1
|
Lu Q, Liao H, Jiang Z, Zhu Y, Han Y, Li L, Ni H, Li Q. Deglycosylation significantly affects the activity, stability and appropriate folding of recombinant Aspergillus niger α-L-rhamnosidase expressed in Pichia pastoris. Int J Biol Macromol 2025; 308:142531. [PMID: 40158561 DOI: 10.1016/j.ijbiomac.2025.142531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Glycosylation plays a critical role in regulating activity, stability, and correct folding of enzymes. In this study, recombinant Aspergillus niger α-L-rhamnosidase (r-Rha1) was employed to explore the impact of glycosylation in Pichia pastoris on the enzymatic properties and protein folding. β-elimination reaction and deglycosylase treatment assays demonstrated that r-Rha1 undergoes primarily N-glycosylation. The deglycosylated r-Rha1 was prepared in two ways: treating with Endoglycosidase F1 after expression (referred to as r-Rha1-vitro), or inhibiting intracellular glycosylation using tunicamycin (referred to as r-Rha1-vivo). Deglycosylation resulted in a 0.22-fold decrease in activity for r-Rha1-vitro and due to its slower turnover rate, r-Rha1-vivo showed a 0.73-fold decrease in activity. r-Rha1-vitro maintained the similar optimal temperature as r-Rha1, r-Rha1-vivo displayed a 10 °C lower optimal temperature. Compared to the decreased extent of r-Rha1-vitro in t1/2 at 55 °C, 60 °C, and 65 °C and Tm, chemical interferent deglycosylation in vivo showed a more profound impact on r-Rha1. Analyses based on circular dichroism, fluorescence spectroscopy, and differential scanning calorimetry revealed significant changes in the structure and thermodynamic stability of r-Rha1-vivo, accounting for its marked decline in activity and stability. The significant and unpredictable structure changes of r-Rha1-vivo proved the essential role of glycosylation for appropriate folding in P. pastoris.
Collapse
Affiliation(s)
- Qihui Lu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Hui Liao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Yijuan Han
- Fujian Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Lijun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Xiamen Ocean Vocational College, Xiamen 361102, China
| | - Qingbiao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| |
Collapse
|
2
|
Zheng N, Cai Y, Zhang Z, Zhou H, Deng Y, Du S, Tu M, Fang W, Xia X. Tailoring industrial enzymes for thermostability and activity evolution by the machine learning-based iCASE strategy. Nat Commun 2025; 16:604. [PMID: 39799136 PMCID: PMC11724889 DOI: 10.1038/s41467-025-55944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025] Open
Abstract
The pursuit of obtaining enzymes with high activity and stability remains a grail in enzyme evolution due to the stability-activity trade-off. Here, we develop an isothermal compressibility-assisted dynamic squeezing index perturbation engineering (iCASE) strategy to construct hierarchical modular networks for enzymes of varying complexity. Molecular mechanism analysis elucidates that the peak of adaptive evolution is reached through a structural response mechanism among variants. Furthermore, this dynamic response predictive model using structure-based supervised machine learning is established to predict enzyme function and fitness, demonstrating robust performance across different datasets and reliable prediction for epistasis. The universality of the iCASE strategy is validated by four sorts of enzymes with different structures and catalytic types. This machine learning-based iCASE strategy provides guidance for future research on the fitness evolution of enzymes.
Collapse
Affiliation(s)
- Nan Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Yongchao Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Zehua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Huimin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Yu Deng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Shuang Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Mai Tu
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, PR China
| | - Wei Fang
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, PR China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China.
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, PR China.
| |
Collapse
|
3
|
Nana Teukam YG, Zipoli F, Laino T, Criscuolo E, Grisoni F, Manica M. Integrating genetic algorithms and language models for enhanced enzyme design. Brief Bioinform 2024; 26:bbae675. [PMID: 39780486 PMCID: PMC11711099 DOI: 10.1093/bib/bbae675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/24/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Enzymes are molecular machines optimized by nature to allow otherwise impossible chemical processes to occur. Their design is a challenging task due to the complexity of the protein space and the intricate relationships between sequence, structure, and function. Recently, large language models (LLMs) have emerged as powerful tools for modeling and analyzing biological sequences, but their application to protein design is limited by the high cardinality of the protein space. This study introduces a framework that combines LLMs with genetic algorithms (GAs) to optimize enzymes. LLMs are trained on a large dataset of protein sequences to learn relationships between amino acid residues linked to structure and function. This knowledge is then leveraged by GAs to efficiently search for sequences with improved catalytic performance. We focused on two optimization tasks: improving the feasibility of biochemical reactions and increasing their turnover rate. Systematic evaluations on 105 biocatalytic reactions demonstrated that the LLM-GA framework generated mutants outperforming the wild-type enzymes in terms of feasibility in 90% of the instances. Further in-depth evaluation of seven reactions reveals the power of this methodology to make "the best of both worlds" and create mutants with structural features and flexibility comparable with the wild types. Our approach advances the state-of-the-art computational design of biocatalysts, ultimately opening opportunities for more sustainable chemical processes.
