can play in the emission
properties of the complex.
Collapse
Affiliation(s)
- Iván Soriano-Díaz
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Angelo Giussani
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain
| |
Collapse
|
31
|
|
32
|
Zobel JP, González L. The Quest to Simulate Excited-State Dynamics of Transition Metal Complexes. JACS AU 2021; 1:1116-1140. [PMID: 34467353 PMCID: PMC8397362 DOI: 10.1021/jacsau.1c00252] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 05/15/2023]
Abstract
This Perspective describes current computational efforts in the field of simulating photodynamics of transition metal complexes. We present the typical workflows and feature the strengths and limitations of the different contemporary approaches. From electronic structure methods suitable to describe transition metal complexes to approaches able to simulate their nuclear dynamics under the effect of light, we give particular attention to build a bridge between theory and experiment by critically discussing the different models commonly adopted in the interpretation of spectroscopic experiments and the simulation of particular observables. Thereby, we review all the studies of excited-state dynamics on transition metal complexes, both in gas phase and in solution from reduced to full dimensionality.
Collapse
Affiliation(s)
- J. Patrick Zobel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19, 1090 Vienna Austria
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19, 1090 Vienna Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währingerstr. 19, 1090 Vienna Austria
| |
Collapse
|
33
|
Mangold L, Halleux H, Leclerc S, Moncomble A, Cote G, Chagnes A. New insights for titanium(iv) speciation in acidic media based on UV-visible and 31P NMR spectroscopies and molecular modeling. RSC Adv 2021; 11:27059-27073. [PMID: 35480018 PMCID: PMC9037697 DOI: 10.1039/d1ra04284j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/30/2021] [Indexed: 11/21/2022] Open
Abstract
Titanium chemistry in aqueous acidic media has been extensively investigated over the last decades. Hydrolyzed species such as Ti(OH)3+, TiO2+, Ti(OH)22+ or Ti(OH)3+ have been identified and their equilibria have been studied in nitric and perchloric acid. A predominance of the divalent cations was found for low pH (i.e., pH <2). Nonetheless, recent literature reports the existence of small titanium oxo-clusters in aqueous acidic media for large titanium(iv) concentration (typically., >0.1 mol L−1), as stable precursors for the formation of condensed titanium dioxide. The present paper reconsiders firstly previous knowledge about the speciation of titanium(iv) in non-complexing acidic media by giving evidence for the presence of polynuclear hydrolyzed species, even at very low Ti(iv) concentration (i.e., typically <0.1 mmol L−1). UV-visible absorbance spectra recorded for diluted nitric acid solutions (a model of non-complexing acidic medium) containing titanium(iv) were compared to time-dependent density functional theory (TD-DFT) predicted excitation energies. Experimental and predicted maximal absorbance wavelengths showed significantly improved matches when polynuclear species were considered in TD-DFT calculation. Then, 0.1–12.7 mol L−1 phosphoric acid solutions containing titanium(iv) were studied by means of spectroscopic techniques (UV-visible, NMR) in order to identify qualitatively the presence of titanium(iv) complexes and to link this speciation to the acid concentration. Two different titanium(iv) orthophosphate complexes, potentially polynuclear, were detected, and the presence of free titanium(iv) is also expected for low phosphoric acid concentration (i.e., <0.1 mol L−1). A general complexation scheme for a large range of H3PO4 concentration was thus formulated. A spectroscopic study of titanium(iv) speciation in diluted nitric acid (model of non-complexing medium) and 0.1–12.7 mol L−1 phosphoric acid aqueous solutions. Evidence for the presence of polynuclear species is supported by molecular modeling.![]()
Collapse
Affiliation(s)
- Lucas Mangold
- Université de Lorraine, CNRS, GeoRessources F-54000 Nancy France .,Prayon Rue Joseph Wauters 144 à B-4480 Engis Belgium
| | | | | | - Aurélien Moncomble
- Univ. Lille, CNRS, UMR 8516, LASIRE-Laboratoire Avancé de Spectroscopie pour Les Interactions La Réactivité et L'Environnement F-59000 Lille France
| | - Gérard Cote
- PSL Research University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie-Paris (IRCP) F-75005 Paris France
| | | |
Collapse
|
34
|
