1
|
Castagnola M, Riso RR, El Moutaoukal Y, Ronca E, Koch H. Strong Coupling Quantum Electrodynamics Hartree-Fock Response Theory. J Phys Chem A 2025; 129:4447-4457. [PMID: 40344769 DOI: 10.1021/acs.jpca.5c01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
The development of reliable ab initio methods for light-matter strong coupling is necessary for a deeper understanding of molecular polaritons. The recently developed strong coupling quantum electrodynamics Hartree-Fock model (SC-QED-HF) provides cavity-consistent molecular orbitals, overcoming several difficulties related to the simpler QED-HF wave function. In this paper, we further develop this method by implementing the response theory for SC-QED-HF. We compare the derived linear response equations with the time-dependent QED-HF theory and discuss the validity of equivalence relations connecting matter and electromagnetic observables. Our results show that electron-photon correlation induces an excitation redshift compared to the time-dependent QED-HF energies, and we discuss the effect of the dipole self-energy on the ground and excited state properties with different basis sets.
Collapse
Affiliation(s)
- Matteo Castagnola
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Rosario R Riso
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Yassir El Moutaoukal
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Enrico Ronca
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
2
|
Bocanegra Vargas AF, Li TE. Polariton-induced Purcell effects via a reduced semiclassical electrodynamics approach. J Chem Phys 2025; 162:124101. [PMID: 40125669 DOI: 10.1063/5.0251767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025] Open
Abstract
Recent experiments have demonstrated that polariton formation provides a novel strategy for modifying local molecular processes when a large ensemble of molecules is confined within an optical cavity. Herein, a numerical strategy based on coupled Maxwell-Schrödinger equations is examined for simulating local molecular processes in a realistic cavity structure under collective strong coupling. In this approach, only a few molecules, referred to as quantum impurities, are treated quantum mechanically, while the remaining macroscopic molecular layer and the cavity structure are modeled using dielectric functions. When a single electronic two-level system embedded in a Lorentz medium is confined in a two-dimensional Bragg resonator, our numerical simulations reveal a polariton-induced Purcell effect: the radiative decay rate of the quantum impurity is significantly enhanced by the cavity when the impurity frequency matches the polariton frequency, while the rate can sometimes be greatly suppressed when the impurity is near resonance with the bulk molecules forming strong coupling. In addition, this approach demonstrates that the cavity absorption of light exhibits Rabi-splitting-dependent suppression due to the inclusion of a realistic cavity structure. Our simulations also identify a fundamental limitation of this approach-an inaccurate description of polariton dephasing rates into dark modes. This arises because the dark-mode degrees of freedom are not explicitly included when most molecules are modeled using simple dielectric functions. As the polariton-induced Purcell effect alters molecular radiative decay differently from the Purcell effect under weak coupling, this polariton-induced effect may facilitate understanding the origin of polariton-modified photochemistry under electronic strong coupling.
Collapse
Affiliation(s)
| | - Tao E Li
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
3
|
Hu D, Chng BXK, Ying W, Huo P. Trajectory-based non-adiabatic simulations of the polariton relaxation dynamics. J Chem Phys 2025; 162:124113. [PMID: 40145468 DOI: 10.1063/5.0246099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
We benchmark the accuracy of various trajectory-based non-adiabatic methods in simulating the polariton relaxation dynamics under the collective coupling regime. The Holstein-Tavis-Cummings Hamiltonian is used to describe the hybrid light-matter system of N molecules coupled to a single cavity mode. We apply various recently developed trajectory-based methods to simulate the population relaxation dynamics by initially exciting the upper polariton state and benchmark the results against populations computed from exact quantum dynamical propagation using the hierarchical equations of motion approach. In these benchmarks, we have systematically varied the number of molecules N, light-matter detunings, and the light-matter coupling strengths. Our results demonstrate that the symmetrical quasi-classical method with γ correction and spin-mapping linearized semi-classical approaches yield more accurate polariton population dynamics than traditional mixed quantum-classical methods, such as the Ehrenfest and surface hopping techniques.
Collapse
Affiliation(s)
- Deping Hu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Benjamin X K Chng
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Wenxiang Ying
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
- The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
4
|
Sukharev M, Subotnik JE, Nitzan A. Unveiling the Dance of Molecules: Rovibrational Dynamics of Molecules under Intense Illumination at Complex Plasmonic Interfaces. J Chem Theory Comput 2025; 21:2165-2178. [PMID: 39964233 DOI: 10.1021/acs.jctc.4c01652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Understanding the quantum dynamics of strongly coupled molecule-cavity systems remains a significant challenge in molecular polaritonics. This work develops a comprehensive self-consistent model simulating electromagnetic interactions of diatomic molecules with quantum rovibrational degrees of freedom in resonant optical cavities. The approach employs an efficient numerical methodology to solve coupled Schrödinger-Maxwell equations in real spacetime, enabling three-dimensional simulations through a novel molecular mapping technique. The study investigates the relaxation dynamics of an ensemble of molecules following intense resonant pump excitation in Fabry-Perot cavities and at three-dimensional plasmonic metasurfaces. The simulations reveal dramatically modified relaxation pathways inside cavities compared to free space, characterized by persistent molecular alignment arising from cavity-induced rotational pumping. They also indicate the presence of a previously unreported relaxation stabilization mechanism driven by dephasing of the collective molecular-cavity mode. Additionally, the study demonstrates that strong molecular coupling significantly modifies the circular dichroism spectra of chiral metasurfaces, suggesting new opportunities for controlling light-matter interactions in quantum optical systems.
Collapse
Affiliation(s)
- Maxim Sukharev
- College of Integrative Sciences and Arts, Arizona State University, Mesa, Arizona 85212, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Joseph E Subotnik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Pérez-Sánchez JB, Koner A, Raghavan-Chitra S, Yuen-Zhou J. CUT-E as a 1/N expansion for multiscale molecular polariton dynamics. J Chem Phys 2025; 162:064101. [PMID: 39927531 DOI: 10.1063/5.0244452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Molecular polaritons arise when the collective coupling between an ensemble of N molecules and an optical mode exceeds individual photon and molecular linewidths. The complexity of their description stems from their multiscale nature, where the local dynamics of each molecule can, in principle, be influenced by the collective behavior of the entire ensemble. To address this, we previously introduced a formalism called collective dynamics using truncated equations (CUT-E). CUT-E approaches the problem in two stages. First, it exploits permutational symmetries to obtain a substantial simplification of the problem. However, this is often insufficient for parameter regimes relevant to most experiments. Second, it takes the exact solution of the problem in the N → ∞ limit as a reference and derives systematic finite-N corrections. Here, we provide a novel derivation of CUT-E based on recently developed bosonization techniques. We lay down its connections with 1/N expansions that are ubiquitous in other fields of physics and present previously unexplored key aspects of this formalism, including various types of approximations and extensions to high-excitation manifolds.
Collapse
Affiliation(s)
- Juan B Pérez-Sánchez
- Department of Chemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Arghadip Koner
- Department of Chemistry, University of California San Diego, La Jolla, California 92093, USA
| | | | - Joel Yuen-Zhou
- Department of Chemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
6
|
Gu B. Toward Collective Chemistry under Strong Light-Matter Coupling. J Phys Chem Lett 2025; 16:317-323. [PMID: 39723952 DOI: 10.1021/acs.jpclett.4c02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Collective strong light-matter coupling provides a versatile means to manipulate physicochemical properties of molecules and materials. Understanding collective polaritonic dynamics is hindered by the macroscopic number of molecules interacting collectively with photonic modes. We develop a many-body theory to investigate the spectroscopy and dynamics of a molecular ensemble embedded in an optical cavity in the collective strong coupling regime. This theory is constructed by a pseudoparticle representation of the molecular Hamiltonian, which maps the polaritonic Hamiltonian into a coupled fermion-boson model under particle number constraints. The mapped model is then analyzed using the nonequilibrium Green's function theory with the self-energy diagrams identified through a large N expansion. We demonstrate that in the thermodynamic limit, the necessary condition to have any collective effects is to have a macroscopic cavity field. Numerical illustrations are shown for the driven Tavis-Cummings model, which shows an excellent agreement with exact results.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
7
|
Mondal ME, Vamivakas AN, Cundiff ST, Krauss TD, Huo P. Polariton spectra under the collective coupling regime. I. Efficient simulation of linear spectra and quantum dynamics. J Chem Phys 2025; 162:014114. [PMID: 39777510 DOI: 10.1063/5.0243535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
We outline two general theoretical techniques to simulate polariton quantum dynamics and optical spectra under the collective coupling regimes described by a Holstein-Tavis-Cummings (HTC) model Hamiltonian. The first one takes advantage of sparsity of the HTC Hamiltonian, which allows one to reduce the cost of acting polariton Hamiltonian onto a state vector to the linear order of the number of states, instead of the quadratic order. The second one is applying the well-known Chebyshev series expansion approach for quantum dynamics propagation and to simulate the polariton dynamics in the HTC system; this approach allows us to use a much larger time step for propagation and only requires a few recursive operations of the polariton Hamiltonian acting on state vectors. These two theoretical approaches are general and can be applied to any trajectory-based non-adiabatic quantum dynamics methods. We apply these two techniques with our previously developed Lindblad-partially linearized density matrix approach to simulate the linear absorption spectra of the HTC model system, with both inhomogeneous site energy disorders and dipolar orientational disorders. Our numerical results agree well with the previous analytic and numerical work.