Collapse
Affiliation(s)
- Yves Gaetan Nana Teukam
- IBM Research Europe, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
- Institute for Complex Molecular Systems and Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
| | - Federico Zipoli
- IBM Research Europe, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
- National Center for Competence in Research-Catalysis (NCCR-Catalysis), Switzerland
| | - Teodoro Laino
- IBM Research Europe, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
- National Center for Competence in Research-Catalysis (NCCR-Catalysis), Switzerland
| | - Emanuele Criscuolo
- Institute for Complex Molecular Systems and Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
| | - Francesca Grisoni
- Institute for Complex Molecular Systems and Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, the Netherlands
| | - Matteo Manica
- IBM Research Europe, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| |
Collapse
|
4
|
Musil M, Jezik A, Horackova J, Borko S, Kabourek P, Damborsky J, Bednar D. FireProt 2.0: web-based platform for the fully automated design of thermostable proteins. Brief Bioinform 2023; 25:bbad425. [PMID: 38018911 PMCID: PMC10685400 DOI: 10.1093/bib/bbad425] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
Thermostable proteins find their use in numerous biomedical and biotechnological applications. However, the computational design of stable proteins often results in single-point mutations with a limited effect on protein stability. However, the construction of stable multiple-point mutants can prove difficult due to the possibility of antagonistic effects between individual mutations. FireProt protocol enables the automated computational design of highly stable multiple-point mutants. FireProt 2.0 builds on top of the previously published FireProt web, retaining the original functionality and expanding it with several new stabilization strategies. FireProt 2.0 integrates the AlphaFold database and the homology modeling for structure prediction, enabling calculations starting from a sequence. Multiple-point designs are constructed using the Bron-Kerbosch algorithm minimizing the antagonistic effect between the individual mutations. Users can newly limit the FireProt calculation to a set of user-defined mutations, run a saturation mutagenesis of the whole protein or select rigidifying mutations based on B-factors. Evolution-based back-to-consensus strategy is complemented by ancestral sequence reconstruction. FireProt 2.0 is significantly faster and a reworked graphical user interface broadens the tool's availability even to users with older hardware. FireProt 2.0 is freely available at http://loschmidt.chemi.muni.cz/fireprotweb.
Collapse
Affiliation(s)
- Milos Musil
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
- Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
- International Clinical Research Centre, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Andrej Jezik
- Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - Jana Horackova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | - Simeon Borko
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
- Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
- International Clinical Research Centre, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Petr Kabourek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
- International Clinical Research Centre, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
- International Clinical Research Centre, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
- International Clinical Research Centre, St. Anne’s University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
5
|
da Silva FB, Martins de Oliveira V, de Oliveira Junior AB, Contessoto VDG, Leite VBP. Probing the Energy Landscape of Spectrin R15 and R16 and the Effects of Non-native Interactions. J Phys Chem B 2023; 127:1291-1300. [PMID: 36723393 DOI: 10.1021/acs.jpcb.2c06178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Understanding the details of a protein folding mechanism can be a challenging and complex task. One system with an interesting folding behavior is the α-spectrin domain, where the R15 folds three-orders of magnitude faster than its homologues R16 and R17, despite having similar structures. The molecular origins that explain these folding rate differences remain unclear, but our previous work revealed that a combined effect produced by non-native interactions could be a reasonable cause for these differences. In this study, we explore further the folding process by identifying the molecular paths, metastable states, and the collective motions that lead these unfolded proteins to their native state conformation. Our results uncovered the differences between the folding pathways for the wild-type R15 and R16 and an R16 mutant. The metastable ensembles that speed down the folding were identified using an energy landscape visualization method (ELViM). These ensembles correspond to similar experimentally reported configurations. Our observations indicate that the non-native interactions are also associated with secondary structure misdocking. This computational methodology can be used as a fast, straightforward protocol for shedding light on systems with unclear folding or conformational traps.
Collapse
Affiliation(s)
- Fernando Bruno da Silva
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, São Paulo15054-000, Brazil
| | - Vinícius Martins de Oliveira
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland21201, United States
| | | | | | - Vitor B P Leite
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, São Paulo15054-000, Brazil
| |
Collapse
|
6
|
Dutta P, Roy P, Sengupta N. Effects of External Perturbations on Protein Systems: A Microscopic View. ACS OMEGA 2022; 7:44556-44572. [PMID: 36530249 PMCID: PMC9753117 DOI: 10.1021/acsomega.2c06199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Protein folding can be viewed as the origami engineering of biology resulting from the long process of evolution. Even decades after its recognition, research efforts worldwide focus on demystifying molecular factors that underlie protein structure-function relationships; this is particularly relevant in the era of proteopathic disease. A complex co-occurrence of different physicochemical factors such as temperature, pressure, solvent, cosolvent, macromolecular crowding, confinement, and mutations that represent realistic biological environments are known to modulate the folding process and protein stability in unique ways. In the current review, we have contextually summarized the substantial efforts in unveiling individual effects of these perturbative factors, with major attention toward bottom-up approaches. Moreover, we briefly present some of the biotechnological applications of the insights derived from these studies over various applications including pharmaceuticals, biofuels, cryopreservation, and novel materials. Finally, we conclude by summarizing the challenges in studying the combined effects of multifactorial perturbations in protein folding and refer to complementary advances in experiment and computational techniques that lend insights to the emergent challenges.
