1
|
Sanyam, Mondal A. Multiscale modeling of charge transfer in hole-transporting materials: Linking molecular morphology to charge mobility. J Chem Phys 2025; 162:184702. [PMID: 40337944 DOI: 10.1063/5.0265890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025] Open
Abstract
Hole-transporting materials (HTMs) play a pivotal role in the performance and stability of organic electronic devices by enabling efficient hole transport. This study employs a multiscale approach to explore the relationship between molecular morphology and charge transfer properties in four HTM molecules. By combining quantum mechanical calculations, molecular dynamics simulations, and kinetic Monte Carlo modeling, we analyze key structural features such as radial distribution functions, principal axis orientations, and non-covalent interactions. Our findings reveal that molecular size and substituent effects significantly influence non-covalent interactions and molecular alignments, thereby affecting charge transport pathways. Charge transfer rates and energetic disorder were modeled using the master equation, and mobilities were computed, showing satisfactory agreement with experimental data. This comprehensive analysis provides valuable insights into the design of HTMs for organic electronic devices, emphasizing the importance of molecular architecture in optimizing charge mobility and minimizing energy losses.
Collapse
Affiliation(s)
- Sanyam
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gujarat 382355, India
| | - Anirban Mondal
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gujarat 382355, India
| |
Collapse
|
2
|
Patrikar K, Patadia K, Khatua R, Mondal A. From Molecules to Devices: A Multiscale Approach to Evaluating Organic Photovoltaics. J Chem Theory Comput 2024; 20:10120-10131. [PMID: 39535291 DOI: 10.1021/acs.jctc.4c01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Due to their efficient molecular design, nonfullerene acceptors (NFAs) have significantly advanced organic photovoltaics (OPVs). However, the lack of models to screen and evaluate candidate NFAs based on the resulting device performance has impeded the rapid development of high-performance molecules. This work introduces a computational framework utilizing a kinetic Monte Carlo (kMC) model to derive device parameters from molecular properties computed through first principles. By analyzing the quantum chemical properties of diverse dimeric conformers, we estimate the relative probabilities of microscopic processes such as charge separation, recombination, and transport along with charge transfer state formation in the active layer of OPVs. These probabilities set up a random walk of charge carriers in a grid with disordered molecular sites, allowing us to track their average behavior and calculate key device parameters. Our model consistently predicts measured device parameters, including the short-circuit current and open-circuit voltage, for OPVs with diverse NFAs with high accuracy. Additionally, we applied the model to evaluate donor-acceptor combinations of known compounds and newly designed NFA molecules, identifying high-performing pairs. This model offers a computationally efficient approach for designing novel NFA molecules and optimizing the OPV performance.
Collapse
Affiliation(s)
- Kalyani Patrikar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Keval Patadia
- Department of Materials Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Rudranarayan Khatua
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Anirban Mondal
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
3
|
Cao Y, Balduf T, Beachy MD, Bennett MC, Bochevarov AD, Chien A, Dub PA, Dyall KG, Furness JW, Halls MD, Hughes TF, Jacobson LD, Kwak HS, Levine DS, Mainz DT, Moore KB, Svensson M, Videla PE, Watson MA, Friesner RA. Quantum chemical package Jaguar: A survey of recent developments and unique features. J Chem Phys 2024; 161:052502. [PMID: 39092934 DOI: 10.1063/5.0213317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
This paper is dedicated to the quantum chemical package Jaguar, which is commercial software developed and distributed by Schrödinger, Inc. We discuss Jaguar's scientific features that are relevant to chemical research as well as describe those aspects of the program that are pertinent to the user interface, the organization of the computer code, and its maintenance and testing. Among the scientific topics that feature prominently in this paper are the quantum chemical methods grounded in the pseudospectral approach. A number of multistep workflows dependent on Jaguar are covered: prediction of protonation equilibria in aqueous solutions (particularly calculations of tautomeric stability and pKa), reactivity predictions based on automated transition state search, assembly of Boltzmann-averaged spectra such as vibrational and electronic circular dichroism, as well as nuclear magnetic resonance. Discussed also are quantum chemical calculations that are oriented toward materials science applications, in particular, prediction of properties of optoelectronic materials and organic semiconductors, and molecular catalyst design. The topic of treatment of conformations inevitably comes up in real world research projects and is considered as part of all the workflows mentioned above. In addition, we examine the role of machine learning methods in quantum chemical calculations performed by Jaguar, from auxiliary functions that return the approximate calculation runtime in a user interface, to prediction of actual molecular properties. The current work is second in a series of reviews of Jaguar, the first having been published more than ten years ago. Thus, this paper serves as a rare milestone on the path that is being traversed by Jaguar's development in more than thirty years of its existence.