Collapse
Affiliation(s)
- M Elious Mondal
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - A Nickolas Vamivakas
- The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Steven T Cundiff
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Todd D Krauss
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
8
|
Herrera F, Barnes WL. Multiple interacting photonic modes in strongly coupled organic microcavities. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230343. [PMID: 39717976 DOI: 10.1098/rsta.2023.0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 12/25/2024]
Abstract
Room-temperature cavity quantum electrodynamics with molecular materials in optical cavities offers exciting prospects for controlling electronic, nuclear and photonic degrees of freedom for applications in physics, chemistry and materials science. However, achieving strong coupling with molecular ensembles typically requires high molecular densities and substantial electromagnetic-field confinement. These conditions usually involve a significant degree of molecular disorder and a highly structured photonic density of states. It remains unclear to what extent these additional complexities modify the usual physical picture of strong coupling developed for atoms and inorganic semiconductors. Using a microscopic quantum description of molecular ensembles in realistic multimode optical resonators, we show that the emergence of vacuum Rabi splitting in linear spectroscopy is a necessary but not sufficient metric of coherent admixing between light and matter. In low-finesse multi-mode situations, we find that molecular dipoles can be partially hybridized with photonic dissipation channels associated with off-resonant cavity modes. These vacuum-induced dissipative processes ultimately limit the extent of light-matter coherence that the system can sustain.This article is part of the theme issue 'The quantum theory of light'.
Collapse
Affiliation(s)
- Felipe Herrera
- Department of Physics, Universidad de Santiago de Chile, Av. Victor Jara 3493, Santiago, Chile
| | - William L Barnes
- Department of Physics and Astronomy, University of Exeter, Exeter, Devon EX4 4QL, UK
| |
Collapse
|
9
|
Zhang J, Wang S, Guo M, Li XK, Xiong YC, Zhou W. Photon-mediated energy transfer between molecules and atoms in a cavity: A numerical study. J Chem Phys 2024; 161:244305. [PMID: 39786904 DOI: 10.1063/5.0242420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025] Open
Abstract
The molecular energy transfer is crucial for many different physicochemical processes. The efficiency of traditional resonance energy transfer relies on dipole-dipole distance between molecules and becomes negligible when the distance is larger than ∼10 nm, which is difficult to overcome. Cavity polariton, formed when placing molecules inside the cavity, is a promising way to surmount the distance limit. By hybridizing a two-level atom (TLA) and a lithium fluoride (LiF) molecule with a cavity, we numerically simulate the reaction process and the energy transfer between them. Our results show that the TLA can induce a deep potential well, which can be seen as a replica of the potential energy surface of bare LiF, acting as a reservoir to absorb/release the molecular kinetic energy. In addition, the energy transfer shows a molecular nuclear kinetic energy dependent behavior, namely, more nuclear kinetic energy igniting more energy transfer. These findings show us a promising way to manipulate the energy transfer process within the cavity using an intentional TLA, which can also serve as a knob to control the reaction process.
Collapse
Affiliation(s)
- Jun Zhang
- Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Hubei Key Laboratory of Energy Storage and Power Battery, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Institute of Shiyan Industrial Technology of Chinese Academy of Engineering, Shiyan 442002, People's Republic of China
| | - Shaohong Wang
- Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Hubei Key Laboratory of Energy Storage and Power Battery, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Mengdi Guo
- Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Hubei Key Laboratory of Energy Storage and Power Battery, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Xin-Ke Li
- Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Hubei Key Laboratory of Energy Storage and Power Battery, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Yong-Chen Xiong
- Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Hubei Key Laboratory of Energy Storage and Power Battery, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Institute of Shiyan Industrial Technology of Chinese Academy of Engineering, Shiyan 442002, People's Republic of China
| | - Wanghuai Zhou
- Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Hubei Key Laboratory of Energy Storage and Power Battery, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Institute of Shiyan Industrial Technology of Chinese Academy of Engineering, Shiyan 442002, People's Republic of China
| |
Collapse
|
10
|
Ibele LM, Sangiogo Gil E, Villaseco Arribas E, Agostini F. Simulations of photoinduced processes with the exact factorization: state of the art and perspectives. Phys Chem Chem Phys 2024; 26:26693-26718. [PMID: 39417703 DOI: 10.1039/d4cp02489c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This perspective offers an overview of the applications of the exact factorization of the electron-nuclear wavefunction to the domain of theoretical photochemistry, where the aim is to gain insights into the ultrafast dynamics of molecular systems via simulations of their excited-state dynamics beyond the Born-Oppenheimer approximation. The exact factorization offers an alternative viewpoint to the Born-Huang representation for the interpretation of dynamical processes involving the electronic ground and excited states as well as their coupling through the nuclear motion. Therefore, the formalism has been used to derive algorithms for quantum molecular-dynamics simulations where the nuclear motion is treated using trajectories and the electrons are treated quantum mechanically. These algorithms have the characteristic features of being based on coupled and on auxiliary trajectories, and have shown excellent performance in describing a variety of excited-state processes, as this perspective illustrates. We conclude with a discussion on the authors' point of view on the future of the exact factorization.
Collapse
Affiliation(s)
- Lea Maria Ibele
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| | - Eduarda Sangiogo Gil
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Evaristo Villaseco Arribas
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| |
Collapse
|
11
|
Sangiogo Gil E, Lauvergnat D, Agostini F. Exact factorization of the photon-electron-nuclear wavefunction: Formulation and coupled-trajectory dynamics. J Chem Phys 2024; 161:084112. [PMID: 39189656 DOI: 10.1063/5.0224779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
We employ the exact-factorization formalism to study the coupled dynamics of photons, electrons, and nuclei at the quantum mechanical level, proposing illustrative examples of model situations of nonadiabatic dynamics and spontaneous emission of electron-nuclear systems in the regime of strong light-matter coupling. We make a particular choice of factorization for such a multi-component system, where the full wavefunction is factored as a conditional electronic amplitude and a marginal photon-nuclear amplitude. Then, we apply the coupled-trajectory mixed quantum-classical (CTMQC) algorithm to perform trajectory-based simulations, by treating photonic and nuclear degrees of freedom on equal footing in terms of classical-like trajectories. The analysis of the time-dependent potentials of the theory along with the assessment of the performance of CTMQC allows us to point out some limitations of the current approximations used in CTMQC. Meanwhile, comparing CTMQC with other trajectory-based algorithms, namely multi-trajectory Ehrenfest and Tully surface hopping, demonstrates the better quality of CTMQC predictions.
Collapse
Affiliation(s)
- Eduarda Sangiogo Gil
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - David Lauvergnat
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Federica Agostini
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
12
|
De PK, Jain A. Exciton energy transfer inside cavity-A benchmark study of polaritonic dynamics using the surface hopping method. J Chem Phys 2024; 161:054117. [PMID: 39105549 DOI: 10.1063/5.0216787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Strong coupling between the molecular system and photon inside the cavity generates polaritons, which can alter reaction rates by orders of magnitude. In this work, we benchmark the surface hopping method to simulate non-adiabatic dynamics in a cavity. The comparison is made against a numerically exact method (the hierarchical equations of motion) for a model system investigating excitonic energy transfer for a broad range of parameters. Surface hopping captures the effects of the radiation mode well, both at resonance and off-resonance. We have further investigated parameters that can increase or decrease the rate of population transfer, and we find that surface hopping in general can capture both effects well. Finally, we show that the dipole self-energy term within our parameter regime does not significantly affect the system's dynamics.
Collapse
Affiliation(s)
- Priyam Kumar De
- Department of Chemistry, Indian Institute of Technology, Mumbai 400076, India
| | - Amber Jain
- Department of Chemistry, Indian Institute of Technology, Mumbai 400076, India
| |
Collapse
|
13
|
Dutta A, Tiainen V, Sokolovskii I, Duarte L, Markešević N, Morozov D, Qureshi HA, Pikker S, Groenhof G, Toppari JJ. Thermal disorder prevents the suppression of ultra-fast photochemistry in the strong light-matter coupling regime. Nat Commun 2024; 15:6600. [PMID: 39097575 PMCID: PMC11297929 DOI: 10.1038/s41467-024-50532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 07/11/2024] [Indexed: 08/05/2024] Open
Abstract
Strong coupling between molecules and confined light modes of optical cavities to form polaritons can alter photochemistry, but the origin of this effect remains largely unknown. While theoretical models suggest a suppression of photochemistry due to the formation of new polaritonic potential energy surfaces, many of these models do not account for the energetic disorder among the molecules, which is unavoidable at ambient conditions. Here, we combine simulations and experiments to show that for an ultra-fast photochemical reaction such thermal disorder prevents the modification of the potential energy surface and that suppression is due to radiative decay of the lossy cavity modes. We also show that the excitation spectrum under strong coupling is a product of the excitation spectrum of the bare molecules and the absorption spectrum of the molecule-cavity system, suggesting that polaritons can act as gateways for channeling an excitation into a molecule, which then reacts normally. Our results therefore imply that strong coupling provides a means to tune the action spectrum of a molecule, rather than to change the reaction.