Collapse
Affiliation(s)
- Pallab Dutta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| | - Priti Roy
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma74078, United States
| | - Neelanjana Sengupta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| |
Collapse
|
7
|
de Oliveira VM, Dias MMG, Avelino TM, Videira NB, da Silva FB, Doratioto TR, Whitford PC, Leite VBP, Figueira ACM. pH and the Breast Cancer Recurrent Mutation D538G Affect the Process of Activation of Estrogen Receptor α. Biochemistry 2022; 61:455-463. [PMID: 35238537 DOI: 10.1021/acs.biochem.1c00806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogen receptor α (ERα) is a regulatory protein that can access a set of distinct structural configurations. ERα undergoes extensive remodeling as it interacts with different agonists and antagonists, as well as transcription activation and repression factors. Moreover, breast cancer tumors resistant to hormone therapy have been associated with the imbalance between the active and inactive ERα states. Cancer-activating mutations in ERα play a crucial role in this imbalance and can promote the progression of cancer. However, the rate of this progression can also be increased by dysregulated pH in the tumor microenvironment. Many molecular aspects of the process of activation of ERα that can be affected by these pH changes and mutations are still unclear. Thus, we applied computational and experimental techniques to explore the activation process dynamics of ER for environments with different pHs and in the presence of one of the most recurrent cancer-activating mutations, D538G. Our results indicated that the effect of the pH increase associated with the D538G mutation promoted a robust stabilization of the active state of ER. We were also able to determine the main protein regions that have the most potential to influence the activation process under different pH conditions, which may provide targets of future therapeutics for the treatment of hormone-resistant breast cancer tumors. Finally, the approach used here can be applied for proteins associated with the proliferation of other cancer types, which can also have their function affected by small pH changes.
Collapse
Affiliation(s)
- Vinícius M de Oliveira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Marieli M G Dias
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Thayná M Avelino
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Natália B Videira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Fernando B da Silva
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto 01140-070, SP, Brazil
| | - Tábata R Doratioto
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Paul C Whitford
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Vitor B P Leite
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto 01140-070, SP, Brazil
| | - Ana Carolina M Figueira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| |
Collapse
|
8
|
Contessoto VG, de Oliveira VM, Leite VBP. Coarse-Grained Simulations of Protein Folding: Bridging Theory and Experiments. Methods Mol Biol 2022; 2376:303-315. [PMID: 34845616 DOI: 10.1007/978-1-0716-1716-8_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Computational coarse-grained models play a fundamental role as a research tool in protein folding, and they are important in bridging theory and experiments. Folding mechanisms are generally discussed using the energy landscape framework, which is well mapped within a class of simplified structure-based models. In this chapter, simplified computer models are discussed with special focus on structure-based ones.
Collapse
Affiliation(s)
| | - Vinícius M de Oliveira
- Brazilian Biosciences National Laboratory, LNBio/CNPEM, Campinas, SP, Brazil
- São Paulo State University, IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Vitor B P Leite
- São Paulo State University, IBILCE/UNESP, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
9
|
Caetano DLZ, Metzler R, Cherstvy AG, de Carvalho SJ. Adsorption of lysozyme into a charged confining pore. Phys Chem Chem Phys 2021; 23:27195-27206. [PMID: 34821240 DOI: 10.1039/d1cp03185f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several applications arise from the confinement of proteins on surfaces because their stability and biological activity are enhanced. It is also known that the way in which a protein adsorbs on the surface is important for its biological function since its active sites should not be obstructed. In this study, the adsorption properties of hen egg-white lysozyme, HEWL, into a negatively charged silica pore is examined by employing a coarse-grained model and constant-pH Monte Carlo simulations. The role of electrostatic interactions is taken into account via including the Debye-Hückel potentials into the Cα structure-based model. We evaluate the effects of pH, salt concentration, and pore radius on the protein preferential orientation and spatial distribution of its residues regarding the pore surface. By mapping the residues that stay closer to the pore surface, we find that the increase of pH leads to orientational changes of the adsorbed protein when the solution pH gets closer to the HEWL isoelectric point. Under these conditions, the pKa shift of these important residues caused by the adsorption into the charged confining surface results in a HEWL charge distribution that stabilizes the adsorption in the observed protein orientation. We compare our observations to the results of the pKa shift for HEWL available in the literature and to some experimental data.
