1
|
Sánchez Díaz E, Osegueda B, Minakhina S, Starks N, Novak S, Tolkatchev D, Gregorio CC, Kostyukova AS, Smith GE. Prediction and biological significance of small changes in binding of leiomodin to tropomyosin. J Gen Physiol 2025; 157:e202413641. [PMID: 40272387 PMCID: PMC12020486 DOI: 10.1085/jgp.202413641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/14/2025] [Accepted: 03/30/2025] [Indexed: 04/25/2025] Open
Abstract
In cardiac muscle, regulation of actin polymerization at the thin filament pointed end is controlled by two structurally similar but functionally antagonistic proteins, leiomodin-2 and tropomodulin-1. Both proteins contain tropomyosin-binding site 1, which is essential for their recruitment to the pointed end. Using circular dichroism, we determined changes in melting temperatures (ΔTm) for complexes of tropomyosin and leiomodin-2 fragments containing several hypomorphic mutations, which moderately affect binding to tropomyosin. We ran molecular dynamics simulations for the complexes and calculated standard Gibbs free energies of binding, which we found to strongly correlate with the ΔTm. We found that the E34Q mutation in leiomodin-2 resulted in a decrease in the melting temperature of the complex of tropomyosin and leiomodin-2 fragments, indicating a decrease in the affinity of leiomodin-2 for tropomyosin. Although modest, this change in in vitro affinity made leiomodin-2 a weaker competitor for tropomyosin than tropomodulin-1 in cardiomyocytes. This mutation significantly reduced the ability of leiomodin-2 to displace tropomodulin-1 at thin filament pointed ends and affected the ability of leiomodin-2 to elongate thin filaments. Our results highlight the essential role of the tropomyosin-binding site in the dynamic equilibrium between tropomodulin-1 and leiomodin-2 at the pointed end of thin filaments. Our data also suggest the potential use of the correlation between ΔTm and the modeled standard Gibbs free energies of binding to predict changes in the stability of complexes between tropomyosin and leiomodin or tropomodulin isoforms.
Collapse
Affiliation(s)
- Eduardo Sánchez Díaz
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Brayan Osegueda
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Svetlana Minakhina
- Department of Medicine and Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nickolas Starks
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Stefanie Novak
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Dmitri Tolkatchev
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Carol C. Gregorio
- Department of Medicine and Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Alla S. Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Garry E. Smith
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
2
|
Straathof S, Di Muccio G, Maglia G. Nanopores with an Engineered Selective Entropic Gate Detect Proteins at Nanomolar Concentration in Complex Biological Sample. J Am Chem Soc 2025; 147:15050-15065. [PMID: 40261977 PMCID: PMC12063177 DOI: 10.1021/jacs.4c17147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
Biological nanopores enable the electrical detection of biomolecules, making them ideal sensors for use in health-monitoring devices. Proteins are widely recognized as biomarkers for various diseases, but they present a unique challenge due to their vast diversity and concentration range in biological samples. Here, inspired by the nuclear pore complex, we incorporated a layer of disordered polypeptides into the biological nanopore YaxAB. This polypeptide mesh formed an entropic gate, significantly reducing the entry of proteins from a highly concentrated mixture, including blood. The introduction of a specific recognition element within the disordered polypeptides allowed targeted proteins to penetrate through the nanopores, where they were recognized by specific current signatures. This biosensing approach allowed for the recognition of nanomolar proteins directly from blood samples without prior sample preparation. This work paves the way for the next generation of nanopore sensors for the real-time detection of proteins in blood.