Collapse
Affiliation(s)
- Arpan Dutta
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
- Department of Mechanical and Materials Engineering, University of Turku, 20014, Turku, Finland
| | - Ville Tiainen
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Ilia Sokolovskii
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Luís Duarte
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki, Finland
| | - Nemanja Markešević
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
- CNR-INO Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche and LENS European Laboratory for Nonlinear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
| | - Dmitry Morozov
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Hassan A Qureshi
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
- Department of Mechanical and Materials Engineering, University of Turku, 20014, Turku, Finland
| | - Siim Pikker
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
| | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - J Jussi Toppari
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| |
Collapse
|
14
|
Buravets V, Gorin O, Burtsev V, Zabelina A, Zabelin D, Kosina J, Maixner J, Svorcik V, Kolganov AA, Pidko EA, Lyutakov O. Plasmon-Mediated Organic Photoelectrochemistry Applied to Amination Reactions. Chempluschem 2024; 89:e202400020. [PMID: 38747893 DOI: 10.1002/cplu.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/08/2024] [Indexed: 08/15/2024]
Abstract
Organic electrochemistry is currently experiencing an era of renaissance, which is closely related to the possibility of carrying out organic transformations under mild conditions, with high selectivity, high yields, and without the use of toxic solvents. Combination of organic electrochemistry with alternative approaches, such as photo-chemistry was found to have great potential due to induced synergy effects. In this work, we propose for the first time utilization of plasmon triggering of enhanced and regio-controlled organic chemical transformation performed in photoelectrochemical regime. The advantages of the proposed route is demonstrated in the model amination reaction with formation of C-N bond between pyrazole and substituted benzene derivatives. Amination was performed in photo-electrochemical mode on the surface of plasmon active Au@Pt electrode with attention focused on the impact of plasmon triggering on the reaction efficiency and regio-selectivity. The ability to enhance the reaction rate significantly and to tune products regio-selectivity is demonstrated. We also performed density functional theory calculations to inquire about the reaction mechanism and potentially explain the plasmon contribution to electrochemical reaction rate and regioselectivity.
Collapse
Affiliation(s)
- Vladislav Buravets
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Oleg Gorin
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Vasilii Burtsev
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Anna Zabelina
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Denis Zabelin
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Jiri Kosina
- Central Laboratories, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Jaroslav Maixner
- Central Laboratories, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Alexander A Kolganov
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, Netherlands
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| |
Collapse
|
15
|
Li TE. Mesoscale Molecular Simulations of Fabry-Pérot Vibrational Strong Coupling. J Chem Theory Comput 2024. [PMID: 38912683 DOI: 10.1021/acs.jctc.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Developing theoretical frameworks for vibrational strong coupling (VSC) beyond the single-mode approximation is crucial for a comprehensive understanding of experiments with planar Fabry-Pérot cavities. Herein, a generalized cavity molecular dynamics (CavMD) scheme is developed to simulate VSC of a large ensemble of realistic molecules coupled to an arbitrary 1D or 2D photonic environment. This approach is built upon the Power-Zienau-Woolley Hamiltonian in the normal mode basis and uses a grid representation of the molecular ensembles to reduce the computational cost. When simulating the polariton dispersion relation for a homogeneous distribution of molecules in planar Fabry-Pérot cavities, our data highlight the importance of preserving the in-plane translational symmetry of the molecular distribution. In this homogeneous limit, CavMD yields the consistent polariton dispersion relation as an analytic theory, i.e., incorporating many cavity modes with varying in-plane wave vectors (k∥) produces the same spectrum as the system with a single cavity mode. Furthermore, CavMD reveals that the validity of the single-mode approximation is challenged when nonequilibrium polariton dynamics are considered, as polariton-polariton scattering occurs between modes with the nearest neighbor k∥. The procedure for numerically approaching the macroscopic limit is also demonstrated with CavMD by increasing the system size. Looking forward, our generalized CavMD approach may facilitate understanding vibrational polariton transport and condensation.
Collapse
Affiliation(s)
- Tao E Li
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
16
|
Sokolovskii I, Groenhof G. Photochemical initiation of polariton-mediated exciton propagation. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2687-2694. [PMID: 39678664 PMCID: PMC11636319 DOI: 10.1515/nanoph-2023-0684] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/20/2023] [Indexed: 12/17/2024]
Abstract
Placing a material inside an optical cavity can enhance transport of excitation energy by hybridizing excitons with confined light modes into polaritons, which have a dispersion that provides these light-matter quasi-particles with low effective masses and very high group velocities. While in experiments, polariton propagation is typically initiated with laser pulses, tuned to be resonant either with the polaritonic branches that are delocalized over many molecules, or with an uncoupled higher-energy electronic excited state that is localized on a single molecule, practical implementations of polariton-mediated exciton transport into devices would require operation under low-intensity incoherent light conditions. Here, we propose to initiate polaritonic exciton transport with a photo-acid, which upon absorption of a photon in a spectral range not strongly reflected by the cavity mirrors, undergoes ultra-fast excited-state proton transfer into a red-shifted excited-state photo-product that can couple collectively with a large number of suitable dye molecules to the modes of the cavity. By means of atomistic molecular dynamics simulations we demonstrate that cascading energy from a photo-excited donor into the strongly coupled acceptor-cavity states via a photo-chemical reaction can indeed induce long-range polariton-mediated exciton transport.
Collapse
Affiliation(s)
- Ilia Sokolovskii
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014Jyväskylä, Finland
| | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014Jyväskylä, Finland
| |
Collapse
|
17
|
Capone M, Romanelli M, Castaldo D, Parolin G, Bello A, Gil G, Vanzan M. A Vision for the Future of Multiscale Modeling. ACS PHYSICAL CHEMISTRY AU 2024; 4:202-225. [PMID: 38800726 PMCID: PMC11117712 DOI: 10.1021/acsphyschemau.3c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 05/29/2024]
Abstract
The rise of modern computer science enabled physical chemistry to make enormous progresses in understanding and harnessing natural and artificial phenomena. Nevertheless, despite the advances achieved over past decades, computational resources are still insufficient to thoroughly simulate extended systems from first principles. Indeed, countless biological, catalytic and photophysical processes require ab initio treatments to be properly described, but the breadth of length and time scales involved makes it practically unfeasible. A way to address these issues is to couple theories and algorithms working at different scales by dividing the system into domains treated at different levels of approximation, ranging from quantum mechanics to classical molecular dynamics, even including continuum electrodynamics. This approach is known as multiscale modeling and its use over the past 60 years has led to remarkable results. Considering the rapid advances in theory, algorithm design, and computing power, we believe multiscale modeling will massively grow into a dominant research methodology in the forthcoming years. Hereby we describe the main approaches developed within its realm, highlighting their achievements and current drawbacks, eventually proposing a plausible direction for future developments considering also the emergence of new computational techniques such as machine learning and quantum computing. We then discuss how advanced multiscale modeling methods could be exploited to address critical scientific challenges, focusing on the simulation of complex light-harvesting processes, such as natural photosynthesis. While doing so, we suggest a cutting-edge computational paradigm consisting in performing simultaneous multiscale calculations on a system allowing the various domains, treated with appropriate accuracy, to move and extend while they properly interact with each other. Although this vision is very ambitious, we believe the quick development of computer science will lead to both massive improvements and widespread use of these techniques, resulting in enormous progresses in physical chemistry and, eventually, in our society.
Collapse
Affiliation(s)
- Matteo Capone
- Department
of Physical and Chemical Sciences, University
of L’Aquila, L’Aquila 67010, Italy
| | - Marco Romanelli
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Davide Castaldo
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Giovanni Parolin
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Alessandro Bello
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
- Department
of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Gabriel Gil
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
- Instituto
de Cibernética, Matemática y Física (ICIMAF), La Habana 10400, Cuba
| | - Mirko Vanzan
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
- Department
of Physics, University of Milano, Milano 20133, Italy
| |
Collapse
|
18
|
Sidler D, Schnappinger T, Obzhirov A, Ruggenthaler M, Kowalewski M, Rubio A. Unraveling a Cavity-Induced Molecular Polarization Mechanism from Collective Vibrational Strong Coupling. J Phys Chem Lett 2024; 15:5208-5214. [PMID: 38717382 PMCID: PMC11103705 DOI: 10.1021/acs.jpclett.4c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
We demonstrate that collective vibrational strong coupling of molecules in thermal equilibrium can give rise to significant local electronic polarizations in the thermodynamic limit. We do so by first showing that the full nonrelativistic Pauli-Fierz problem of an ensemble of strongly coupled molecules in the dilute-gas limit reduces in the cavity Born-Oppenheimer approximation to a cavity-Hartree equation for the electronic structure. Consequently, each individual molecule experiences a self-consistent coupling to the dipoles of all other molecules, which amount to non-negligible values in the thermodynamic limit (large ensembles). Thus, collective vibrational strong coupling can alter individual molecules strongly for localized "hotspots" within the ensemble. Moreover, the discovered cavity-induced polarization pattern possesses a zero net polarization, which resembles a continuous form of a spin glass (or better polarization glass). Our findings suggest that the thorough understanding of polaritonic chemistry, requires a self-consistent treatment of dressed electronic structure, which can give rise to numerous, so far overlooked, physical mechanisms.
Collapse
Affiliation(s)
- Dominik Sidler
- Laboratory
for Materials Simulations, Paul Scherrer
Institute, 5232 Villigen PSI, Switzerland
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Thomas Schnappinger
- Department
of Physics, Stockholm University, AlbaNova University Center, SE-106
91 Stockholm, Sweden
| | - Anatoly Obzhirov
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Ruggenthaler
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Markus Kowalewski
- Department
of Physics, Stockholm University, AlbaNova University Center, SE-106
91 Stockholm, Sweden
| | - Angel Rubio
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics, Flatiron
Institute, 162 Fifth Avenue, New York, New York 10010, United States
- Nano-Bio
Spectroscopy Group, University of the Basque
Country (UPV/EHU), 20018 San Sebastián, Spain
| |
Collapse
|
19
|
Lee IS, Filatov M, Min SK. Formulation of transition dipole gradients for non-adiabatic dynamics with polaritonic states. J Chem Phys 2024; 160:154103. [PMID: 38624116 DOI: 10.1063/5.0202095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
A general formulation of the strong coupling between photons confined in a cavity and molecular electronic states is developed for the state-interaction state-average spin-restricted ensemble-referenced Kohn-Sham method. The light-matter interaction is included in the Jaynes-Cummings model, which requires the derivation and implementation of the analytical derivatives of the transition dipole moments between the molecular electronic states. The developed formalism is tested in the simulations of the nonadiabatic dynamics in the polaritonic states resulting from the strong coupling between the cavity photon mode and the ground and excited states of the penta-2,4-dieniminium cation, also known as PSB3. Comparison with the field-free simulations of the excited-state decay dynamics in PSB3 reveals that the light-matter coupling can considerably alter the decay dynamics by increasing the excited state lifetime and hindering photochemically induced torsion about the C=C double bonds of PSB3. The necessity of obtaining analytical transition dipole gradients for the accurate propagation of the dynamics is underlined.