Collapse
Affiliation(s)
- Daniel L Z Caetano
- Institute of Chemistry, State University of Campinas (UNICAMP), Campinas, Brazil.,Center for Computational Engineering and Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Sidney J de Carvalho
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, Brazil.
| |
Collapse
|
10
|
Contessoto VG, Ferreira PHB, Chahine J, Leite VBP, Oliveira RJ. Small Neutral Crowding Solute Effects on Protein Folding Thermodynamic Stability and Kinetics. J Phys Chem B 2021; 125:11673-11686. [PMID: 34644091 DOI: 10.1021/acs.jpcb.1c07663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular crowding is a ubiquitous phenomenon in biological systems, with significant consequences on protein folding and stability. Small compounds, such as the osmolyte trimethylamine N-oxide (TMAO), can also present similar effects. To analyze the effects arising from these solute-like molecules, we performed a series of crowded coarse-grained folding simulations. Two well-known proteins were chosen, CI2 and SH3, modeled by the alpha-carbon-structure-based model. In the simulations, the crowding molecules were represented by low-sized neutral atom beads in different concentrations. The results show that a low level of the volume fraction occupied by neutral agents can change protein stability and folding kinetics for the two systems. However, the kinetics were shown to be unaffected in their respective folding temperatures. The faster kinetics correlates with changes in the folding route for systems at the same temperature, where non-native contacts were shown to be relevant. The transition states of the two systems with and without crowders are similar. In the case of SH3, there are differences in the structuring of two strands, which may be associated with the increase in its folding rate, in addition to the destabilization of the denatured ensemble. The present study also detected a crossover in the thermodynamic stability behavior, previously observed experimentally and theoretically. As the temperature increases, crowders change from destabilizing to stabilizing agents.
Collapse
Affiliation(s)
- Vinícius G Contessoto
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, Brazil
| | - Paulo H B Ferreira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba 38064-200, Brazil
| | - Jorge Chahine
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, Brazil
| | - Vitor B P Leite
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, Brazil
| | - Ronaldo J Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba 38064-200, Brazil
| |
Collapse
|
11
|
Ngo K, Bruno da Silva F, Leite VBP, Contessoto VG, Onuchic JN. Improving the Thermostability of Xylanase A from Bacillus subtilis by Combining Bioinformatics and Electrostatic Interactions Optimization. J Phys Chem B 2021; 125:4359-4367. [PMID: 33887137 DOI: 10.1021/acs.jpcb.1c01253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rational improvement of the enzyme catalytic activity is one of the most significant challenges in biotechnology. Most conventional strategies used to engineer enzymes involve selecting mutations to increase their thermostability. Determining good criteria for choosing these substitutions continues to be a challenge. In this work, we combine bioinformatics, electrostatic analysis, and molecular dynamics to predict beneficial mutations that may improve the thermostability of XynA from Bacillus subtilis. First, the Tanford-Kirkwood surface accessibility method is used to characterize each ionizable residue contribution to the protein native state stability. Residues identified to be destabilizing were mutated with the corresponding residues determined by the consensus or ancestral sequences at the same locations. Five mutants (K99T/N151D, K99T, S31R, N151D, and K154A) were investigated and compared with 12 control mutants derived from experimental approaches from the literature. Molecular dynamics results show that the mutants exhibited folding temperatures in the order K99T > K99T/N151D > S31R > N151D > WT > K154A. The combined approaches employed provide an effective strategy for low-cost enzyme optimization needed for large-scale biotechnological and medical applications.
Collapse
Affiliation(s)
- Khoa Ngo
- Department of Physics, University of Houston, Houston, Texas 77004, United States
| | - Fernando Bruno da Silva
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas UNESP - Univ. Estadual Paulista, São José do Rio Preto, SP, Brazil
| | - Vitor B P Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas UNESP - Univ. Estadual Paulista, São José do Rio Preto, SP, Brazil
| | - Vinícius G Contessoto
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas UNESP - Univ. Estadual Paulista, São José do Rio Preto, SP, Brazil
| | | |
Collapse
|
12
|
de Godoi Contessoto V, Ramos FC, de Melo RR, de Oliveira VM, Scarpassa JA, de Sousa AS, Zanphorlin LM, Slade GG, Leite VBP, Ruller R. Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases. Biophys J 2021; 120:2172-2180. [PMID: 33831390 DOI: 10.1016/j.bpj.2021.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/08/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022] Open
Abstract
Understanding the aspects that contribute to improving proteins' biochemical properties is of high relevance for protein engineering. Properties such as the catalytic rate, thermal stability, and thermal resistance are crucial for applying enzymes in the industry. Different interactions can influence those biochemical properties of an enzyme. Among them, the surface charge-charge interactions have been a target of particular attention. In this study, we employ the Tanford-Kirkwood solvent accessibility model using the Monte Carlo algorithm (TKSA-MC) to predict possible interactions that could improve stability and catalytic rate of a WT xylanase (XynAWT) and its M6 xylanase (XynAM6) mutant. The modeling prediction indicates that mutating from a lysine in position 99 to a glutamic acid (K99E) favors the native state stabilization in both xylanases. Our lab results showed that mutated xylanases had their thermotolerance and catalytic rate increased, which conferred higher processivity of delignified sugarcane bagasse. The TKSA-MC approach employed here is presented as an efficient computational-based design strategy that can be applied to improve the thermal resistance of enzymes with industrial and biotechnological applications.