Revisited the mechanism of cobalt(III) catalyzed cyanation of arenes and heteroarenes: A DFT study. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Eskelinen T, Buss S, Petrovskii SK, Grachova EV, Krause M, Kletsch L, Klein A, Strassert CA, Koshevoy IO, Hirva P. Photophysics and Excited State Dynamics of Cyclometalated [M(Phbpy)(CN)] (M = Ni, Pd, Pt) Complexes: A Theoretical and Experimental Study. Inorg Chem 2021; 60:8777-8789. [PMID: 34097403 DOI: 10.1021/acs.inorgchem.1c00680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclometalated complexes [M(Phbpy)(CN)] (HPhbpy = 6-phenyl-2,2'-bipyridine) of the group 10 metals (Ni, Pd, and Pt) bearing a carbanionic -C∧N∧N pincer ligand were synthesized and studied in a combined experimental and computational DFT approach. All three complexes were crystallographically characterized showing closely packed dimers with head-to-tail stacking and short metal-metal contacts in the solid state. The computational models for geometries, excited states, and electronic transitions addressed both monomeric (Ni-mono, Pd-mono, and Pt-mono) and dimeric (Ni-dim, Pd-dim, and Pt-dim) entities. Photophysical properties and excited state dynamics of all title complexes were investigated in solution and in the solid at 298 and 77 K. [Ni(Phbpy)(CN)] and [Pd(Phbpy)(CN)] are virtually nonemissive in solution at 298 K, whereas [Pt(Phbpy)(CN)] shows phosphorescence in CH2Cl2 (DCM) solution (λem = 562 nm) stemming from a mixed 3MLCT/ILCT (metal-to-ligand charge transfer/intraligand charge transfer) state. At 77 K in a glassy frozen DCM:MeOH matrix, [Pd(Phbpy)(CN)] shows a remarkable emission (λem = 571 nm) with a photoluminescence quantum yield reaching almost unity, whereas [Ni(Phbpy)(CN)] is again nonemissive. Calculations on the monomeric models M-mono show that low-lying metal-centered states (MC, i.e., d-d* configuration) with dissociative character quench the photoluminescence. In the solid state, the complexes [M(Phbpy)(CN)] show defined photoluminescence bands (λem = 561 nm for Pd and 701 nm for Pt). Calculations on the dimeric models M-dim shows that the axial M···M interactions alter the photophysical properties of Pd-dim and Pt-dim toward MMLCT (metal-metal-to-ligand charge transfer) excited states with Pd-dim showing temperature-dependent emission lifetimes, suggesting thermally activated delayed fluorescence, whereas Pt-dim displayed phosphorescence with excimeric character. The metal-metal interactions were analyzed in detail with the quantum theory of atoms in molecules approach.
Collapse
Affiliation(s)
- Toni Eskelinen
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80100 Joensuu, Finland
| | - Stefan Buss
- CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Heisenbergstr. 11, D-48149 Münster, Germany
| | - Stanislav K Petrovskii
- Department of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Elena V Grachova
- Department of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Maren Krause
- Department of Chemistry, University of Cologne, D-50939 Cologne, Germany
| | - Lukas Kletsch
- Department of Chemistry, University of Cologne, D-50939 Cologne, Germany
| | - Axel Klein
- Department of Chemistry, University of Cologne, D-50939 Cologne, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstr. 28/30, D-48149 Münster, Germany.,CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Heisenbergstr. 11, D-48149 Münster, Germany
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80100 Joensuu, Finland
| | - Pipsa Hirva
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80100 Joensuu, Finland
| |
Collapse
|
36
|
Petrov AI, Lutoshkin MA. TD-DFT assessment of UV-vis spectra palladium and platinum complexes with thiols and disulfides. J Mol Model 2021; 27:152. [PMID: 33950302 DOI: 10.1007/s00894-021-04781-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
Time-dependent density functional theory (TD-DFT) and spectrophotometric methods were used for speciation analysis in systems disulfides (cystine, cystamine, homocystine, 3,3-dithiodipropionic acid) - [PdCl4]2- or [PtCl4]2-. We use the M06-2X and CAM-B3LYP density functionals with Def2-SVP basis set to reproduce the experimental UV-vis spectra; the polarized continuum solvation model (PCM) was fitted to take into account solvation effects of the medium (water). Used methods have shown the good agrees with the experiment - theoretical values of transition energies differ from real parameters within ±0.15 eV for functional CAM-B3LYP. Binuclear disulfide complexes of Pd(II) with cystine and cystamine have form S,N-coordination sites, instead of S,S-conformation. It was shown that Pd(II) thiolate complexes formed by cleavage of the disulfide bond exist as [PdCl3L] and [Pd2S2L2]. Pt(II)-disulfide systems have confirmed the presence of [Pt2Cl6(R-SS-R)] and [PtCl4(S-R)] complex species. The DFT/CAM-B3LYP/Def2-SVP/SMD level can be recommended for theoretical estimations of absorption spectra of complexes of palladium or platinum and sulfur-containing ligands.