Collapse
Affiliation(s)
- In Seong Lee
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Michael Filatov
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Seung Kyu Min
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| |
Collapse
|
20
|
Sokolovskii I, Groenhof G. Non-Hermitian molecular dynamics simulations of exciton-polaritons in lossy cavities. J Chem Phys 2024; 160:092501. [PMID: 38426514 DOI: 10.1063/5.0188613] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
The observation that materials can change their properties when placed inside or near an optical resonator has sparked a fervid interest in understanding the effects of strong light-matter coupling on molecular dynamics, and several approaches have been proposed to extend the methods of computational chemistry into this regime. Whereas the majority of these approaches have focused on modeling a single molecule coupled to a single cavity mode, changes to chemistry have so far only been observed experimentally when very many molecules are coupled collectively to multiple modes with short lifetimes. While atomistic simulations of many molecules coupled to multiple cavity modes have been performed with semi-classical molecular dynamics, an explicit description of cavity losses has so far been restricted to simulations in which only a very few molecular degrees of freedom were considered. Here, we have implemented an effective non-Hermitian Hamiltonian to explicitly treat cavity losses in large-scale semi-classical molecular dynamics simulations of organic polaritons and used it to perform both mean-field and surface hopping simulations of polariton relaxation, propagation, and energy transfer.
Collapse
Affiliation(s)
- Ilia Sokolovskii
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| |
Collapse
|
21
|
Castagnola M, Haugland TS, Ronca E, Koch H, Schäfer C. Collective Strong Coupling Modifies Aggregation and Solvation. J Phys Chem Lett 2024; 15:1428-1434. [PMID: 38290530 PMCID: PMC10860139 DOI: 10.1021/acs.jpclett.3c03506] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
Intermolecular (Coulombic) interactions are pivotal for aggregation, solvation, and crystallization. We demonstrate that the collective strong coupling of several molecules to a single optical mode results in notable changes in the molecular excitations around a single perturbed molecule, thus representing an impurity in an otherwise ordered system. A competition between short-range coulombic and long-range photonic correlations inverts the local transition density in a polaritonic state, suggesting notable changes in the polarizability of the solvation shell. Our results provide an alternative perspective on recent work in polaritonic chemistry and pave the way for the rigorous treatment of cooperative effects in aggregation, solvation, and crystallization.
Collapse
Affiliation(s)
- Matteo Castagnola
- Department
of Chemistry, Norwegian University of Science
and Technology, 7491 Trondheim, Norway
| | - Tor S. Haugland
- Department
of Chemistry, Norwegian University of Science
and Technology, 7491 Trondheim, Norway
| | - Enrico Ronca
- Dipartimento
di Chimica, Biologia e Biotecnologie, Universitá
degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Henrik Koch
- Department
of Chemistry, Norwegian University of Science
and Technology, 7491 Trondheim, Norway
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Christian Schäfer
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Department
of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
22
|
Rana B, Hohenstein EG, Martínez TJ. Simulating the Excited-State Dynamics of Polaritons with Ab Initio Multiple Spawning. J Phys Chem A 2024; 128:139-151. [PMID: 38110364 DOI: 10.1021/acs.jpca.3c06607] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Over the past decade, there has been a growth of interest in polaritonic chemistry, where the formation of hybrid light-matter states (polaritons) can alter the course of photochemical reactions. These hybrid states are created by strong coupling between molecules and photons in resonant optical cavities and can even occur in the absence of light when the molecule is strongly coupled with the electromagnetic fluctuations of the vacuum field. We present a first-principles model to simulate nonadiabatic dynamics of such polaritonic states inside optical cavities by leveraging graphical processing units (GPUs). Our first implementation of this model is specialized for a single molecule coupled to a single-photon mode confined inside the optical cavity but with any number of excited states computed using complete active space configuration interaction (CASCI) and a Jaynes-Cummings-type Hamiltonian. Using this model, we have simulated the excited-state dynamics of a single salicylideneaniline (SA) molecule strongly coupled to a cavity photon with the ab initio multiple spawning (AIMS) method. We demonstrate how the branching ratios of the photodeactivation pathways for this molecule can be manipulated by coupling to the cavity. We also show how one can stop the photoreaction from happening inside of an optical cavity. Finally, we also investigate cavity-based control of the ordering of two excited states (one optically bright and the other optically dark) inside a cavity for a set of molecules, where the dark and bright states are close in energy.
Collapse
Affiliation(s)
- Bhaskar Rana
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Edward G Hohenstein
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
23
|
Sagiroglugil M, Yasar F. Catalytic Reaction Mechanism of Bacterial GH92 α-1,2-Mannosidase: A QM/MM Metadynamics Study. Chemphyschem 2023; 24:e202300628. [PMID: 37782219 DOI: 10.1002/cphc.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 10/01/2023] [Indexed: 10/03/2023]
Abstract
The catalytic mechanism of aC a + 2 ${C{a}^{+2}}$ -dependent family 92 α ${{\rm \alpha }}$ -mannosidase, which is abundantly present in human gut flora and malfunctions leading to the lysosomal storage disease α-mannosidosis, has been investigated using quantum mechanics/molecular mechanics and metadynamics methods. Computational efforts show that the enzyme follows a conformational itinerary of and theC a + 2 ${C{a}^{+2}}$ ion serves a dual purpose, as it not only distorts the sugar ring but also plays a crucial role in orchestrating the arrangement of catalytic residues. This orchestration, in turn, contributes to the facilitation of O S 2 ${{{\rm \ }}^{{\rm O}}{{\rm S}}_{2}}$ conformers for the ensuing reaction. This mechanistic insight is well-aligned with the experimental predictions of the catalytic pathway, and the computed energies are of the same order of magnitude as the experimental estimations. Hence, our results extend the mechanistic understanding of glycosidases.
Collapse
Affiliation(s)
- Mert Sagiroglugil
- Department of Physics Engineering, Hacettepe University, Üniversiteler Mahallesi Beytepe Kampüsü, 06800, Ankara, Turkey
- Current Address: Departament de Química Inorgànica i Orgànica (Seccióde Química Orgànica), Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028, Barcelona, Spain
| | - Fatih Yasar
- Department of Physics Engineering, Hacettepe University, Üniversiteler Mahallesi Beytepe Kampüsü, 06800, Ankara, Turkey
| |
Collapse
|
24
|
Weight BM, Li X, Zhang Y. Theory and modeling of light-matter interactions in chemistry: current and future. Phys Chem Chem Phys 2023; 25:31554-31577. [PMID: 37842818 DOI: 10.1039/d3cp01415k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Light-matter interaction not only plays an instrumental role in characterizing materials' properties via various spectroscopic techniques but also provides a general strategy to manipulate material properties via the design of novel nanostructures. This perspective summarizes recent theoretical advances in modeling light-matter interactions in chemistry, mainly focusing on plasmon and polariton chemistry. The former utilizes the highly localized photon, plasmonic hot electrons, and local heat to drive chemical reactions. In contrast, polariton chemistry modifies the potential energy curvatures of bare electronic systems, and hence their chemistry, via forming light-matter hybrid states, so-called polaritons. The perspective starts with the basic background of light-matter interactions, molecular quantum electrodynamics theory, and the challenges of modeling light-matter interactions in chemistry. Then, the recent advances in modeling plasmon and polariton chemistry are described, and future directions toward multiscale simulations of light-matter interaction-mediated chemistry are discussed.
Collapse
Affiliation(s)
- Braden M Weight
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Xinyang Li
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
25
|
Tichauer RH, Sokolovskii I, Groenhof G. Tuning the Coherent Propagation of Organic Exciton-Polaritons through the Cavity Q-factor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302650. [PMID: 37818758 PMCID: PMC10667804 DOI: 10.1002/advs.202302650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/22/2023] [Indexed: 10/13/2023]
Abstract
Transport of excitons in organic materials can be enhanced through polariton formation when the interaction strength between these excitons and the confined light modes of an optical resonator exceeds their decay rates. While the polariton lifetime is determined by the Q(uality)-factor of the optical resonator, the polariton group velocity is not. Instead, the latter is solely determined by the polariton dispersion. Yet, experiments suggest that the Q-factor also controls the polariton propagation velocity. To understand this observation, the authors perform molecular dynamics simulations of Rhodamine chromophores strongly coupled to Fabry-Pérot cavities with various Q-factors. The results suggest that propagation in the aforementioned experiments is initially dominated by ballistic motion of upper polariton states at their group velocities, which leads to a rapid expansion of the wavepacket. Cavity decay in combination with non-adiabatic population transfer into dark states, rapidly depletes these bright states, causing the wavepacket to contract. However, because population transfer is reversible, propagation continues, but as a diffusion process, at lower velocity. By controlling the lifetime of bright states, the Q-factor determines the duration of the ballistic phase and the diffusion coefficient in the diffusive regime. Thus, polariton propagation in organic microcavities can be effectively tuned through the Q-factor.