Collapse
Affiliation(s)
- Sabine Straathof
- Groningen
Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Giovanni Di Muccio
- New
York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giovanni Maglia
- Groningen
Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
3
|
Šulc J, Vondrášek J. Unraveling the Tether: Exploring Representative Protein Linkers and Their Structural and Thermodynamical Properties. J Phys Chem B 2025; 129:3720-3730. [PMID: 40188464 PMCID: PMC12010332 DOI: 10.1021/acs.jpcb.4c04194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/08/2025]
Abstract
This study explores the thermodynamic and structural behaviors of linker peptides, short polypeptide segments that often bridge protein domains. We are focusing on three prototypical classes─glycine-serine (GS), glycine-glycine (GG), and alanine-proline (AP)─and exploring their conformational dynamics as isolated entities outside a multidomain protein context. Using extensive molecular dynamics (MD) simulations and free energy perturbation (FEP) analyses, we characterize the free energy landscapes, entropic properties, and solvation energetics of 20 representative linkers. Our results reveal a pronounced linear relationship between linker length and key thermodynamic contributions, including zero-point vibrational energy (ZPVE), potential energy, and entropy. Notably, vibrational entropy emerges as a dominant stabilizing term. We also found that AP linkers display more rigid, yet extended conformations compared to the highly flexible GS and moderately flexible GG linkers. These findings underscore the nuanced role of linker composition in contributing to multidomain protein architecture and dynamics, and highlight how thermodynamic forces shape linker conformational behavior. Collectively, our work enhances the mechanistic understanding of protein linkers, offering valuable insights for the rational design of peptide-based systems and informing future efforts to modulate interdomain flexibility and stability in multidomain proteins.
Collapse
Affiliation(s)
- Josef Šulc
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6 166 10, Czech Republic
- Faculty
of Science, Charles University, Albertov 2038, Prague 128 00, Czech Republic
| | - Jiří Vondrášek
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6 166 10, Czech Republic
| |
Collapse
|
4
|
Agwora D, Gufu B, Marik T, Papp T, Vágvölgyi C, Kredics L, Tyagi C. Structural elucidation of four fungal hydrophobins belonging to classes I and II: Results from Alphafold and accelerated molecular dynamics simulations. Comput Struct Biotechnol J 2025; 27:1067-1080. [PMID: 40165823 PMCID: PMC11957597 DOI: 10.1016/j.csbj.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/27/2025] [Accepted: 03/08/2025] [Indexed: 04/02/2025] Open
Abstract
Hydrophobins (HFB) find application in various industries including biotechnology and medical devices; therefore, it is imperative to elucidate and learn more about their folded structures. Few fungal HFB protein structures are available in the Protein Data Bank (PDB), and fewer have been elucidated using homology modeling or short molecular dynamics (MD) simulations in the literature. Moreover, many homology modeling algorithms will only model the region with sequence identity. Therefore, we turned towards the state-of-the-art, artificial intelligence powered AlphaFold. It performed well in predicting the core β-barrel, a characteristic of HFBs, except for HFB9A which was unfolded with low confidence scores. These initial structures were then prepared for accelerated MD simulation in the hope of observing higher protein folding. With 500 ns long aMD simulations, we were able to obtain folded and energetically stable conformations for all the proteins except HFB9A, which exhibited much higher disorder, connected with higher atomic fluctuation, lowest hydrophobicity and overall compactness, and lesser secondary structure formation as visualized during the aMD simulation. The underlying intrinsic disorder in the HFBs was found to be the basis of harder-to-reach folding by AF2 which can be compensated by enhanced sampling MD simulations like the aMD technique. The characteristic two disordered loops of class I HFBs were obtained for SC3, while HFB9A showed that not all class I HFBs contain them. Class II HFBs were more stable, folded and compact with secondary structure motifs conserved throughout the trajectory which can be correlated with their comparatively much lower intrinsic disorder.