Collapse
Affiliation(s)
- Alexander I Petrov
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russian Federation.
| | - Maxim A Lutoshkin
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russian Federation.,Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Institut de Recherches sur la Catalyse et l'Environnement de Lyon, Villeurbanne, France
| |
Collapse
|
37
|
Saha R, Mondal S, Chatterjee A, Pal P, Chakrabarty K, Das GK. Revisited the reaction mechanism of cobalt catalyzed [3+2] cycloaddition reactions between the derivatives of cyclopropanols and allenes: A DFT study. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Geometric, optical, and phosphorescent properties of cationic Ir(III) and Rh(III) complexes with cyclometalated ligands: DFT/TDDFT investigations. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02750-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Curtis K, Panthi D, Odoh SO. Time-Dependent Density Functional Theory Study of Copper(II) Oxo Active Sites for Methane-to-Methanol Conversion in Zeolites. Inorg Chem 2021; 60:1149-1159. [PMID: 33399001 DOI: 10.1021/acs.inorgchem.0c03279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Copper-exchanged zeolites are useful materials for step-wise methane-to-methanol conversion (MMC). However, methanol yields on copper-exchanged zeolites are often modest, spurring interest in the development of active-site species that are activated at moderate temperatures, afford greater yields, and provide excellent methanol selectivities. Ultraviolet-visible (UV-vis) spectroscopy is a major tool for characterizing the active-sites and their evolution during the step-wise MMC process. However, computation of the UV-vis spectra of the copper-oxo active sites using Tamm-Dancoff time-dependent density functional theory (TDA-DFT) can be quite problematic. This has led to utilization of expensive methods based on multireference approaches, Green functions, and the Bethe-Salpeter equation. In this work, we examined the optical spectra of [CuO]+, [Cu2O]2+, [Cu2O2]2+, and [Cu3O3]2+ species implicated in MMC in zeolites. For the larger species, we examined how agreement with experimental data is improved with increasingly larger cluster models. For [CuO]+, we compared TDA-DFT against restricted active space 2nd-order perturbation theory, RASPT2. We found that signature peaks for [CuO]+ have multireference behavior. The excited states have many configuration state functions with a double excitation character. These effects are likely responsible for the poor utility of conventional TDA-DFT methods. Indeed, we obtain good agreement with experimental data and RASPT2 after accounting for 2h/2p excitations within TDA-DFT with a previously described configuration interaction singles and doubles, CIS(D)-style scheme. This was the case for [CuO]+, [Cu2O]2+, as well as a [Cu2O2]2+ species. Using a long-range corrected double-hybrid, ωB2PLYP, we provide for the first time computational evidence for the experimental UV-vis spectrum of the [Cu3O3]2+ active site motif.
Collapse
Affiliation(s)
- Kevin Curtis
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Dipak Panthi
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| |
Collapse
|
40
|
Schira R, Latouche C. DFT vs. TDDFT vs. TDA to simulate phosphorescence spectra of Pt- and Ir-based complexes. Dalton Trans 2021; 50:746-753. [DOI: 10.1039/d0dt03614e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A quantum investigation of the optical (mainly luminescence) properties of twelve transition metal complexes using DFT, TDDFT and TDA computations is presented. Unrestricted DFT and TDA outperform TDDFT for the investigated complexes especially when an Ir centre is present.