Collapse
Affiliation(s)
- Yixiang Cao
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Ty Balduf
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Michael D Beachy
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - M Chandler Bennett
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Art D Bochevarov
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Alan Chien
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Pavel A Dub
- Schrödinger, Inc., 9868 Scranton Road, Suite 3200, San Diego, California 92121, USA
| | - Kenneth G Dyall
- Schrödinger, Inc., 101 SW Main St., Suite 1300, Portland, Oregon 97204, USA
| | - James W Furness
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Mathew D Halls
- Schrödinger, Inc., 9868 Scranton Road, Suite 3200, San Diego, California 92121, USA
| | - Thomas F Hughes
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Leif D Jacobson
- Schrödinger, Inc., 101 SW Main St., Suite 1300, Portland, Oregon 97204, USA
| | - H Shaun Kwak
- Schrödinger, Inc., 101 SW Main St., Suite 1300, Portland, Oregon 97204, USA
| | - Daniel S Levine
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Daniel T Mainz
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Kevin B Moore
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Mats Svensson
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Pablo E Videla
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Mark A Watson
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, USA
| | - Richard A Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|
4
|
Hu T, Han G, Guo Y, Yu K, Yi Y. Efficient and Accurate Estimation of Electronic Polarization Energies for Organic Semiconductors: An Embedding Charge Quantum Mechanics/Continuum Dielectric Model. J Chem Theory Comput 2024; 20:5115-5121. [PMID: 38870475 DOI: 10.1021/acs.jctc.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Electronic polarization plays a pivotal role in determining the molecular energy levels of organic semiconductors (OSCs) in the condensed phase. However, accurate estimation of the electronic polarization energy is a challenging task due to the intricate imbalance between the precision and efficiency. In this work, we have developed an embedding charge quantum mechanics/continuum dielectric (EC-QM/CD) model, which enables quantitative evaluation of the ionization potential (IP), electron affinity (EA), and polarization energy in both crystalline and amorphous solids for OSCs. The benchmark calculations on both p-type OSCs of oligoacenes and n-type OSCs of A-D-A small-molecule acceptors show that the values of IP, EA, and polarization energy obtained by EC-QM/CD are in good accordance with the experimental measurements or the results by high-precision methods, while the computational costs are substantially reduced. Given its balance between the accuracy and efficiency, the EC-QM/CD model exhibits considerable potential to broaden the applications in the field of OSCs, for instance, high-throughput screening by using solid-state energy levels or polarization energies as critical descriptors.
Collapse
Affiliation(s)
- Taiping Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Guo
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Kuang Yu
- Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research (iMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Hume PA, Price MB, Hodgkiss JM. New Avenues for Organic Solar Cells Using Intrinsically Charge-Generating Materials. JACS AU 2024; 4:1295-1302. [PMID: 38665646 PMCID: PMC11040696 DOI: 10.1021/jacsau.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/28/2024]
Abstract
The molecular electron acceptor material Y6 has been a key part of the most recent surge in organic solar cell sunlight-to-electricity power conversion efficiency, which is now approaching 20%. Numerous studies have sought to understand the fundamental photophysical reasons for the exceptional performance of Y6 and its growing family of structural derivatives. Though significant uncertainty about several details remains, many have concluded that initially photogenerated excited states rapidly convert into electron-hole charge pairs in the neat material. These charge pairs are characterized by location of the electron and hole on different Y6 molecules, in contrast to the Frenkel excitons that dominate the behavior of most organic semiconductor materials. Here, we summarize the current state of knowledge regarding Y6 photophysics and the key observations that have led to it. We then link this understanding to other advances, such as the role of quadrupolar fields in donor-acceptor blends, and the importance of molecular interactions and organization in providing the structural basis for Y6's properties. Finally, we turn our attention to ways of making use of the new photophysics of Y6, and suggest molecular doping, crystal structure tuning, and electric field engineering as promising avenues for future exploration.