Collapse
Affiliation(s)
- Vinícius de Godoi Contessoto
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil; Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Felipe Cardoso Ramos
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Ricardo Rodrigues de Melo
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Vinícius Martins de Oliveira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Josiane Aniele Scarpassa
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Amanda Silva de Sousa
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Letıcia Maria Zanphorlin
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Gabriel Gouvea Slade
- Theoretical Biophysics Laboratory, Institute of Exact Sciences, Natural and Education, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Vitor Barbanti Pereira Leite
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil.
| | - Roberto Ruller
- Microorganisms and General Biochemistry Laboratory, Institute of Bioscience, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
13
|
Zhang H, Zhang H, Chen C. Investigating the folding mechanism of the N-terminal domain of ribosomal protein L9. Proteins 2021; 89:832-844. [PMID: 33576138 DOI: 10.1002/prot.26062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/04/2021] [Accepted: 01/31/2021] [Indexed: 11/10/2022]
Abstract
Protein folding is a popular topic in the life science. However, due to the limited sampling ability of experiments and simulations, the general folding mechanism is not yet clear to us. In this work, we study the folding of the N-terminal domain of ribosomal protein L9 (NTL9) in detail by a mixing replica exchange molecular dynamics method. The simulation results are close to previous experimental observations. According to the Markov state model, the folding of the protein follows a nucleation-condensation path. Moreover, after the comparison to its 39-residue β-α-β motif, we find that the helix at the C-terminal has a great influence on the folding process of the intact protein, including the nucleation of the key residues in the transition state ensemble and the packing of the hydrophobic residues in the native state.
Collapse
Affiliation(s)
- Haozhe Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Haomiao Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Changjun Chen
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Ferreira PHB, Freitas FC, McCully ME, Slade GG, de Oliveira RJ. The Role of Electrostatics and Folding Kinetics on the Thermostability of Homologous Cold Shock Proteins. J Chem Inf Model 2020; 60:546-561. [PMID: 31910002 DOI: 10.1021/acs.jcim.9b00797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding which aspects contribute to the thermostability of proteins is a challenge that has persisted for decades, and it is of great relevance for protein engineering. Several types of interactions can influence the thermostability of a protein. Among them, the electrostatic interactions have been a target of particular attention. Aiming to explore how this type of interaction can affect protein thermostability, this paper investigated four homologous cold shock proteins from psychrophilic, mesophilic, thermophilic, and hyperthermophilic organisms using a set of theoretical methodologies. It is well-known that electrostatics as well as hydrophobicity are key-elements for the stabilization of these proteins. Therefore, both interactions were initially analyzed in the native structure of each protein. Electrostatic interactions present in the native structures were calculated with the Tanford-Kirkwood model with solvent accessibility, and the amount of hydrophobic surface area buried upon folding was estimated by measuring both folded and extended structures. On the basis of Energy Landscape Theory, the local frustration and the simplified alpha-carbon structure-based model were modeled with a Debye-Hückel potential to take into account the electrostatics and the effects of an implicit solvent. Thermodynamic data for the structure-based model simulations were collected and analyzed using the Weighted Histogram Analysis and Stochastic Diffusion methods. Kinetic quantities including folding times, transition path times, folding routes, and Φ values were also obtained. As a result, we found that the methods are able to qualitatively infer that electrostatic interactions play an important role on the stabilization of the most stable thermophilic cold shock proteins, showing agreement with the experimental data.