Collapse
Affiliation(s)
- Romain Schira
- Université de Nantes
- CNRS
- Institut des Matériaux Jean Rouxel
- IMN
- F-44000 Nantes
| | - Camille Latouche
- Université de Nantes
- CNRS
- Institut des Matériaux Jean Rouxel
- IMN
- F-44000 Nantes
| |
Collapse
|
41
|
Shahsavari HR, Paziresh S. The impact of cyclometalated and phosphine ligands on the luminescence properties of cycloplatinated( ii) complexes: photophysical and theoretical investigations. NEW J CHEM 2021. [DOI: 10.1039/d1nj04242d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of various C^N cyclometalated and phosphine ligands on the photophysical properties of cycloplatinated(ii) complexes were investigated experimentally and theoretically.
Collapse
Affiliation(s)
- Hamid R. Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Sareh Paziresh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| |
Collapse
|
42
|
Glebov EM, Matveeva SG, Pozdnyakov IP, Grivin VP, Plyusnin VF, Vasilchenko DB, Romanova TE, Melnikov AA, Chekalin SV, Fedunov RG. Photochemistry of hexachloroosmate(IV) in ethanol. Photochem Photobiol Sci 2020; 19:1569-1579. [PMID: 33073834 DOI: 10.1039/d0pp00244e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The photochemistry of the OsIVCl62- complex in ethanol was studied by means of stationary photolysis, nanosecond laser flash photolysis, ultrafast pump-probe spectroscopy and quantum chemistry. The direction of the photochemical process was found to be wavelength-dependent. Irradiation in the region of the d-d and LMCT bands results in the photosolvation (with the wavelength-dependent quantum yield) and photoreduction of Os(iv) to Os(iii), correspondingly. The characteristic time of photosolvation is ca. 40 ps. Photoreduction occurs in the micro- and millisecond time domains via several Os(iii) intermediates. The nature of intermediates and the possible mechanisms of photoreduction are discussed. We believe that the lability of the photochemically produced Os(iv) and Os(iii) intermediates determines the synthetic potential of OsIVCl62- photochemistry.
Collapse
Affiliation(s)
- Evgeni M Glebov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation. and Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation
| | - Svetlana G Matveeva
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation.
| | - Ivan P Pozdnyakov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation. and Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation
| | - Vjacheslav P Grivin
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation. and Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation
| | - Victor F Plyusnin
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation. and Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation
| | - Danila B Vasilchenko
- A.V. Nikolaev Institute of Inorganic Chemistry, 3 Lavrentyev Ave., 630090, Novosibirsk, Russian Federation. and Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation
| | - Tamara E Romanova
- A.V. Nikolaev Institute of Inorganic Chemistry, 3 Lavrentyev Ave., 630090, Novosibirsk, Russian Federation. and Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation
| | - Alexei A Melnikov
- Institute of Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya Str., 119333, Troitsk, Moscow, Russian Federation. and Faculty of Physics, National Research University Higher School of Economics, 20 Myasnitskaya Str., 101000 Moscow, Russian Federation
| | - Sergey V Chekalin
- Institute of Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya Str., 119333, Troitsk, Moscow, Russian Federation.
| | - Roman G Fedunov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation.