Collapse
Affiliation(s)
- Paul A. Hume
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, Wellington, 6012, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington, 6012, New Zealand
| | - Michael B. Price
- School
of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Justin M. Hodgkiss
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, Wellington, 6012, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington, 6012, New Zealand
| |
Collapse
|
6
|
Sharma A, Gasparini N, Markina A, Karuthedath S, Gorenflot J, Xu H, Han J, Balawi A, Liu W, Bryant D, Bertrandie J, Troughton J, Paleti SHK, Bristow H, Laquai F, Andrienko D, Baran D. Semitransparent Organic Photovoltaics Utilizing Intrinsic Charge Generation in Non-Fullerene Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305367. [PMID: 38100279 DOI: 10.1002/adma.202305367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/11/2023] [Indexed: 12/17/2023]
Abstract
In organic semiconductors, a donor/acceptor heterojunction is typically required for efficient dissociation of excitons. Using transient absorption spectroscopy to study the dynamics of excited states in non-fullerene acceptors (NFAs), it is shown that NFAs can generate charges without a donor/acceptor interface. This is due to the fact that dielectric solvation provides a driving force sufficient to dissociate the excited state and form the charge-transfer (CT) state. The CT state is further dissociated into free charges at interfaces between polycrystalline regions in neat NFAs. For IEICO-4F, incorporating just 9 wt% donor polymer PTB7-Th in neat films greatly boosts charge generation, enhancing efficient exciton separation into free charges. This property is utilized to fabricate donor-dilute organic photovoltaics (OPV) delivering a power conversion efficiency of 8.3% in the case of opaque devices with a metal top-electrode and an active layer average visible transmittance (AVT) of 75%. It is shown that the intrinsic charge generation in low-bandgap NFAs contributes to the overall photocurrent generation. IEICO-4F-based OPVs with limited PTB7-Th content have high thermal resilience demonstrating little drop in performance over 700 h. PTB7-Th:IEICO-4F semitransparent OPVs are leveraged to fabricate an 8-series connected semitransparent module, demonstrating light-utilization efficiency of 2.2% alongside an AVT of 63%.
Collapse
Affiliation(s)
- Anirudh Sharma
- Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Nicola Gasparini
- Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Anastasia Markina
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Safakath Karuthedath
- Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Julien Gorenflot
- Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Han Xu
- Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jianhua Han
- Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Ahmed Balawi
- Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Wenlan Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Daniel Bryant
- Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jules Bertrandie
- Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Joel Troughton
- Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Sri Harish Kumar Paleti
- Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Helen Bristow
- Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Frederic Laquai
- Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Denis Andrienko
- Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Derya Baran
- Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
7
|
Wu Y, Li Y, van der Zee B, Liu W, Markina A, Fan H, Yang H, Cui C, Li Y, Blom PWM, Andrienko D, Wetzelaer GJAH. Reduced bimolecular charge recombination in efficient organic solar cells comprising non-fullerene acceptors. Sci Rep 2023; 13:4717. [PMID: 36949087 PMCID: PMC10033508 DOI: 10.1038/s41598-023-31929-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/20/2023] [Indexed: 03/24/2023] Open
Abstract
Bimolecular charge recombination is one of the most important loss processes in organic solar cells. However, the bimolecular recombination rate in solar cells based on novel non-fullerene acceptors is mostly unclear. Moreover, the origin of the reduced-Langevin recombination rate in bulk heterojunction solar cells in general is still poorly understood. Here, we investigate the bimolecular recombination rate and charge transport in a series of high-performance organic solar cells based on non-fullerene acceptors. From steady-state dark injection measurements and drift-diffusion simulations of the current-voltage characteristics under illumination, Langevin reduction factors of up to over two orders of magnitude are observed. The reduced recombination is essential for the high fill factors of these solar cells. The Langevin reduction factors are observed to correlate with the quadrupole moment of the acceptors, which is responsible for band bending at the donor-acceptor interface, forming a barrier for charge recombination. Overall these results therefore show that suppressed bimolecular recombination is essential for the performance of organic solar cells and provide design rules for novel materials.
Collapse
Affiliation(s)
- Yue Wu
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yungui Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Bas van der Zee
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Wenlan Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Anastasia Markina
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hongyu Fan
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Hang Yang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chaohua Cui
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Paul W M Blom
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Denis Andrienko
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | | |
Collapse
|
8
|
Savintseva L, Avdoshin A, Ignatov S, Novikov A. Theoretical Study of Charge Mobility in Crystal Porphine and a Computer Design of a Porphine-Based Semiconductive Discotic Liquid Mesophase. Int J Mol Sci 2023; 24:736. [PMID: 36614178 PMCID: PMC9821175 DOI: 10.3390/ijms24010736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Organic semiconductors are the focus of numerous studies; they are used in electronic devices. Modern research involves the production of neuromorphic organic materials, including those based on liquid crystal materials. The purpose of this work involves the theoretical modeling of molecules (the "core with branches" type) to construct a discotic mesophase capable of performing the functions of a neuromorphic material. For this purpose, the conductivity of crystal porphine, which can act as the nucleus of a molecule of the "core with branches" type, was investigated. The Marcus theory charge mobility values for the hole and electron were 0.148 and 0.088 cm2/V·s, respectively (the MOO method for calculating transfer integrals), and 0.561 and 0.160 cm2/V·s (DIPRO method). Based on TD-HF (HF-3c level of theory) calculations, possible structures of molecules for the formation of a discotic mesophase are proposed.