Collapse
Affiliation(s)
- Paulo Henrique Borges Ferreira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação , Universidade Federal do Triângulo Mineiro , Uberaba , Minas Gerais 38064200 , Brazil
| | - Frederico Campos Freitas
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação , Universidade Federal do Triângulo Mineiro , Uberaba , Minas Gerais 38064200 , Brazil
| | - Michelle E McCully
- Department of Biology , Santa Clara University , Santa Clara , California 95050 , United States
| | - Gabriel Gouvêa Slade
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação , Universidade Federal do Triângulo Mineiro , Uberaba , Minas Gerais 38064200 , Brazil
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação , Universidade Federal do Triângulo Mineiro , Uberaba , Minas Gerais 38064200 , Brazil
| |
Collapse
|
15
|
de Oliveira VM, Caetano DLZ, da Silva FB, Mouro PR, de Oliveira AB, de Carvalho SJ, Leite VBP. pH and Charged Mutations Modulate Cold Shock Protein Folding and Stability: A Constant pH Monte Carlo Study. J Chem Theory Comput 2020; 16:765-772. [PMID: 31756296 DOI: 10.1021/acs.jctc.9b00894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The folding and stability of proteins is a fundamental problem in several research fields. In the present paper, we have used different computational approaches to study the effects caused by changes in pH and for charged mutations in cold shock proteins from Bacillus subtilis (Bs-CspB). First, we have investigated the contribution of each ionizable residue for these proteins to their thermal stability using the TKSA-MC, a Web server for rational mutation via optimizing the protein charge interactions. Based on these results, we have proposed a new mutation in an already optimized Bs-CspB variant. We have evaluated the effects of this new mutation in the folding energy landscape using structure-based models in Monte Carlo simulation at constant pH, SBM-CpHMC. Our results using this approach have indicated that the charge rearrangements already in the unfolded state are critical to the thermal stability of Bs-CspB. Furthermore, the conjunction of these simplified methods was able not only to predict stabilizing mutations in different pHs but also to provide essential information about their effects in each stage of protein folding.
Collapse
Affiliation(s)
- Vinícius M de Oliveira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM , Campinas , São Paulo , 13083-970 , Brazil
| | - Daniel L Z Caetano
- Department of Physics , São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences , São José do Rio Preto , São Paulo , 15054-000 , Brazil
| | - Fernando B da Silva
- Department of Physics , São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences , São José do Rio Preto , São Paulo , 15054-000 , Brazil
| | - Paulo R Mouro
- Department of Physics , São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences , São José do Rio Preto , São Paulo , 15054-000 , Brazil
| | - Antonio B de Oliveira
- Department of Physics , São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences , São José do Rio Preto , São Paulo , 15054-000 , Brazil
| | - Sidney J de Carvalho
- Department of Physics , São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences , São José do Rio Preto , São Paulo , 15054-000 , Brazil
| | - Vitor B P Leite
- Department of Physics , São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences , São José do Rio Preto , São Paulo , 15054-000 , Brazil.,Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States
| |
Collapse
|
16
|
B da Silva F, M de Oliveira V, Sanches MN, Contessoto VG, Leite VBP. Rational Design of Chymotrypsin Inhibitor 2 by Optimizing Non-Native Interactions. J Chem Inf Model 2019; 60:982-988. [PMID: 31794216 DOI: 10.1021/acs.jcim.9b00911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Rational design of proteins via mutagenesis is crucial for several biotechnological applications. A significant challenge of the computational strategies used to predict optimized mutations is to understand the influence of each amino acid during the folding process. In the present work, chymotrypsin inhibitor 2 (CI2) and several of its designed mutants have been simulated using a non-native hydrophobic and electrostatic potential as a structure-based Cα model. Through these simulations, we could identify the most critical folding stage to accelerate CI2 and also the charged residues responsible for providing its thermostability. The replacement of ionizable residues for hydrophobic ones tended to promote the formation of the CI2 secondary structure in the early transition state, which speeds up folding. However, this same replacement destabilized the native structure, and there was a decrease in the protein thermostability. Such a simple method proved to be capable of providing valuable information about thermodynamics and kinetics of CI2 and its mutations, thus being a fast alternative to the study of rational protein design.
Collapse
Affiliation(s)
- Fernando B da Silva
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences , São Paulo State University (UNESP) , São José do Rio Preto , São Paulo 15054-000 , Brazil
| | - Vinícius M de Oliveira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials , LNBio/CNPEM , Campinas , São Paulo 13083-970 , Brazil
| | - Murilo N Sanches
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences , São Paulo State University (UNESP) , São José do Rio Preto , São Paulo 15054-000 , Brazil
| | - Vinícius G Contessoto
- Brazilian Biorenewables National Laboratory - LNBR , Brazilian Center for Research in Energy and Materials - CNPEM , Campinas , São Paulo 13083-100 , Brazil.,Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States