| |
Collapse
|
43
|
Roque JA, Barrett PC, Cole HD, Lifshits LM, Bradner E, Shi G, von Dohlen D, Kim S, Russo N, Deep G, Cameron CG, Alberto ME, McFarland SA. Os(II) Oligothienyl Complexes as a Hypoxia-Active Photosensitizer Class for Photodynamic Therapy. Inorg Chem 2020; 59:16341-16360. [PMID: 33126792 PMCID: PMC7669743 DOI: 10.1021/acs.inorgchem.0c02137] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hypoxia presents a challenge to anticancer therapy, reducing the efficacy of many available treatments. Photodynamic therapy is particularly susceptible to hypoxia, given that its mechanism relies on oxygen. Herein, we introduce two new osmium-based polypyridyl photosensitizers that are active in hypoxia. The lead compounds emerged from a systematic study of two Os(II) polypyridyl families derived from 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (dmb) as coligands combined with imidazo[4,5-f][1,10]phenanthroline ligands tethered to n = 0-4 thiophenes (IP-nT). The compounds were characterized and investigated for their spectroscopic and (photo)biological activities. The two hypoxia-active Os(II) photosensitizers had n = 4 thiophenes, with the bpy analogue 1-4T being the most potent. In normoxia, 1-4T had low nanomolar activity (half-maximal effective concentration (EC50) = 1-13 nM) with phototherapeutic indices (PI) ranging from 5500 to 55 000 with red and visible light, respectively. A sub-micromolar potency was maintained even in hypoxia (1% O2), with light EC50 and PI values of 732-812 nM and 68-76, respectively -currently among the largest PIs for hypoxic photoactivity. This high degree of activity coincided with a low-energy, long-lived (0.98-3.6 μs) mixed-character intraligand charge-transfer (3ILCT)/ligand-to-ligand charge-transfer (3LLCT) state only accessible in quaterthiophene complexes 1-4T and 2-4T. The coligand identity strongly influenced the photophysical and photobiological results in this study, whereby the bpy coligand led to longer lifetimes (3.6 μs) and more potent photo-cytotoxicity relative to those of dmb. The unactivated compounds were relatively nontoxic both in vitro and in vivo. The maximum tolerated dose for 1-4T and 2-4T in mice was greater than or equal to 200 mg kg-1, an excellent starting point for future in vivo validation.
Collapse
Affiliation(s)
- John A. Roque
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina, 27402 USA
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| | - Patrick C. Barrett
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina, 27402 USA
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| | - Liubov M. Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| | - Evan Bradner
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina, 27402 USA
| | - Ge Shi
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia B3H 1×5, Canada
| | - David von Dohlen
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina, 27402 USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| |
Collapse
|
44
|
Roque JA, Barrett PC, Cole HD, Lifshits LM, Shi G, Monro S, von Dohlen D, Kim S, Russo N, Deep G, Cameron CG, Alberto ME, McFarland SA. Breaking the barrier: an osmium photosensitizer with unprecedented hypoxic phototoxicity for real world photodynamic therapy. Chem Sci 2020; 11:9784-9806. [PMID: 33738085 PMCID: PMC7953430 DOI: 10.1039/d0sc03008b] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Hypoxia presents a two-fold challenge in the treatment of cancer, as low oxygen conditions induce biological changes that make malignant tissues simultaneously more aggressive and less susceptible to standard chemotherapy. This paper reports the first metal-based photosensitizer that approaches the ideal properties for a phototherapy agent. The Os(phen)2-based scaffold was combined with a series of IP-nT ligands, where phen = 1,10-phenanthroline and IP-nT = imidazo[4,5-f][1,10]phenanthroline tethered to n = 0-4 thiophene rings. Os-4T (n = 4) emerged as the most promising complex in the series, with picomolar activity and a phototherapeutic index (PI) exceeding 106 in normoxia. The photosensitizer exhibited an unprecedented PI > 90 (EC50 = 0.651 μM) in hypoxia (1% O2) with visible and green light, and a PI > 70 with red light. Os-4T was also active with 733 nm near-infrared light (EC50 = 0.803 μM, PI = 77) under normoxia. Both computation and spectroscopic studies confirmed a switch in the nature of the lowest-lying triplet excited state from triplet metal-to-ligand charge transfer (3MLCT) to intraligand charge transfer (3ILCT) at n = 3, with a lower energy and longer lifetime for n = 4. All compounds in the series were relatively nontoxic in the dark but became increasingly phototoxic with additional thiophenes. These normoxic and hypoxic activities are the largest reported to date, demonstrating the utility of osmium for phototherapy applications. Moreover, Os-4T had a maximum tolerated dose (MTD) in mice that was >200 mg kg-1, which positions this photosensitizer as an excellent candidate for in vivo applications.