Collapse
Affiliation(s)
- Liana Savintseva
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave, 603950 Nizhny Novgorod, Russia
| | - Alexander Avdoshin
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave, 603950 Nizhny Novgorod, Russia
| | - Stanislav Ignatov
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave, 603950 Nizhny Novgorod, Russia
| | - Alexander Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, 199034 Saint Petersburg, Russia
- Infochemistry Scientific Center, ITMO University, Kronverksky Pr., 49, Bldg. A, 197101 Saint Petersburg, Russia
| |
Collapse
|
9
|
Forero‐Martinez NC, Lin K, Kremer K, Andrienko D. Virtual Screening for Organic Solar Cells and Light Emitting Diodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200825. [PMID: 35460204 PMCID: PMC9259727 DOI: 10.1002/advs.202200825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The field of organic semiconductors is multifaceted and the potentially suitable molecular compounds are very diverse. Representative examples include discotic liquid crystals, dye-sensitized solar cells, conjugated polymers, and graphene-based low-dimensional materials. This huge variety not only represents enormous challenges for synthesis but also for theory, which aims at a comprehensive understanding and structuring of the plethora of possible compounds. Eventually computational methods should point to new, better materials, which have not yet been synthesized. In this perspective, it is shown that the answer to this question rests upon the delicate balance between computational efficiency and accuracy of the methods used in the virtual screening. To illustrate the fundamentals of virtual screening, chemical design of non-fullerene acceptors, thermally activated delayed fluorescence emitters, and nanographenes are discussed.
Collapse
Affiliation(s)
| | - Kun‐Han Lin
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Denis Andrienko
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
10
|
Price MB, Hume PA, Ilina A, Wagner I, Tamming RR, Thorn KE, Jiao W, Goldingay A, Conaghan PJ, Lakhwani G, Davis NJLK, Wang Y, Xue P, Lu H, Chen K, Zhan X, Hodgkiss JM. Free charge photogeneration in a single component high photovoltaic efficiency organic semiconductor. Nat Commun 2022; 13:2827. [PMID: 35595764 PMCID: PMC9122989 DOI: 10.1038/s41467-022-30127-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/15/2022] [Indexed: 11/09/2022] Open
Abstract
Organic photovoltaics (OPVs) promise cheap and flexible solar energy. Whereas light generates free charges in silicon photovoltaics, excitons are normally formed in organic semiconductors due to their low dielectric constants, and require molecular heterojunctions to split into charges. Recent record efficiency OPVs utilise the small molecule, Y6, and its analogues, which – unlike previous organic semiconductors – have low band-gaps and high dielectric constants. We show that, in Y6 films, these factors lead to intrinsic free charge generation without a heterojunction. Intensity-dependent spectroscopy reveals that 60–90% of excitons form free charges at AM1.5 light intensity. Bimolecular recombination, and hole traps constrain single component Y6 photovoltaics to low efficiencies, but recombination is reduced by small quantities of donor. Quantum-chemical calculations reveal strong coupling between exciton and CT states, and an intermolecular polarisation pattern that drives exciton dissociation. Our results challenge how current OPVs operate, and renew the possibility of efficient single-component OPVs. When light hits organic semiconductors, bound charge pairs, called excitons, are usually produced. Here, the authors show that in the best performing organic solar material to date, free charges, rather than excitons, are directly created by light.
Collapse
Affiliation(s)
- Michael B Price
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand. .,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| | - Paul A Hume
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand. .,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| | - Aleksandra Ilina
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Isabella Wagner
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Ronnie R Tamming
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.,Wellington UniVentures, Victoria University of Wellington, Wellington, New Zealand.,Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington, New Zealand.,The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
| | - Karen E Thorn
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Wanting Jiao
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Alison Goldingay
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, NSW, Australia
| | - Patrick J Conaghan
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, NSW, Australia
| | - Girish Lakhwani
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, NSW, Australia
| | - Nathaniel J L K Davis
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Yifan Wang
- School of Materials Science and Engineering, Peking University, Beijing, China.,College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Peiyao Xue
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Heng Lu
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Kai Chen
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.,Wellington UniVentures, Victoria University of Wellington, Wellington, New Zealand.,Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington, New Zealand.,The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
| | - Xiaowei Zhan
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Justin M Hodgkiss
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand. .,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| |
Collapse
|
11
|
Lin KH, Wetzelaer GJAH, Blom PWM, Andrienko D. Virtual Screening of TADF Emitters for Single-Layer OLEDs. Front Chem 2022; 9:800027. [PMID: 34976956 PMCID: PMC8716429 DOI: 10.3389/fchem.2021.800027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Thermally-activated delayed fluorescence (TADF) is a concept which helps to harvest triplet excitations, boosting the efficiency of an organic light-emitting diode. TADF can be observed in molecules with spatially separated donor and acceptor groups with a reduced triplet-singlet energy level splitting. TADF materials with balanced electron and hole transport are attractive for realizing efficient single-layer organic light emitting diodes, greatly simplifying their manufacturing and improving their stability. Our goal here is to computationally screen such materials and provide a comprehensive database of compounds with a range of emission wavelengths, ionization energies, and electron affinities.