| | - Vitor B P Leite
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences , São Paulo State University (UNESP) , São José do Rio Preto , São Paulo 15054-000 , Brazil
| |
Collapse
|
17
|
Freitas FC, Lima AN, Contessoto VDG, Whitford PC, Oliveira RJD. Drift-diffusion (DrDiff) framework determines kinetics and thermodynamics of two-state folding trajectory and tunes diffusion models. J Chem Phys 2019; 151:114106. [DOI: 10.1063/1.5113499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Frederico Campos Freitas
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Angelica Nakagawa Lima
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Vinícius de Godoi Contessoto
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Departamento de Física, Universidade Estadual Paulista, São José do Rio Preto, SP, Brazil
- Brazilian Biorenewables National Laboratory - LNBR, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, SP, Brazil
| | - Paul C. Whitford
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
18
|
Barroso da Silva FL, Sterpone F, Derreumaux P. OPEP6: A New Constant-pH Molecular Dynamics Simulation Scheme with OPEP Coarse-Grained Force Field. J Chem Theory Comput 2019; 15:3875-3888. [DOI: 10.1021/acs.jctc.9b00202] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fernando Luís Barroso da Silva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do café, s/no, Ribeirão Preto, São Paulo BR-14040-903, Brazil
- Laboratoire de Biochimie Theórique, UPR 9080 CNRS, Institut de Biologie Physico Chimique, Université Paris Diderot − Paris 7 et Université Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Fabio Sterpone
- Laboratoire de Biochimie Theórique, UPR 9080 CNRS, Institut de Biologie Physico Chimique, Université Paris Diderot − Paris 7 et Université Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
19
|
Bruno da Silva F, Contessoto VG, de Oliveira VM, Clarke J, Leite VBP. Non-Native Cooperative Interactions Modulate Protein Folding Rates. J Phys Chem B 2018; 122:10817-10824. [DOI: 10.1021/acs.jpcb.8b08990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fernando Bruno da Silva
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto - São Paulo 15054-000, Brazil
| | - Vinícius G. Contessoto
- Brazilian Bioethanol Science and Technology Laboratory - CTBE, Campinas - São Paulo 13083-100, Brazil
| | - Vinícius M. de Oliveira
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto - São Paulo 15054-000, Brazil
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Vitor B. P. Leite
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto - São Paulo 15054-000, Brazil
| |
Collapse
|
20
|
Yrazu FM, Pinamonti G, Clementi C. The Effect of Electrostatic Interactions on the Folding Kinetics of a 3-α-Helical Bundle Protein Family. J Phys Chem B 2018; 122:11800-11806. [PMID: 30277393 DOI: 10.1021/acs.jpcb.8b08676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The trio of protein segment repeats called spectrins diverges by more than 2 orders of magnitude in their folding and unfolding rates, despite having very similar stabilities and almost coincidental topologies. Experimental studies revealed that the mutation of five particular residues dramatically alters the kinetic rates in the slow folders, making them similar to the rates of the fast folder. This is considered to be an exceptional behavior which seems in principle to challenge the current understanding of the protein folding process. In this work, we analyze this scenario, using a simplified computational model, combined with state-of-the-art kinetic analysis techniques. Our model faithfully separates the kinetics of the fast and slow folders and captures the effect of the five mutations. We show that the inclusion of electrostatics in the model is necessary to explain the experimental findings.
Collapse
Affiliation(s)
- Fernando Miguel Yrazu
- Department of Chemical and Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States
| | - Giovanni Pinamonti
- Department of Informatics and Mathematics , Freie Universität Berlin , 14195 Berlin , Germany
| | - Cecilia Clementi
- Department of Chemical and Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States.,Department of Informatics and Mathematics , Freie Universität Berlin , 14195 Berlin , Germany.,Center for Theoretical Biological Physics and Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| |
Collapse
|
21
|
Contessoto VG, de Oliveira VM, Fernandes BR, Slade GG, Leite VBP. TKSA-MC: A web server for rational mutation through the optimization of protein charge interactions. Proteins 2018; 86:1184-1188. [PMID: 30218467 DOI: 10.1002/prot.25599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 11/06/2022]
Abstract
The TKSAMC is a web server which calculates protein charge-charge interactions via the Tanford-Kirkwood Surface Accessibility model with the Monte Carlo method for sampling different protein protonation states. The optimization of charge-charge interactions via directed mutations has successfully enhanced the thermal stability of different proteins and could be a key to protein engineering improvement. The server presents the electrostatic free energy contribution of each polar-charged residue to the protein native state stability. Specific residues are suggested to be mutated for improving thermal stability. The choice of a residue is based on its fraction of side chain exposed to solvent and its positive free energy contribution, which tends to destabilize the protein native state. Any residue energy contribution can be shown as a function of pH condition. The web server is freely available at UNESP (São Paulo State University - DF/IBILCE): http://tksamc.df.ibilce.unesp.br and also on GitHub https://github.com/contessoto/tksamc.