Collapse
Affiliation(s)
- John A Roque
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina , 27402 USA
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , Arlington , Texas , 76019 USA . ;
| | - Patrick C Barrett
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina , 27402 USA
| | - Houston D Cole
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , Arlington , Texas , 76019 USA . ;
| | - Liubov M Lifshits
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , Arlington , Texas , 76019 USA . ;
| | - Ge Shi
- Department of Chemistry , Acadia University , Wolfville , Nova Scotia , B4P 2R6 Canada
| | - Susan Monro
- Department of Chemistry , Acadia University , Wolfville , Nova Scotia , B4P 2R6 Canada
| | - David von Dohlen
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina , 27402 USA
| | - Susy Kim
- Department of Cancer Biology , Wake Forest School of Medicine , Winston Salem , NC , 27157, USA
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , Arcavacata di Rende , 87036 Italy .
| | - Gagan Deep
- Department of Cancer Biology , Wake Forest School of Medicine , Winston Salem , NC , 27157, USA
| | - Colin G Cameron
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina , 27402 USA
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , Arlington , Texas , 76019 USA . ;
| | - Marta E Alberto
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , Arcavacata di Rende , 87036 Italy .
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina , 27402 USA
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , Arlington , Texas , 76019 USA . ;
- Department of Chemistry , Acadia University , Wolfville , Nova Scotia , B4P 2R6 Canada
| |
Collapse
|
45
|
Barsuk I, Lainé PP, Maurel F, Brémond É. Triangulenium dyes: the comprehensive photo-absorption and emission story of a versatile family of chromophores. Phys Chem Chem Phys 2020; 22:20673-20684. [PMID: 32895673 DOI: 10.1039/d0cp02990d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The triangulenium dyes constitute a family of versatile chromophores whose impressive photo-absorption and emission properties are currently highlighted in numerous novel experimental applications. In this investigation, we provide a comprehensive TDDFT characterization of their spectroscopic properties elucidating the origin of their large and complex absorption and emission vibronic spectra spread over the (whole) visible region. More precisely, by benchmarking the performance of 10 commonly-used exchange-correlation density functionals belonging to different classes of approximation, we develop and validate a computational protocol allowing the accurate modeling of both the position and optical line-shape of their vibrationally-resolved absorption and emission band structures. We find that semilocal approximations provide the best estimate of the structure of the vibronic spectra, however they spuriously and strongly underestimate their position. We finally show that global-hybrid density functionals mixing between 20 and 30% of exact-like exchange are an excellent compromise to get a satisfactory estimate of both of these properties.
Collapse
Affiliation(s)
- Irina Barsuk
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| | | | | | - Éric Brémond
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| |
Collapse
|
46
|
Bonfiglio A, Pallova L, César V, Gourlaouen C, Bellemin‐Laponnaz S, Daniel C, Polo F, Mauro M. Phosphorescent Cationic Heterodinuclear Ir
III
/M
I
Complexes (M=Cu
I
, Au
I
) with a Hybrid Janus‐Type N‐Heterocyclic Carbene Bridge. Chemistry 2020; 26:11751-11766. [DOI: 10.1002/chem.202002767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/04/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Anna Bonfiglio
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR7504 Université de Strasbourg, CNRS 23 rue du Loess 67000 Strasbourg France
| | - Lenka Pallova
- LCC-CNRS UPR8241 Université de Toulouse, CNRS 31077 Toulouse cedex 4 France
| | - Vincent César
- LCC-CNRS UPR8241 Université de Toulouse, CNRS 31077 Toulouse cedex 4 France
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique Institut de Chimie de Strasbourg UMR7177 Université de Strasbourg-CNRS 4 Rue Blaise Pascal 67000 Strasbourg France
| | - Stéphane Bellemin‐Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR7504 Université de Strasbourg, CNRS 23 rue du Loess 67000 Strasbourg France
| | - Chantal Daniel
- Laboratoire de Chimie Quantique Institut de Chimie de Strasbourg UMR7177 Université de Strasbourg-CNRS 4 Rue Blaise Pascal 67000 Strasbourg France
| | - Federico Polo