Collapse
Affiliation(s)
- Kun-Han Lin
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Paul W M Blom
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | |
Collapse
|
12
|
Ortstein K, Hutsch S, Hambsch M, Tvingstedt K, Wegner B, Benduhn J, Kublitski J, Schwarze M, Schellhammer S, Talnack F, Vogt A, Bäuerle P, Koch N, Mannsfeld SCB, Kleemann H, Ortmann F, Leo K. Band gap engineering in blended organic semiconductor films based on dielectric interactions. NATURE MATERIALS 2021; 20:1407-1413. [PMID: 34112978 DOI: 10.1038/s41563-021-01025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Blending organic molecules to tune their energy levels is currently being investigated as an approach to engineer the bulk and interfacial optoelectronic properties of organic semiconductors. It has been proven that the ionization energy and electron affinity can be equally shifted in the same direction by electrostatic effects controlled by blending similar halogenated derivatives with different energetics. Here we show that the energy gap of organic semiconductors can also be tuned by blending. We use oligothiophenes with different numbers of thiophene rings as an example and investigate their structure and electronic properties. Photoelectron spectroscopy and inverse photoelectron spectroscopy show tunability of the single-particle gap, with the optical gaps showing similar, but smaller, effects. Theoretical analysis shows that this tuning is mainly caused by a change in the dielectric constant with blend ratio. Further studies will explore the practical impact of this energy-level engineering strategy for optoelectronic devices.
Collapse
Affiliation(s)
- Katrin Ortstein
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Hutsch
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany
- Technische Universität München, Department of Chemistry, Garching, Germany
| | - Mike Hambsch
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden, Germany
| | - Kristofer Tvingstedt
- Lehrstuhl für Experimentelle Physik IV, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Berthold Wegner
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany
| | - Jonas Kublitski
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany
| | - Martin Schwarze
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Schellhammer
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany
| | - Felix Talnack
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden, Germany
| | - Astrid Vogt
- Institut für Organische Chemie II und Neue Materialien, Universität Ulm, Ulm, Germany
| | - Peter Bäuerle
- Institut für Organische Chemie II und Neue Materialien, Universität Ulm, Ulm, Germany
| | - Norbert Koch
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan C B Mannsfeld
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden, Germany
| | - Hans Kleemann
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany
| | - Frank Ortmann
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany.
- Technische Universität München, Department of Chemistry, Garching, Germany.
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
13
|
Armleder J, Strunk T, Symalla F, Friederich P, Enrique Olivares Peña J, Neumann T, Wenzel W, Fediai A. Computing Charging and Polarization Energies of Small Organic Molecules Embedded into Amorphous Materials with Quantum Accuracy. J Chem Theory Comput 2021; 17:3727-3738. [PMID: 34038113 DOI: 10.1021/acs.jctc.1c00036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ionization potential, electron affinity, and cation/anion polarization energies (IP, EA, P(+), P(-)) of organic molecules determine injection barriers, charge carriers balance, doping efficiency, and light outcoupling in organic electronics devices, such as organic light-emitting diodes (OLEDs). Computing IP and EA of isolated molecules is a common task for quantum chemistry methods. However, once molecules are embedded in an amorphous organic matrix, IP and EA values change, and accurate predictions become challenging. Here, we present a revised quantum embedding method [Friederich et al. J. Chem. Theory Comput. 2014, 10 (9), 3720-3725] that accurately predicts the dielectric permittivity and ionization potentials in three test materials, NPB, TCTA, and C60, and allows straightforward interpretation of their nature. The method paves the way toward reliable virtual screening of amorphous organic semiconductors with targeted IP/EA, polarization energies, and relative dielectric permittivity.