Collapse
Affiliation(s)
- Ruth H. Tichauer
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadridE‐28049Spain
| | - Ilia Sokolovskii
- Nanoscience Center and Department of ChemistryUniversity of JyväskyläP.O. Box 35, 40014JyväskyläFinland
| | - Gerrit Groenhof
- Nanoscience Center and Department of ChemistryUniversity of JyväskyläP.O. Box 35, 40014JyväskyläFinland
| |
Collapse
|
26
|
Sokolovskii I, Tichauer RH, Morozov D, Feist J, Groenhof G. Multi-scale molecular dynamics simulations of enhanced energy transfer in organic molecules under strong coupling. Nat Commun 2023; 14:6613. [PMID: 37857599 PMCID: PMC10587084 DOI: 10.1038/s41467-023-42067-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Exciton transport can be enhanced in the strong coupling regime where excitons hybridize with confined light modes to form polaritons. Because polaritons have group velocity, their propagation should be ballistic and long-ranged. However, experiments indicate that organic polaritons propagate in a diffusive manner and more slowly than their group velocity. Here, we resolve this controversy by means of molecular dynamics simulations of Rhodamine molecules in a Fabry-Pérot cavity. Our results suggest that polariton propagation is limited by the cavity lifetime and appears diffusive due to reversible population transfers between polaritonic states that propagate ballistically at their group velocity, and dark states that are stationary. Furthermore, because long-lived dark states transiently trap the excitation, propagation is observed on timescales beyond the intrinsic polariton lifetime. These insights not only help to better understand and interpret experimental observations, but also pave the way towards rational design of molecule-cavity systems for coherent exciton transport.
Collapse
Affiliation(s)
- Ilia Sokolovskii
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland
| | - Ruth H Tichauer
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Dmitry Morozov
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland.
| |
Collapse
|
27
|
Ruggenthaler M, Sidler D, Rubio A. Understanding Polaritonic Chemistry from Ab Initio Quantum Electrodynamics. Chem Rev 2023; 123:11191-11229. [PMID: 37729114 PMCID: PMC10571044 DOI: 10.1021/acs.chemrev.2c00788] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 09/22/2023]
Abstract
In this review, we present the theoretical foundations and first-principles frameworks to describe quantum matter within quantum electrodynamics (QED) in the low-energy regime, with a focus on polaritonic chemistry. By starting from fundamental physical and mathematical principles, we first review in great detail ab initio nonrelativistic QED. The resulting Pauli-Fierz quantum field theory serves as a cornerstone for the development of (in principle exact but in practice) approximate computational methods such as quantum-electrodynamical density functional theory, QED coupled cluster, or cavity Born-Oppenheimer molecular dynamics. These methods treat light and matter on equal footing and, at the same time, have the same level of accuracy and reliability as established methods of computational chemistry and electronic structure theory. After an overview of the key ideas behind those ab initio QED methods, we highlight their benefits for understanding photon-induced changes of chemical properties and reactions. Based on results obtained by ab initio QED methods, we identify open theoretical questions and how a so far missing detailed understanding of polaritonic chemistry can be established. We finally give an outlook on future directions within polaritonic chemistry and first-principles QED.
Collapse
Affiliation(s)
- Michael Ruggenthaler
- Max-Planck-Institut
für Struktur und Dynamik der Materie, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik Sidler
- Max-Planck-Institut
für Struktur und Dynamik der Materie, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Angel Rubio
- Max-Planck-Institut
für Struktur und Dynamik der Materie, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
| |
Collapse
|
28
|
Villaseco Arribas E, Vindel-Zandbergen P, Roy S, Maitra NT. Different flavors of exact-factorization-based mixed quantum-classical methods for multistate dynamics. Phys Chem Chem Phys 2023; 25:26380-26395. [PMID: 37750820 DOI: 10.1039/d3cp03464j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The exact factorization approach has led to the development of new mixed quantum-classical methods for simulating coupled electron-ion dynamics. We compare their performance for dynamics when more than two electronic states are occupied at a given time, and analyze: (1) the use of coupled versus auxiliary trajectories in evaluating the electron-nuclear correlation terms, (2) the approximation of using these terms within surface-hopping and Ehrenfest frameworks, and (3) the relevance of the exact conditions of zero population transfer away from nonadiabatic coupling regions and total energy conservation. Dynamics through the three-state conical intersection in the uracil radical cation as well as polaritonic models in one dimension are studied.
Collapse
Affiliation(s)
| | - Patricia Vindel-Zandbergen
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA.
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Saswata Roy
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA.
| | - Neepa T Maitra
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA.
| |
Collapse
|
29
|
Bhuyan R, Mony J, Kotov O, Castellanos GW, Gómez Rivas J, Shegai TO, Börjesson K. The Rise and Current Status of Polaritonic Photochemistry and Photophysics. Chem Rev 2023; 123:10877-10919. [PMID: 37683254 PMCID: PMC10540218 DOI: 10.1021/acs.chemrev.2c00895] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 09/10/2023]
Abstract
The interaction between molecular electronic transitions and electromagnetic fields can be enlarged to the point where distinct hybrid light-matter states, polaritons, emerge. The photonic contribution to these states results in increased complexity as well as an opening to modify the photophysics and photochemistry beyond what normally can be seen in organic molecules. It is today evident that polaritons offer opportunities for molecular photochemistry and photophysics, which has caused an ever-rising interest in the field. Focusing on the experimental landmarks, this review takes its reader from the advent of the field of polaritonic chemistry, over the split into polariton chemistry and photochemistry, to present day status within polaritonic photochemistry and photophysics. To introduce the field, the review starts with a general description of light-matter interactions, how to enhance these, and what characterizes the coupling strength. Then the photochemistry and photophysics of strongly coupled systems using Fabry-Perot and plasmonic cavities are described. This is followed by a description of room-temperature Bose-Einstein condensation/polariton lasing in polaritonic systems. The review ends with a discussion on the benefits, limitations, and future developments of strong exciton-photon coupling using organic molecules.
Collapse
Affiliation(s)
- Rahul Bhuyan
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Jürgen Mony
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Oleg Kotov
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Gabriel W. Castellanos
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Jaime Gómez Rivas
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Timur O. Shegai
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Karl Börjesson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| |
Collapse
|
30
|
Mandal A, Taylor MA, Weight BM, Koessler ER, Li X, Huo P. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem Rev 2023; 123:9786-9879. [PMID: 37552606 PMCID: PMC10450711 DOI: 10.1021/acs.chemrev.2c00855] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 08/10/2023]
Abstract
When molecules are coupled to an optical cavity, new light-matter hybrid states, so-called polaritons, are formed due to quantum light-matter interactions. With the experimental demonstrations of modifying chemical reactivities by forming polaritons under strong light-matter interactions, theorists have been encouraged to develop new methods to simulate these systems and discover new strategies to tune and control reactions. This review summarizes some of these exciting theoretical advances in polariton chemistry, in methods ranging from the fundamental framework to computational techniques and applications spanning from photochemistry to vibrational strong coupling. Even though the theory of quantum light-matter interactions goes back to the midtwentieth century, the gaps in the knowledge of molecular quantum electrodynamics (QED) have only recently been filled. We review recent advances made in resolving gauge ambiguities, the correct form of different QED Hamiltonians under different gauges, and their connections to various quantum optics models. Then, we review recently developed ab initio QED approaches which can accurately describe polariton states in a realistic molecule-cavity hybrid system. We then discuss applications using these method advancements. We review advancements in polariton photochemistry where the cavity is made resonant to electronic transitions to control molecular nonadiabatic excited state dynamics and enable new photochemical reactivities. When the cavity resonance is tuned to the molecular vibrations instead, ground-state chemical reaction modifications have been demonstrated experimentally, though its mechanistic principle remains unclear. We present some recent theoretical progress in resolving this mystery. Finally, we review the recent advances in understanding the collective coupling regime between light and matter, where many molecules can collectively couple to a single cavity mode or many cavity modes. We also lay out the current challenges in theory to explain the observed experimental results. We hope that this review will serve as a useful document for anyone who wants to become familiar with the context of polariton chemistry and molecular cavity QED and thus significantly benefit the entire community.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael A.D. Taylor
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Braden M. Weight
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United
States
| | - Eric R. Koessler
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Xinyang Li
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
31
|
Theurer CP, Laible F, Tang J, Broch K, Fleischer M, Schreiber F. Strong light-matter coupling in pentacene thin films on plasmonic arrays. NANOSCALE 2023. [PMID: 37387269 DOI: 10.1039/d3nr01108a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Utilizing strong light-matter coupling is an elegant and powerful way to modify the energy landscapes of excited states of organic semiconductors. Consequently, the chemical and photophysical properties of these organic semiconductors can be influenced without the need of chemical modification but simply by implementing them in optical microcavities. This has so far mostly been shown in Fabry-Pérot cavities and with organic single crystals or diluted molecules in a host matrix. Here, we demonstrate strong, simultaneous coupling of the two Davydov transitions in polycrystalline pentacene thin films to surface lattice resonances supported by open cavities made of silver nanoparticle arrays. Such thin films are more easily fabricated and, together with the open architecture, more suitable for device applications.