Collapse
Affiliation(s)
- Vinícius G Contessoto
- Brazilian Bioethanol Science and Technology Laboratory - CTBE, Campinas, São Paulo, Brazil.,Department of Physics, Institute of Biosciences, Letters and Exact Sciences São Paulo State University - UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Vinícius M de Oliveira
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences São Paulo State University - UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Bruno R Fernandes
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences São Paulo State University - UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Gabriel G Slade
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences São Paulo State University - UNESP, São José do Rio Preto, São Paulo, Brazil.,Theoretical Biophysics Laboratory, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro - UFTM, Uberaba, Minas Gerais, Brazil
| | - Vitor B P Leite
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences São Paulo State University - UNESP, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
22
|
Martins de Oliveira V, Godoi Contessoto VD, Bruno da Silva F, Zago Caetano DL, Jurado de Carvalho S, Pereira Leite VB. Effects of pH and Salt Concentration on Stability of a Protein G Variant Using Coarse-Grained Models. Biophys J 2018; 114:65-75. [PMID: 29320697 PMCID: PMC5984902 DOI: 10.1016/j.bpj.2017.11.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/20/2017] [Accepted: 11/13/2017] [Indexed: 11/18/2022] Open
Abstract
The importance of charge-charge interactions in the thermal stability of proteins is widely known. pH and ionic strength play a crucial role in these electrostatic interactions, as well as in the arrangement of ionizable residues in each protein-folding stage. In this study, two coarse-grained models were used to evaluate the effect of pH and salt concentration on the thermal stability of a protein G variant (1PGB-QDD), which was chosen due to the quantity of experimental data exploring these effects on its stability. One of these coarse-grained models, the TKSA, calculates the electrostatic free energy of the protein in the native state via the Tanford-Kirkwood approach for each residue. The other one, CpHMD-SBM, uses a Coulomb screening potential in addition to the structure-based model Cα. Both models simulate the system in constant pH. The comparison between the experimental stability analysis and the computational results obtained by these simple models showed a good agreement. Through the TKSA method, the role of each charged residue in the protein's thermal stability was inferred. Using CpHMD-SBM, it was possible to evaluate salt and pH effects throughout the folding process. Finally, the computational pKa values were calculated by both methods and presented a good level of agreement with the experiments. This study provides, to our knowledge, new information and a comprehensive description of the electrostatic contribution to protein G stability.
Collapse
Affiliation(s)
- Vinícius Martins de Oliveira
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, Brazil
| | - Vinícius de Godoi Contessoto
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, Brazil; Brazilian Bioethanol Science and Technology Laboratory- (CTBE), Campinas, Brazil
| | - Fernando Bruno da Silva
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, Brazil
| | - Daniel Lucas Zago Caetano
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, Brazil
| | - Sidney Jurado de Carvalho
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, Brazil
| | - Vitor Barbanti Pereira Leite
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, Brazil.
| |
Collapse
|
23
|
Caetano DLZ, de Carvalho SJ, Metzler R, Cherstvy AG. Critical adsorption of periodic and random polyampholytes onto charged surfaces. Phys Chem Chem Phys 2017; 19:23397-23413. [PMID: 28825753 DOI: 10.1039/c7cp04040g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How different are the properties of critical adsorption of polyampholytes and polyelectrolytes onto charged surfaces? How important are the details of polyampholyte charge distribution on the onset of critical adsorption transition? What are the scaling relations governing the dependence of critical surface charge density on salt concentration in the surrounding solution? Here, we employ Metropolis Monte Carlo simulations and uncover the scaling relations for critical adsorption for quenched periodic and random charge distributions along the polyampholyte chains. We also evaluate and discuss the dependence of the adsorbed layer width on solution salinity and details of the charge distribution. We contrast our findings to the known results for polyelectrolyte adsorption onto oppositely charged surfaces, in particular, their dependence on electrolyte concentration.
Collapse
Affiliation(s)
- Daniel L Z Caetano
- Sao Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus Sao Jose do Rio Preto, 15054-000, Brazil.
| | - Sidney J de Carvalho
- Sao Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus Sao Jose do Rio Preto, 15054-000, Brazil.
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
24
|
The N-Terminal Domain of Ribosomal Protein L9 Folds via a Diffuse and Delocalized Transition State. Biophys J 2017; 112:1797-1806. [PMID: 28494951 DOI: 10.1016/j.bpj.2017.01.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 01/05/2023] Open
Abstract
The N-terminal domain of L9 (NTL9) is a 56-residue mixed α-β protein that lacks disulfides, does not bind cofactors, and folds reversibly. NTL9 has been widely used as a model system for experimental and computational studies of protein folding and for investigations of the unfolded state. The role of side-chain interactions in the folding of NTL9 is probed by mutational analysis. ϕ-values, which represent the ratio of the change in the log of the folding rate upon mutation to the change in the log of the equilibrium constant for folding, are reported for 25 point mutations and 15 double mutants. All ϕ-values are small, with an average over all sites probed of only 0.19 and a largest value of 0.4. The effect of modulating unfolded-state interactions is studied by measuring ϕ-values in second- site mutants and under solvent conditions that perturb unfolded-state energetics in a defined way. Neither of these alterations significantly affects the distribution of ϕ-values. The results, combined with those of earlier studies that probe the role of hydrogen-bond formation in folding and the burial of surface area, reveal that the transition state for folding contains extensive backbone structure and buries a significant fraction of hydrophobic surface area, but lacks well developed side-chain-side-chain interactions. The folding transition state for NTL9 does not contain a specific "nucleus" consisting of a few key residues; rather, it involves extensive backbone hydrogen bonding and partially formed structure delocalized over almost the entire domain. The potential generality of these observations is discussed.
Collapse
|