Collapse
Affiliation(s)
- Jonas Armleder
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
| | - Timo Strunk
- Nanomatch GmbH, Griesbachstraße 5, 76185 Karlsruhe, Germany
| | - Franz Symalla
- Nanomatch GmbH, Griesbachstraße 5, 76185 Karlsruhe, Germany
| | - Pascal Friederich
- Nanomatch GmbH, Griesbachstraße 5, 76185 Karlsruhe, Germany.,Institute of Theoretical Informatics, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
| | | | - Tobias Neumann
- Nanomatch GmbH, Griesbachstraße 5, 76185 Karlsruhe, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
| | - Artem Fediai
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
| |
Collapse
|
14
|
Karuthedath S, Gorenflot J, Firdaus Y, Chaturvedi N, De Castro CSP, Harrison GT, Khan JI, Markina A, Balawi AH, Peña TAD, Liu W, Liang RZ, Sharma A, Paleti SHK, Zhang W, Lin Y, Alarousu E, Lopatin S, Anjum DH, Beaujuge PM, De Wolf S, McCulloch I, Anthopoulos TD, Baran D, Andrienko D, Laquai F. Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. NATURE MATERIALS 2021; 20:378-384. [PMID: 33106652 DOI: 10.1038/s41563-020-00835-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 09/17/2020] [Indexed: 05/20/2023]
Abstract
In bulk heterojunction (BHJ) organic solar cells (OSCs) both the electron affinity (EA) and ionization energy (IE) offsets at the donor-acceptor interface should equally control exciton dissociation. Here, we demonstrate that in low-bandgap non-fullerene acceptor (NFA) BHJs ultrafast donor-to-acceptor energy transfer precedes hole transfer from the acceptor to the donor and thus renders the EA offset virtually unimportant. Moreover, sizeable bulk IE offsets of about 0.5 eV are needed for efficient charge transfer and high internal quantum efficiencies, since energy level bending at the donor-NFA interface caused by the acceptors' quadrupole moments prevents efficient exciton-to-charge-transfer state conversion at low IE offsets. The same bending, however, is the origin of the barrier-less charge transfer state to free charge conversion. Our results provide a comprehensive picture of the photophysics of NFA-based blends, and show that sizeable bulk IE offsets are essential to design efficient BHJ OSCs based on low-bandgap NFAs.
Collapse
Affiliation(s)
- Safakath Karuthedath
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Julien Gorenflot
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Yuliar Firdaus
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Neha Chaturvedi
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Catherine S P De Castro
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - George T Harrison
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Jafar I Khan
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | | | - Ahmed H Balawi
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Top Archie Dela Peña
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Wenlan Liu
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Ru-Ze Liang
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Anirudh Sharma
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Sri H K Paleti
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Weimin Zhang
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Yuanbao Lin
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Erkki Alarousu
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Sergei Lopatin
- Imaging and Characterization Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Dalaver H Anjum
- Imaging and Characterization Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Pierre M Beaujuge
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Stefaan De Wolf
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Iain McCulloch
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Thomas D Anthopoulos
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Derya Baran
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | | | - Frédéric Laquai
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
15
|
Lin KH, Corminboeuf C. FB-ECDA: Fragment-based Electronic Coupling Decomposition Analysis for Organic Amorphous Semiconductors. J Phys Chem A 2020; 124:10624-10634. [DOI: 10.1021/acs.jpca.0c09743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kun-Han Lin
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Perdigón-Toro L, Zhang H, Markina A, Yuan J, Hosseini SM, Wolff CM, Zuo G, Stolterfoht M, Zou Y, Gao F, Andrienko D, Shoaee S, Neher D. Barrierless Free Charge Generation in the High-Performance PM6:Y6 Bulk Heterojunction Non-Fullerene Solar Cell. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906763. [PMID: 31975446 DOI: 10.1002/adma.201906763] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/19/2019] [Indexed: 05/22/2023]
Abstract
Organic solar cells are currently experiencing a second golden age thanks to the development of novel non-fullerene acceptors (NFAs). Surprisingly, some of these blends exhibit high efficiencies despite a low energy offset at the heterojunction. Herein, free charge generation in the high-performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated as a function of internal field, temperature and excitation energy. Results show that photocurrent generation is essentially barrierless with near-unity efficiency, regardless of excitation energy. Efficient charge separation is maintained over a wide temperature range, down to 100 K, despite the small driving force for charge generation. Studies on a blend with a low concentration of the NFA, measurements of the energetic disorder, and theoretical modeling suggest that CT state dissociation is assisted by the electrostatic interfacial field which for Y6 is large enough to compensate the Coulomb dissociation barrier.
Collapse
Affiliation(s)
- Lorena Perdigón-Toro
- Soft Matter Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Disordered Semiconductor Optoelectronics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Huotian Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden
| | - Anastasia Markina
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jun Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Seyed Mehrdad Hosseini
- Disordered Semiconductor Optoelectronics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Christian M Wolff
- Soft Matter Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Guangzheng Zuo
- Soft Matter Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Martin Stolterfoht
- Soft Matter Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden
| | - Denis Andrienko
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Safa Shoaee
- Disordered Semiconductor Optoelectronics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Dieter Neher
- Soft Matter Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| |
Collapse
|
17
|
Kotadiya NB, Mondal A, Blom PWM, Andrienko D, Wetzelaer GJAH. A window to trap-free charge transport in organic semiconducting thin films. NATURE MATERIALS 2019; 18:1182-1186. [PMID: 31548633 DOI: 10.1038/s41563-019-0473-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Organic semiconductors, which serve as the active component in devices, such as solar cells, light-emitting diodes and field-effect transistors1, often exhibit highly unipolar charge transport, meaning that they predominantly conduct either electrons or holes. Here, we identify an energy window inside which organic semiconductors do not experience charge trapping for device-relevant thicknesses in the range of 100 to 300 nm, leading to trap-free charge transport of both carriers. When the ionization energy of a material surpasses 6 eV, hole trapping will limit the hole transport, whereas an electron affinity lower than 3.6 eV will give rise to trap-limited electron transport. When both energy levels are within this window, trap-free bipolar charge transport occurs. Based on simulations, water clusters are proposed to be the source of hole trapping. Organic semiconductors with energy levels situated within this energy window may lead to optoelectronic devices with enhanced performance. However, for blue-emitting light-emitting diodes, which require an energy gap of 3 eV, removing or disabling charge traps will remain a challenge.