Collapse
Affiliation(s)
- Christoph P Theurer
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Florian Laible
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Jia Tang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Katharina Broch
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
- Center for Light-Matter Interaction, Sensors & Analytics (LISA+), Universität Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Monika Fleischer
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
- Center for Light-Matter Interaction, Sensors & Analytics (LISA+), Universität Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
- Center for Light-Matter Interaction, Sensors & Analytics (LISA+), Universität Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
32
|
Weight BM, Krauss TD, Huo P. Investigating Molecular Exciton Polaritons Using Ab Initio Cavity Quantum Electrodynamics. J Phys Chem Lett 2023; 14:5901-5913. [PMID: 37343178 PMCID: PMC10316409 DOI: 10.1021/acs.jpclett.3c01294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Coupling molecules to the quantized radiation field inside an optical cavity creates a set of new photon-matter hybrid states called polariton states. We combine electronic structure theory with quantum electrodynamics (QED) to investigate molecular polaritons using ab initio simulations. This framework joins unperturbed electronic adiabatic states with the Fock state basis to compute the eigenstates of the QED Hamiltonian. The key feature of this "parametrized QED" approach is that it provides the exact molecule-cavity interactions, limited by only approximations made in the electronic structure. Using time-dependent density functional theory, we demonstrated comparable accuracy with QED coupled cluster benchmark results for predicting potential energy surfaces in the ground and excited states and showed selected applications to light-harvesting and light-emitting materials. We anticipate that this framework will provide a set of general and powerful tools that enable direct ab initio simulation of exciton polaritons in molecule-cavity hybrid systems.
Collapse
Affiliation(s)
- Braden M. Weight
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United States
| | - Todd D. Krauss
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
33
|
Hu D, Huo P. Ab Initio Molecular Cavity Quantum Electrodynamics Simulations Using Machine Learning Models. J Chem Theory Comput 2023; 19:2353-2368. [PMID: 37000936 PMCID: PMC10134431 DOI: 10.1021/acs.jctc.3c00137] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 04/03/2023]
Abstract
We present a mixed quantum-classical simulation of polariton dynamics for molecule-cavity hybrid systems. In particular, we treat the coupled electronic-photonic degrees of freedom (DOFs) as the quantum subsystem and the nuclear DOFs as the classical subsystem and use the trajectory surface hopping approach to simulate non-adiabatic dynamics among the polariton states due to the coupled motion of nuclei. We use the accurate nuclear gradient expression derived from the Pauli-Fierz quantum electrodynamics Hamiltonian without making further approximations. The energies, gradients, and derivative couplings of the molecular systems are obtained from the on-the-fly simulations at the level of complete active space self-consistent field (CASSCF), which are used to compute the polariton energies and nuclear gradients. The derivatives of dipoles are also necessary ingredients in the polariton nuclear gradient expression but are often not readily available in electronic structure methods. To address this challenge, we use a machine learning model with the Kernel ridge regression method to construct the dipoles and further obtain their derivatives, at the same level as the CASSCF theory. The cavity loss process is modeled with the Lindblad jump superoperator on the reduced density of the electronic-photonic quantum subsystem. We investigate the azomethane molecule and its photoinduced isomerization dynamics inside the cavity. Our results show the accuracy of the machine-learned dipoles and their usage in simulating polariton dynamics. Our polariton dynamics results also demonstrate the isomerization reaction of azomethane can be effectively tuned by coupling to an optical cavity and by changing the light-matter coupling strength and the cavity loss rate.
Collapse
Affiliation(s)
- Deping Hu
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
34
|
Schäfer C, Baranov DG. Chiral Polaritonics: Analytical Solutions, Intuition, and Use. J Phys Chem Lett 2023; 14:3777-3784. [PMID: 37052302 PMCID: PMC10123817 DOI: 10.1021/acs.jpclett.3c00286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Preferential selection of a given enantiomer over its chiral counterpart has become increasingly relevant in the advent of the next era of medical drug design. In parallel, cavity quantum electrodynamics has grown into a solid framework to control energy transfer and chemical reactivity, the latter requiring strong coupling. In this work, we derive an analytical solution to a system of many chiral emitters interacting with a chiral cavity similar to the widely used Tavis-Cummings and Hopfield models of quantum optics. We are able to estimate the discriminating strength of chiral polaritonics, discuss possible future development directions and exciting applications such as elucidating homochirality, and deliver much needed intuition to foster the newly flourishing field of chiral polaritonics.
Collapse
Affiliation(s)
- Christian Schäfer
- MC2
Department, Chalmers University of Technology, 41258 Gothenburg, Sweden
| | - Denis G. Baranov
- Center
for Photonics and 2D Materials, Moscow Institute
of Physics and Technology, Dolgoprudny 141700, Russia
| |
Collapse
|
35
|
Bai J, Wang Z, Zhong C, Hou S, Lian J, Si Q, Gao F, Zhang F. Vibrational coupling with O-H stretching increases catalytic efficiency of sucrase in Fabry-Pérot microcavity. Biochem Biophys Res Commun 2023; 652:31-34. [PMID: 36809702 DOI: 10.1016/j.bbrc.2023.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
Vibrational strong coupling (VSC) has been reported as a polariton-based method for modulating the rate of biochemical reactions. Herein, we studied how VSC modulates the sucrose hydrolysis. By monitoring the refractive index-induced shift of Fabry-Pérot microcavity, in which the catalytic efficiency of sucrose hydrolysis can be increased at least two times, as VSC was tuned to resonate with the stretching vibration of O-H bonds. This research provides new evidence for applying VSC in life sciences, which holds great promise to improving enzymatic industries.
Collapse
Affiliation(s)
- Jiaqi Bai
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Zixin Wang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chengjian Zhong
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Shaojie Hou
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Jiaqi Lian
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qiankang Si
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Feng Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Feng Zhang
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China; Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai, 200093, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| |
Collapse
|
36
|
Finkelstein-Shapiro D, Mante PA, Balci S, Zigmantas D, Pullerits T. Non-Hermitian Hamiltonians for linear and nonlinear optical response: A model for plexcitons. J Chem Phys 2023; 158:104104. [PMID: 36922135 DOI: 10.1063/5.0130287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
In polaritons, the properties of matter are modified by mixing the molecular transitions with light modes inside a cavity. Resultant hybrid light-matter states exhibit energy level shifts, are delocalized over many molecular units, and have a different excited-state potential energy landscape, which leads to modified exciton dynamics. Previously, non-Hermitian Hamiltonians have been derived to describe the excited states of molecules coupled to surface plasmons (i.e., plexcitons), and these operators have been successfully used in the description of linear and third order optical response. In this article, we rigorously derive non-Hermitian Hamiltonians in the response function formalism of nonlinear spectroscopy by means of Feshbach operators and apply them to explore spectroscopic signatures of plexcitons. In particular, we analyze the optical response below and above the exceptional point that arises for matching transition energies for plasmon and molecular components and study their decomposition using double-sided Feynman diagrams. We find a clear distinction between interference and Rabi splitting in linear spectroscopy and a qualitative change in the symmetry of the line shape of the nonlinear signal when crossing the exceptional point. This change corresponds to one in the symmetry of the eigenvalues of the Hamiltonian. Our work presents an approach for simulating the optical response of sublevels within an electronic system and opens new applications of nonlinear spectroscopy to examine the different regimes of the spectrum of non-Hermitian Hamiltonians.
Collapse
Affiliation(s)
| | - Pierre-Adrien Mante
- Division of Chemical Physics and Nanolund, Lund University, Box 124, 221 00 Lund, Sweden
| | - Sinan Balci
- Department of Photonics, Izmir Institute of Technology, 35430 Izmir, Türkiye
| | - Donatas Zigmantas
- Division of Chemical Physics and Nanolund, Lund University, Box 124, 221 00 Lund, Sweden
| | - Tõnu Pullerits
- Division of Chemical Physics and Nanolund, Lund University, Box 124, 221 00 Lund, Sweden
| |
Collapse
|
37
|
Sukharev M, Subotnik J, Nitzan A. Dissociation slowdown by collective optical response under strong coupling conditions. J Chem Phys 2023; 158:084104. [PMID: 36859100 DOI: 10.1063/5.0133972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We consider an ensemble of diatomic molecules resonantly coupled to an optical cavity under strong coupling conditions at normal incidence. Photodissociation dynamics is examined via direct numerical integration of the coupled Maxwell-Schrödinger equations with molecular rovibrational degrees of freedom explicitly taken into account. It is shown that the dissociation is significantly affected (slowed down) when the system is driven at its polaritonic frequencies. The observed effect is demonstrated to be of transient nature and has no classical analog. An intuitive explanation of the dissociation slowdown at polaritonic frequencies is proposed.
Collapse
Affiliation(s)
- Maxim Sukharev
- College of Integrative Sciences and Arts, Arizona State University, Mesa, Arizona 85212, USA
| | - Joseph Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
38
|
Li TE, Hammes-Schiffer S. QM/MM Modeling of Vibrational Polariton Induced Energy Transfer and Chemical Dynamics. J Am Chem Soc 2023; 145:377-384. [PMID: 36574620 DOI: 10.1021/jacs.2c10170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vibrational strong coupling (VSC) provides a novel means to modify chemical reactions and energy transfer pathways. To efficiently model chemical dynamics under VSC in the collective regime, herein a hybrid quantum mechanical/molecular mechanical (QM/MM) cavity molecular dynamics (CavMD) scheme is developed and applied to an experimentally studied chemical system. This approach can achieve linear scaling with respect to the number of molecules for a dilute solution under VSC by assuming that each QM solute molecule is surrounded by an independent MM solvent bath. Application of this approach to a dilute solution of Fe(CO)5 in n-dodecane under VSC demonstrates polariton dephasing to the dark modes and polariton-enhanced molecular nonlinear absorption. These simulations predict that strongly exciting the lower polariton may provide an energy transfer pathway that selectively excites the equatorial CO vibrations rather than the axial CO vibrations. Moreover, these simulations also directly probe the cavity effect on the dynamics of the Fe(CO)5 Berry pseudorotation reaction for comparison to recent two-dimensional infrared spectroscopy experiments. This theoretical approach is applicable to a wide range of other polaritonic systems and provides a tool for exploring the use of VSC for selective infrared photochemistry.