- Department of Molecular Sciences and Nanosystems Ca' Foscari University of Venice Via Torino 155 30172 Venezia Italy
| | - Matteo Mauro
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR7504 Université de Strasbourg, CNRS 23 rue du Loess 67000 Strasbourg France
| |
Collapse
|
47
|
Theoretical investigation on green emitting heteroleptic cyclometalated iridium(III) complexes with fluorinated 2-phenylpyridine ligands. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Sanner RD, Cherepy NJ, Pham HQ, Young VG. Phosphorescent heteroleptic iridium(III) cyclometallates: Improved syntheses of acetylacetonate complexes and quantum chemical studies of their excited state properties. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Quantitative prediction of electronic absorption spectra of copper(II)-bioligand systems: Validation and applications. J Inorg Biochem 2019; 204:110953. [PMID: 31816442 DOI: 10.1016/j.jinorgbio.2019.110953] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
The visible region of the electronic absorption spectra of Cu(II) complexes was studied by time-dependent density functional theory (TD-DFT). The performance of twelve functionals in the prediction of absorption maxima (λmax) was tested on eleven compounds with different geometry, donors and charge. The ranking of the functionals for λmax was determined in terms of mean absolute percent deviation (MAPD) and standard deviation (SD) and it is as follows: BHandHLYP > M06 ≫ CAM-B3LYP ≫ MPW1PW91 ~ B1LYP ~ BLYP > HSE06 ~ B3LYP > B3P86 ~ ω-B97x-D ≫ TPSSh ≫ M06-2X (MAPD) and BHandHLYP > M06 ~ HSE06 > ω-B97x-D ~ CAM-B3LYP ~ MPW1PW91 > B1LYP ~ B3LYP > B3P86 > BLYP ≫ TPSSh ≫ M06-2X (SD). With BHandHLYP functional the MAPD is 3.1% and SD is 2.3%, while with M06 the MAPD is 3.7% and SD is 3.7%. The protocol validated in the first step of the study was applied to: i) calculate the number of transitions in the spectra and relate them to the geometry of Cu(II) species; ii) determine the coordination of axial water(s); iii) predict the electronic spectra of the systems where Cu(II) is bound to human serum albumin (HSA) and to the regions 94-97 and 108-112 of prion protein (PrP). The results indicate that the proposed computational protocol allows a successful prediction of the electronic spectra of Cu(II) species and to relate an experimental spectrum to a specific structure.
Collapse
|
50
|
Cao X, Wu L, Zhang J, Dolg M. Density Functional Studies of Coenzyme NADPH and Its Oxidized Form NADP + : Structures, UV-Vis Spectra, and the Oxidation Mechanism of NADPH. J Comput Chem 2019; 41:305-316. [PMID: 31713255 DOI: 10.1002/jcc.26103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022]
Abstract
Density functional theory has been used to study the biologically important coenzyme NADPH and its oxidized form NADP+ . It was found that free NADPH prefers a compact structure in gas phase and exists in more extended geometries in aqueous solution. Ultraviolet-visible absorption spectra in aqueous solution were calculated for NADPH with an explicit treatment of 100 surrounding water molecules in combination with the COSMO solvation model for bulk hydration effects. The obtained spectra using the B3LYP hybrid density functional agree quite well with experimental data. The changes of Gibbs free energies ΔG in reactions of NADPH with O2 observed experimentally in cardiovascular and in chemical systems, that is, NADPH + 2 3 O2 → NADP+ + 2 O2 - + H+ and NADPH + 1 O2 + H+ → NADP+ + H2 O2 , respectively, were calculated. The NADPH oxidation reaction in the cardiovascular system cannot proceed without activation since the obtained ΔG is positive. The reaction of NADPH in the chemical system with singlet oxygen was found to proceed in two ways, each consisting of two steps, that is, NADPH firstly reacts with 1 O2 barrierlessly to form NADP+ and HO2 - , from which H2 O2 is formed in a spontaneous reaction with H+ , or 1 O2 and H+ initially form 1 HO2 + , which further reacts with NADPH to yield NADP+ and H2 O2 . © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoyan Cao
- Institute for Theoretical Chemistry, University of Cologne, Greinstr. 4, D-50939, Cologne, Germany
| | - Liangliang Wu
- Institute for Theoretical Chemistry, University of Cologne, Greinstr. 4, D-50939, Cologne, Germany.,Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing, 10087, China
| | - Jun Zhang
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801-3364
| | - Michael Dolg
- Institute for Theoretical Chemistry, University of Cologne, Greinstr. 4, D-50939, Cologne, Germany
| |
Collapse
|