Collapse
Affiliation(s)
| | - Anirban Mondal
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Paul W M Blom
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | | |
Collapse
|
18
|
Schwarze M, Schellhammer KS, Ortstein K, Benduhn J, Gaul C, Hinderhofer A, Perdigón Toro L, Scholz R, Kublitski J, Roland S, Lau M, Poelking C, Andrienko D, Cuniberti G, Schreiber F, Neher D, Vandewal K, Ortmann F, Leo K. Impact of molecular quadrupole moments on the energy levels at organic heterojunctions. Nat Commun 2019; 10:2466. [PMID: 31165738 PMCID: PMC6549189 DOI: 10.1038/s41467-019-10435-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/11/2019] [Indexed: 11/09/2022] Open
Abstract
The functionality of organic semiconductor devices crucially depends on molecular energies, namely the ionisation energy and the electron affinity. Ionisation energy and electron affinity values of thin films are, however, sensitive to film morphology and composition, making their prediction challenging. In a combined experimental and simulation study on zinc-phthalocyanine and its fluorinated derivatives, we show that changes in ionisation energy as a function of molecular orientation in neat films or mixing ratio in blends are proportional to the molecular quadrupole component along the π-π-stacking direction. We apply these findings to organic solar cells and demonstrate how the electrostatic interactions can be tuned to optimise the energy of the charge-transfer state at the donor-acceptor interface and the dissociation barrier for free charge carrier generation. The confirmation of the correlation between interfacial energies and quadrupole moments for other materials indicates its relevance for small molecules and polymers.
Collapse
Affiliation(s)
- Martin Schwarze
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069, Dresden, Germany.
| | - Karl Sebastian Schellhammer
- Institute for Materials Science, Max-Bergmann Center of Biomaterials and Dresden Center for Computational Materials Science, Technische Universität Dresden, 01069, Dresden, Germany.,Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
| | - Katrin Ortstein
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069, Dresden, Germany
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069, Dresden, Germany
| | - Christopher Gaul
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
| | - Alexander Hinderhofer
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Lorena Perdigón Toro
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Reinhard Scholz
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069, Dresden, Germany
| | - Jonas Kublitski
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069, Dresden, Germany
| | - Steffen Roland
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Matthias Lau
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069, Dresden, Germany
| | - Carl Poelking
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Denis Andrienko
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science, Max-Bergmann Center of Biomaterials and Dresden Center for Computational Materials Science, Technische Universität Dresden, 01069, Dresden, Germany
| | - Frank Schreiber
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Dieter Neher
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Koen Vandewal
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069, Dresden, Germany.,Instituut voor Materiaalonderzoek (IMO), Hasselt University, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Frank Ortmann
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany.
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069, Dresden, Germany.
| |
Collapse
|
19
|
Gryn'ova G, Lin KH, Corminboeuf C. Read between the Molecules: Computational Insights into Organic Semiconductors. J Am Chem Soc 2018; 140:16370-16386. [PMID: 30395466 PMCID: PMC6287891 DOI: 10.1021/jacs.8b07985] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The
performance and key electronic properties of molecular organic
semiconductors are dictated by the interplay between the chemistry
of the molecular core and the intermolecular factors of which manipulation
has inspired both experimentalists and theorists. This Perspective
presents major computational challenges and modern methodological
strategies to advance the field. The discussion ranges from insights
and design principles at the quantum chemical level, in-depth atomistic
modeling based on multiscale protocols, morphological prediction and
characterization as well as energy-property maps involving data-driven
analysis. A personal overview of the past achievements and future
direction is also provided.