Collapse
Affiliation(s)
- Derrick Agwora
- Department of Biotechnology and Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bonaya Gufu
- Department of Biotechnology and Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Tamás Marik
- Department of Biotechnology and Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Tamás Papp
- Department of Biotechnology and Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Fungal Pathomechanisms Research Group, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Biotechnology and Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Fungal Pathomechanisms Research Group, University of Szeged, Szeged, Hungary
| | - László Kredics
- Department of Biotechnology and Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Chetna Tyagi
- Department of Biotechnology and Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Chakraborty S, Morozova TI, Barrat JL. Intrinsically Disordered Proteins Can Behave as Different Polymers across Their Conformational Ensemble. J Phys Chem B 2025; 129:2359-2369. [PMID: 39983022 DOI: 10.1021/acs.jpcb.4c07020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Intrinsically disordered proteins (IDPs) are macromolecules, which in contrast to well-folded proteins explore a large number of conformationally heterogeneous states. In this work, we investigate the conformational space of the disordered protein β-casein using Hamiltonian replica exchange atomistic molecular dynamics (MD) simulations in explicit water. The energy landscape contains a global minimum along with two shallow funnels. Employing static polymeric scaling laws separately for individual funnels, we find that they cannot be described by the same polymeric scaling exponent. Around the global minimum, the conformations are globular, whereas in the vicinity of local minima, we recover coil-like scaling. To elucidate the implications of structural diversity on equilibrium dynamics, we initiated standard MD simulations in the NVT ensemble with representative conformations from each funnel. Global and internal motions for different classes of trajectories show heterogeneous dynamics with globule to coil-like signatures. Thus, IDPs can behave as entirely different polymers in different regions of the conformational space.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, CNRS, 38402 Saint-Martin-d'Héres, France
| | | | - Jean-Louis Barrat
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, CNRS, 38402 Saint-Martin-d'Héres, France
| |
Collapse
|
6
|
Yue C, Shi S, Li Z, Ye S. Studying the Signaling Mechanism of Neuropilin-1's Intracellular Disorder Region via Conformational Mining and Dynamic Interaction Characterization. J Phys Chem B 2025; 129:2392-2401. [PMID: 39993015 DOI: 10.1021/acs.jpcb.4c07616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Many single-pass membrane proteins contain an intrinsically disordered region (IDR) within their intracellular domain, playing a key role in regulating cellular signaling. However, understanding the functional mechanisms of these disordered regions has remained a challenge. In this study, we focus on the cytoplasmic IDR of neuropilin-1 (NRP-1 IDR) and employ a combination of experimental and computational methods to investigate its dynamics and function. We compare several enhanced sampling molecular simulations, structural statistics-based methods, and AI-driven conformation mining techniques, emphasizing the strengths and limitations of each with respect to sampling diversity and energy landscape exploration. Subsequently, we investigate the broad array of potential binding partners for the NRP-1 IDR and employ AlphaFold3 for complex structure prediction, highlighting the promiscuous binding behavior of the NRP-1 IDR. Finally, we focus on high-confidence binding partners, GIPC-1 and SNX-5, validating the interaction of the NRP-1 IDR with these proteins and investigating the effects of membrane context and phosphorylation on these interactions. Our findings provide critical insights into how a flexible cytoplasmic region in signal-transmembrane proteins can modulate transmembrane signaling.
Collapse
Affiliation(s)
- Congran Yue
- School of Life Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Sai Shi
- School of Life Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Zhenlu Li
- School of Life Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Sheng Ye
- School of Life Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
7
|
Mittal J, Phan T, Mohanty P. Optimal scaling of protein-water interactions coupled with targeted torsional refinements yields balanced force fields suitable for simulations of single-chain folded proteins, disordered polypeptides, and protein-protein complexes. RESEARCH SQUARE 2025:rs.3.rs-5932820. [PMID: 40060049 PMCID: PMC11888540 DOI: 10.21203/rs.3.rs-5932820/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
All-atom molecular dynamics (MD) simulations based on physics-based force fields, serve as an essential complement to experiments for investigating protein structure, dynamics, and interactions. Despite significant advances in force field development, achieving a consistent balance of molecular interactions that stabilize folded proteins and protein-protein complexes while simultaneously capturing the conformational dynamics of intrinsically disordered polypeptides (IDPs), remains challenging. In this work, we systematically evaluated two current state-of-the-art force fields (i) AMBER ff03ws, and (ii) AMBER ff99SBws, by comprehensively assessing their performance on both folded domains and IDPs. By selectively scaling side chain-water interactions for uncharged residues, the refined AMBER ff03w-sc force field demonstrated improved conformational stability of folded proteins while maintaining accurate representations of IDPs. However, AMBER ff03w-sc failed to correct the discrepancies in NMR-derived ps-ns timescale backbone dynamics associated with flexible loops. Interestingly, AMBER ff99SBws retained its structural stability despite the application of upscaled interactions with water for both sidechain and backbone atoms and displayed robust agreement with NMR-derived backbone dynamics. Further, a targeted refinement of glutamine backbone torsion parameters, yielded AMBER ff99SBws-STQ', which effectively resolved discrepancies associated with glutamine α-helicity predictions. Extensive validation against small angle X-ray scattering (SAXS) and NMR chemical shifts, revealed that both refined force fields accurately reproduced chain dimensions and secondary structure propensities of disordered peptides and prion-like domains. Importantly, both force fields reliably maintained the stability of protein-protein complexes over microsecond timescales. Our systematic refinement strategies provide improved accuracy and transferability for simulating diverse protein systems, from folded domains to IDPs and protein complexes.