Collapse
Affiliation(s)
- Tao E Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
39
|
Zhou W, Hu D, Mandal A, Huo P. Nuclear Gradient Expressions for Molecular Cavity Quantum ElectrodynamicsSimulations using Mixed Quantum-Classical Methods. J Chem Phys 2022; 157:104118. [DOI: 10.1063/5.0109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We derive a rigorous nuclear gradient for a molecule-cavity hybrid system using the Quantum Electrodynamics Hamiltonian. We treat the electronic-photonic DOFs as the quantum subsystem, and the nuclei as the classical subsystem. Using the adiabatic basis for the electronic DOF and the Fock basis for the photonic DOF, and requiring the total energy conservation of this mixed quantum-classical system, we derived the rigorous nuclear gradient for the molecule-cavity hybrid system, which is naturally connected to the approximate gradient under the Jaynes-Cummings approximation. The nuclear gradient expression can be readily used in any mixed quantum-classical simulations and will allow one to perform the non-adiabatic on-the-fly simulation of polariton quantum dynamics. The theoretical developments in this work could significantly benefit the polariton quantum dynamics community with a rigorous nuclear gradient of the molecule-cavity hybrid system and have a broad impact on the future non-adiabatic simulations of polariton quantum dynamics.
Collapse
Affiliation(s)
| | - Deping Hu
- University of Rochester, United States of America
| | | | - Pengfei Huo
- Department of Chemsitry, University of Rochester Department of Chemistry, United States of America
| |
Collapse
|
40
|
Cui B, Nitzan A. Collective response in light-matter interactions: The interplay between strong coupling and local dynamics. J Chem Phys 2022; 157:114108. [DOI: 10.1063/5.0101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Strong molecule-radiation field coupling is often reached when a large number N of molecules respond collectively to the radiation field. In electronic strong coupling, molecular nuclear dynamics following polariton excitation reflects (a) the timescale separation between the fast electronic and photonic dynamics and the slow nuclear motion on one hand, and (b) the interplay between the collective nature of the molecule-field coupling and the local nature of the molecules nuclear response on the other. The first implies that the electronic excitation takes place, in the spirit of the Born approximation, at an approximately fixed nuclear configuration. The second can be rephrased as the intriguing question, can the collective nature of the optical excitation lead to collective nuclear motion following polariton formation, resulting in so-called polaron decoupled dynamics. We address this issue by studying the dynamical properties of a simplified Holstein-Tavis-Cummings type model, in which boson modes representing molecular vibrations are replaced by two-level systems while the boson frequency and the vibronic coupling are represented by the coupling between these levels (that induces Rabi oscillations between them) and electronic state dependence of this coupling. We investigate the short-time behavior of this model following polariton excitation as well as its response to CW driving and its density of states spectrum. We find that, while some aspects of the dynamical behavior appear to adhere to the polaron decoupling picture, the observed dynamics mostly reflect the local nature of the nuclear configuration of the electronic polariton rather than this picture.
Collapse
Affiliation(s)
- Bingyu Cui
- University of Pennsylvania, United States of America
| | - Abraham Nitzan
- University of Pennsylvania Department of Chemistry, United States of America
| |
Collapse
|
41
|
Schäfer C. Polaritonic Chemistry from First Principles via Embedding Radiation Reaction. J Phys Chem Lett 2022; 13:6905-6911. [PMID: 35866694 PMCID: PMC9358701 DOI: 10.1021/acs.jpclett.2c01169] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The coherent interaction of a large collection of molecules with a common photonic mode results in strong light-matter coupling, a feature that has proven highly beneficial for chemistry and has introduced the research topics polaritonic and QED chemistry. Here, we demonstrate an embedding approach to capture the collective nature while retaining the full ab initio representation of single molecules─an approach ideal for polaritonic chemistry. The accuracy of the embedding radiation-reaction ansatz is demonstrated for time-dependent density-functional theory. Then, by virtue of a simple proton-tunneling model, we illustrate that the influence of collective strong coupling on chemical reactions features a nontrivial dependence on the number of emitters and can alternate between strong catalyzing and an inhibiting effect. Bridging classical electrodynamics, quantum optical descriptions, and the ab initio description of realistic molecules, this work can serve as a guiding light for future developments and investigations in the quickly growing fields of QED chemistry and QED material design.
Collapse
Affiliation(s)
- Christian Schäfer
- Department of Microtechnology and Nanoscience,
MC2, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
42
|
Li TE, Nitzan A, Subotnik JE. Energy-efficient pathway for selectively exciting solute molecules to high vibrational states via solvent vibration-polariton pumping. Nat Commun 2022; 13:4203. [PMID: 35858927 PMCID: PMC9300737 DOI: 10.1038/s41467-022-31703-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Selectively exciting target molecules to high vibrational states is inefficient in the liquid phase, which restricts the use of IR pumping to catalyze ground-state chemical reactions. Here, we demonstrate that this inefficiency can sometimes be solved by confining the liquid to an optical cavity under vibrational strong coupling conditions. For a liquid solution of 13CO2 solute in a 12CO2 solvent, cavity molecular dynamics simulations show that exciting a polariton (hybrid light-matter state) of the solvent with an intense laser pulse, under suitable resonant conditions, may lead to a very strong (>3 quanta) and ultrafast (<1 ps) excitation of the solute, even though the solvent ends up being barely excited. By contrast, outside a cavity the same input pulse fluence can excite the solute by only half a vibrational quantum and the selectivity of excitation is low. Our finding is robust under different cavity volumes, which may lead to observable cavity enhancement on IR photochemical reactions in Fabry–Pérot cavities. Hybrid light-matter states formed in the strong light-matter coupling regime can alter the molecular ground-state reactivity. Here, Li et al. computationally demonstrate that pumping a collection of solvent molecules forming hybrid vibrational light-matter states in an optical cavity can excite solute molecules to very high excited states.
Collapse
Affiliation(s)
- Tao E Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
43
|
Berghuis AM, Tichauer RH, de Jong LMA, Sokolovskii I, Bai P, Ramezani M, Murai S, Groenhof G, Gómez Rivas J. Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays. ACS PHOTONICS 2022; 9:2263-2272. [PMID: 35880071 PMCID: PMC9306002 DOI: 10.1021/acsphotonics.2c00007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Exciton transport in most organic materials is based on an incoherent hopping process between neighboring molecules. This process is very slow, setting a limit to the performance of organic optoelectronic devices. In this Article, we overcome the incoherent exciton transport by strongly coupling localized singlet excitations in a tetracene crystal to confined light modes in an array of plasmonic nanoparticles. We image the transport of the resulting exciton-polaritons in Fourier space at various distances from the excitation to directly probe their propagation length as a function of the exciton to photon fraction. Exciton-polaritons with an exciton fraction of 50% show a propagation length of 4.4 μm, which is an increase by 2 orders of magnitude compared to the singlet exciton diffusion length. This remarkable increase has been qualitatively confirmed with both finite-difference time-domain simulations and atomistic multiscale molecular dynamics simulations. Furthermore, we observe that the propagation length is modified when the dipole moment of the exciton transition is either parallel or perpendicular to the cavity field, which opens a new avenue for controlling the anisotropy of the exciton flow in organic crystals. The enhanced exciton-polariton transport reported here may contribute to the development of organic devices with lower recombination losses and improved performance.
Collapse
Affiliation(s)
- Anton Matthijs Berghuis
- Department
of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ruth H. Tichauer
- Nanoscience
Center and Department of Chemistry, University
of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Lianne M. A. de Jong
- Department
of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ilia Sokolovskii
- Nanoscience
Center and Department of Chemistry, University
of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Ping Bai
- Department
of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Mohammad Ramezani
- Department
of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Shunsuke Murai
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, 6158510, Kyoto, Japan
| | - Gerrit Groenhof
- Nanoscience
Center and Department of Chemistry, University
of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Jaime Gómez Rivas
- Department
of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems ICMS, Eindhoven
University of Technology, P.O. Box 513, 5612 AJ, Eindhoven, The Netherlands
| |
Collapse
|
44
|
Tichauer RH, Morozov D, Sokolovskii I, Toppari JJ, Groenhof G. Identifying Vibrations that Control Non-adiabatic Relaxation of Polaritons in Strongly Coupled Molecule-Cavity Systems. J Phys Chem Lett 2022; 13:6259-6267. [PMID: 35771724 PMCID: PMC9289944 DOI: 10.1021/acs.jpclett.2c00826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The strong light-matter coupling regime, in which excitations of materials hybridize with excitations of confined light modes into polaritons, holds great promise in various areas of science and technology. A key aspect for all applications of polaritonic chemistry is the relaxation into the lower polaritonic states. Polariton relaxation is speculated to involve two separate processes: vibrationally assisted scattering (VAS) and radiative pumping (RP), but the driving forces underlying these two mechanisms are not fully understood. To provide mechanistic insights, we performed multiscale molecular dynamics simulations of tetracene molecules strongly coupled to the confined light modes of an optical cavity. The results suggest that both mechanisms are driven by the same molecular vibrations that induce relaxation through nonadiabatic coupling between dark states and polaritonic states. Identifying these vibrational modes provides a rationale for enhanced relaxation into the lower polariton when the cavity detuning is resonant with specific vibrational transitions.