Collapse
Affiliation(s)
- Ganna Gryn'ova
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Kun-Han Lin
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland.,Laboratory for Computational Molecular Design and National Center for Computational Design and Discovery of Novel Materials (MARVEL) , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland.,Laboratory for Computational Molecular Design and National Center for Computational Design and Discovery of Novel Materials (MARVEL) , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| |
Collapse
|
20
|
|
21
|
Kotadiya NB, Lu H, Mondal A, Ie Y, Andrienko D, Blom PWM, Wetzelaer GJAH. Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies. NATURE MATERIALS 2018; 17:329-334. [PMID: 29459747 DOI: 10.1038/s41563-018-0022-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
Barrier-free (Ohmic) contacts are a key requirement for efficient organic optoelectronic devices, such as organic light-emitting diodes, solar cells, and field-effect transistors. Here, we propose a simple and robust way of forming an Ohmic hole contact on organic semiconductors with a high ionization energy (IE). The injected hole current from high-work-function metal-oxide electrodes is improved by more than an order of magnitude by using an interlayer for which the sole requirement is that it has a higher IE than the organic semiconductor. Insertion of the interlayer results in electrostatic decoupling of the electrode from the semiconductor and realignment of the Fermi level with the IE of the organic semiconductor. The Ohmic-contact formation is illustrated for a number of material combinations and solves the problem of hole injection into organic semiconductors with a high IE of up to 6 eV.
Collapse
Affiliation(s)
| | - Hao Lu
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Anirban Mondal
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Yutaka Ie
- Max Planck Institute for Polymer Research, Mainz, Germany
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Ibaraki, Japan
| | | | - Paul W M Blom
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | |
Collapse
|
22
|
Fazzi D, Barbatti M, Thiel W. Hot and Cold Charge-Transfer Mechanisms in Organic Photovoltaics: Insights into the Excited States of Donor/Acceptor Interfaces. J Phys Chem Lett 2017; 8:4727-4734. [PMID: 28903560 DOI: 10.1021/acs.jpclett.7b02144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The evolution of the excited-state manifold in organic D/A aggregates (e.g., the prototypical P3HT/PCBM) is investigated through a bottom-up approach via first-principles calculations. We show how the excited-state energies, the charge transfer (CT) states, and the electron-hole density distributions are strongly influenced by the size, the orientation, and the position (i.e., on-top versus on-edge phases) of P3HT/PCBM domains. We discuss how the structural order influences the excited-state electronic structure, providing an atomistic interpretation of the photophysics of organic blends. We show how the simultaneous presence of on-top and on-edge phases does not alter the optical absorption spectrum of the blend but does affect the photophysics. Photovoltaic processes such as (i) the simultaneous charge generation obtained from hot and cold excitations, (ii) the instantaneous and delayed charge separation, and (iii) the pump-push-probe charge generation can be interpreted based on our study.
Collapse
Affiliation(s)
- Daniele Fazzi
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
23
|
Volpi R, Linares M. Study of the cold charge transfer state separation at the TQ1/PC 71 BM interface. J Comput Chem 2017; 38:1039-1048. [PMID: 28318028 DOI: 10.1002/jcc.24776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 11/09/2022]
Abstract
Charge transfer (CT) state separation is one of the most critical processes in the functioning of an organic solar cell. In this article, we study a bilayer of TQ1 and PC71 BM molecules presenting disorder at the interface, obtained by means of Molecular Dynamics. The study of the CT state splitting can be first analyzed through the CT state splitting diagram, introduced in a previous work. Through this analysis, we identify the possibility of CT state splitting within Marcus Theory in function of the electric field. Once the right range of electric fields has been identified, we perform Kinetic Monte Carlo simulations to estimate percentages and times for the CT state splitting and the free charge carriers collection. Statistical information extracted from these simulations allows us to highlight the importance of polarization and to test the limits of the predictions given by the CT state splitting diagram. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Riccardo Volpi
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-581 83, Sweden
| | - Mathieu Linares
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-581 83, Sweden.,Swedish e-Science Research Centre (SeRC), Linköping University, Linköping, SE-581 83, Sweden
| |
Collapse
|
24
|
Schulz GL, Fischer FSU, Trefz D, Melnyk A, Hamidi-Sakr A, Brinkmann M, Andrienko D, Ludwigs S. The PCPDTBT Family: Correlations between Chemical Structure, Polymorphism, and Device Performance. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b01698] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- G. L. Schulz
- IPOC-Functional
Polymers, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - F. S. U. Fischer
- IPOC-Functional
Polymers, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - D. Trefz
- IPOC-Functional
Polymers, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - A. Melnyk
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
- Graduate School
Materials Science in Mainz, Staudinger
Weg 9, 55128 Mainz, Germany
| | - A. Hamidi-Sakr
- Institut
Charles Sadron, CNRS, University of Strasbourg, 23 rue du loess, 67034 Strasbourg, France
| | - M. Brinkmann
- Institut
Charles Sadron, CNRS, University of Strasbourg, 23 rue du loess, 67034 Strasbourg, France
| | - D. Andrienko
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - S. Ludwigs
- IPOC-Functional
Polymers, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|