Collapse
Affiliation(s)
- Ruth H. Tichauer
- Nanoscience
Center and Department of Chemistry, University
of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Dmitry Morozov
- Nanoscience
Center and Department of Chemistry, University
of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Ilia Sokolovskii
- Nanoscience
Center and Department of Chemistry, University
of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - J. Jussi Toppari
- Nanoscience
Center and Department of Physics, University
of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Gerrit Groenhof
- Nanoscience
Center and Department of Chemistry, University
of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| |
Collapse
|
45
|
Sidler D, Ruggenthaler M, Schäfer C, Ronca E, Rubio A. A perspective on ab initio modeling of polaritonic chemistry: The role of non-equilibrium effects and quantum collectivity. J Chem Phys 2022; 156:230901. [PMID: 35732522 DOI: 10.1063/5.0094956] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This Perspective provides a brief introduction into the theoretical complexity of polaritonic chemistry, which emerges from the hybrid nature of strongly coupled light-matter states. To tackle this complexity, the importance of ab initio methods is highlighted. Based on those, novel ideas and research avenues are developed with respect to quantum collectivity, as well as for resonance phenomena immanent in reaction rates under vibrational strong coupling. Indeed, fundamental theoretical questions arise about the mesoscopic scale of quantum-collectively coupled molecules when considering the depolarization shift in the interpretation of experimental data. Furthermore, to rationalize recent findings based on quantum electrodynamical density-functional theory (QEDFT), a simple, but computationally efficient, Langevin framework is proposed based on well-established methods from molecular dynamics. It suggests the emergence of cavity-induced non-equilibrium nuclear dynamics, where thermal (stochastic) resonance phenomena could emerge in the absence of external periodic driving. Overall, we believe that the latest ab initio results indeed suggest a paradigmatic shift for ground-state chemical reactions under vibrational strong coupling from the collective quantum interpretation toward a more local, (semi)-classically and non-equilibrium dominated perspective. Finally, various extensions toward a refined description of cavity-modified chemistry are introduced in the context of QEDFT, and future directions of the field are sketched.
Collapse
Affiliation(s)
- Dominik Sidler
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Ruggenthaler
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Christian Schäfer
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Enrico Ronca
- Istituto per i Processi Chimico Fisici del CNR (IPCF-CNR), Via G. Moruzzi, 1, 56124 Pisa, Italy
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
46
|
Wang DS, Neuman T, Yelin SF, Flick J. Cavity-Modified Unimolecular Dissociation Reactions via Intramolecular Vibrational Energy Redistribution. J Phys Chem Lett 2022; 13:3317-3324. [PMID: 35389664 PMCID: PMC9036583 DOI: 10.1021/acs.jpclett.2c00558] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/01/2022] [Indexed: 05/11/2023]
Abstract
While the emerging field of vibrational polariton chemistry has the potential to overcome traditional limitations of synthetic chemistry, the underlying mechanism is not yet well understood. Here, we explore how the dynamics of unimolecular dissociation reactions that are rate-limited by intramolecular vibrational energy redistribution (IVR) can be modified inside an infrared optical cavity. We study a classical model of a bent triatomic molecule, where the two outer atoms are bound by anharmonic Morse potentials to the center atom coupled to a harmonic bending mode. We show that an optical cavity resonantly coupled to particular anharmonic vibrational modes can interfere with IVR and alter unimolecular dissociation reaction rates when the cavity mode acts as a reservoir for vibrational energy. These results lay the foundation for further theoretical work toward understanding the intriguing experimental results of vibrational polaritonic chemistry within the context of IVR.
Collapse
Affiliation(s)
- Derek S. Wang
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Tomáš Neuman
- IPCMS
de Strasbourg, UMR 7504 (CNRS − Université
de Strasbourg), 67034 Strasbourg, France
| | - Susanne F. Yelin
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Johannes Flick
- Center
for Computational Quantum Physics, Flatiron
Institute, New York, New York 10010, United
States
| |
Collapse
|
47
|
Fregoni J, Garcia-Vidal FJ, Feist J. Theoretical Challenges in Polaritonic Chemistry. ACS PHOTONICS 2022; 9:1096-1107. [PMID: 35480492 PMCID: PMC9026242 DOI: 10.1021/acsphotonics.1c01749] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Polaritonic chemistry exploits strong light-matter coupling between molecules and confined electromagnetic field modes to enable new chemical reactivities. In systems displaying this functionality, the choice of the cavity determines both the confinement of the electromagnetic field and the number of molecules that are involved in the process. While in wavelength-scale optical cavities the light-matter interaction is ruled by collective effects, plasmonic subwavelength nanocavities allow even single molecules to reach strong coupling. Due to these very distinct situations, a multiscale theoretical toolbox is then required to explore the rich phenomenology of polaritonic chemistry. Within this framework, each component of the system (molecules and electromagnetic modes) needs to be treated in sufficient detail to obtain reliable results. Starting from the very general aspects of light-molecule interactions in typical experimental setups, we underline the basic concepts that should be taken into account when operating in this new area of research. Building on these considerations, we then provide a map of the theoretical tools already available to tackle chemical applications of molecular polaritons at different scales. Throughout the discussion, we draw attention to both the successes and the challenges still ahead in the theoretical description of polaritonic chemistry.
Collapse
Affiliation(s)
- Jacopo Fregoni
- Departamento de Física
Teórica de la Materia Condensada and Condensed Matter Physics
Center (IFIMAC), Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Francisco J. Garcia-Vidal
- Departamento de Física
Teórica de la Materia Condensada and Condensed Matter Physics
Center (IFIMAC), Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Johannes Feist
- Departamento de Física
Teórica de la Materia Condensada and Condensed Matter Physics
Center (IFIMAC), Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| |
Collapse
|
48
|
Li TE, Tao Z, Hammes-Schiffer S. Semiclassical Real-Time Nuclear-Electronic Orbital Dynamics for Molecular Polaritons: Unified Theory of Electronic and Vibrational Strong Couplings. J Chem Theory Comput 2022; 18:2774-2784. [PMID: 35420037 DOI: 10.1021/acs.jctc.2c00096] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular polaritons have become an emerging platform for remotely controlling molecular properties through strong light-matter interactions. Herein, a semiclassical approach is developed for describing molecular polaritons by self-consistently propagating the real-time dynamics of classical cavity modes and a quantum molecular subsystem described by the nuclear-electronic orbital (NEO) method, where electrons and specified nuclei are treated quantum mechanically on the same level. This semiclassical real-time NEO approach provides a unified description of electronic and vibrational strong couplings and describes the impact of the cavity on coupled nuclear-electronic dynamics while including nuclear quantum effects. For a single o-hydroxybenzaldehyde molecule under electronic strong coupling, this approach shows that the cavity suppression of excited state intramolecular proton transfer is influenced not only by the polaritonic potential energy surface but also by the time scale of the chemical reaction. This work provides the foundation for exploring collective strong coupling in nuclear-electronic quantum dynamical systems within optical cavities.
Collapse
Affiliation(s)
- Tao E Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Zhen Tao
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
49
|
Li TE, Nitzan A, Subotnik JE. Polariton relaxation under vibrational strong coupling: Comparing cavity molecular dynamics simulations against Fermi's golden rule rate. J Chem Phys 2022; 156:134106. [PMID: 35395873 DOI: 10.1063/5.0079784] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Under vibrational strong coupling (VSC), the formation of molecular polaritons may significantly modify the photo-induced or thermal properties of molecules. In an effort to understand these intriguing modifications, both experimental and theoretical studies have focused on the ultrafast dynamics of vibrational polaritons. Here, following our recent work [Li et al., J. Chem. Phys. 154, 094124 (2021)], we systematically study the mechanism of polariton relaxation for liquid CO2 under a weak external pumping. Classical cavity molecular dynamics (CavMD) simulations confirm that polariton relaxation results from the combined effects of (i) cavity loss through the photonic component and (ii) dephasing of the bright-mode component to vibrational dark modes as mediated by intermolecular interactions. The latter polaritonic dephasing rate is proportional to the product of the weight of the bright mode in the polariton wave function and the spectral overlap between the polariton and dark modes. Both these factors are sensitive to parameters such as the Rabi splitting and cavity mode detuning. Compared to a Fermi's golden rule calculation based on a tight-binding harmonic model, CavMD yields a similar parameter dependence for the upper polariton relaxation lifetime but sometimes a modest disagreement for the lower polariton. We suggest that this disagreement results from polariton-enhanced molecular nonlinear absorption due to molecular anharmonicity, which is not included in our analytical model. We also summarize recent progress on probing nonreactive VSC dynamics with CavMD.
Collapse
Affiliation(s)
- Tao E Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
50
|
Yang J, Pei Z, Leon EC, Wickizer C, Weng B, Mao Y, Ou Q, Shao Y. Cavity quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. II. Analytic energy gradient. J Chem Phys 2022; 156:124104. [DOI: 10.1063/5.0082386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Following the formulation of cavity quantum-electrodynamical time-dependent density functional theory (cQED-TDDFT) models [Flick et al., ACS Photonics 6, 2757–2778 (2019) and Yang et al., J. Chem. Phys. 155, 064107 (2021)], here, we report the derivation and implementation of the analytic energy gradient for polaritonic states of a single photochrome within the cQED-TDDFT models. Such gradient evaluation is also applicable to a complex of explicitly specified photochromes or, with proper scaling, a set of parallel-oriented, identical-geometry, and non-interacting molecules in the microcavity.
Collapse
Affiliation(s)
- Junjie Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zheng Pei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Erick Calderon Leon
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Carly Wickizer
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Binbin Weng
- Microfabrication Research and Education Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Qi Ou
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
- AI for Science Institute, Beijing 100080, China
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|