Collapse
|
8
|
Atanasova M. Small-Molecule Inhibitors of Amyloid Beta: Insights from Molecular Dynamics-Part A: Endogenous Compounds and Repurposed Drugs. Pharmaceuticals (Basel) 2025; 18:306. [PMID: 40143085 PMCID: PMC11944459 DOI: 10.3390/ph18030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
The amyloid hypothesis is the predominant model of Alzheimer's disease (AD) pathogenesis, suggesting that amyloid beta (Aβ) peptide is the primary driver of neurotoxicity and a cascade of pathological events in the central nervous system. Aβ aggregation into oligomers and deposits triggers various processes, such as vascular damage, inflammation-induced astrocyte and microglia activation, disrupted neuronal ionic homeostasis, oxidative stress, abnormal kinase and phosphatase activity, tau phosphorylation, neurofibrillary tangle formation, cognitive dysfunction, synaptic loss, cell death, and, ultimately, dementia. Molecular dynamics (MD) is a powerful structure-based drug design (SBDD) approach that aids in understanding the properties, functions, and mechanisms of action or inhibition of biomolecules. As the only method capable of simulating atomic-level internal motions, MD provides unique insights that cannot be obtained through other techniques. Integrating experimental data with MD simulations allows for a more comprehensive understanding of biological processes and molecular interactions. This review summarizes and evaluates MD studies from the past decade on small molecules, including endogenous compounds and repurposed drugs, that inhibit amyloid beta. Furthermore, it outlines key considerations for future MD simulations of amyloid inhibitors, offering a potential framework for studies aimed at elucidating the mechanisms of amyloid beta inhibition by small molecules.
Collapse
|
9
|
Seute L, Hartmann E, Stühmer J, Gräter F. Grappa - a machine learned molecular mechanics force field. Chem Sci 2025; 16:2907-2930. [PMID: 39822899 PMCID: PMC11734696 DOI: 10.1039/d4sc05465b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/13/2024] [Indexed: 01/19/2025] Open
Abstract
Simulating large molecular systems over long timescales requires force fields that are both accurate and efficient. In recent years, E(3) equivariant neural networks have lifted the tension between computational efficiency and accuracy of force fields, but they are still several orders of magnitude more expensive than established molecular mechanics (MM) force fields. Here, we propose Grappa, a machine learning framework to predict MM parameters from the molecular graph, employing a graph attentional neural network and a transformer with symmetry-preserving positional encoding. The resulting Grappa force field outperforms tabulated and machine-learned MM force fields in terms of accuracy at the same computational efficiency and can be used in existing Molecular Dynamics (MD) engines like GROMACS and OpenMM. It predicts energies and forces of small molecules, peptides, and RNA at state-of-the-art MM accuracy, while also reproducing experimentally measured values for J-couplings. With its simple input features and high data-efficiency, Grappa is well suited for extensions to uncharted regions of chemical space, which we show on the example of peptide radicals. We demonstrate Grappa's transferability to macromolecules in MD simulations from a small fast-folding protein up to a whole virus particle. Our force field sets the stage for biomolecular simulations closer to chemical accuracy, but with the same computational cost as established protein force fields.
Collapse
Affiliation(s)
- Leif Seute
- Heidelberg Institute for Theoretical Studies Schloss-Wolfsbrunnenweg 35 69118 Heidelberg Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University INF 205 69120 Heidelberg Germany
| | - Eric Hartmann
- Heidelberg Institute for Theoretical Studies Schloss-Wolfsbrunnenweg 35 69118 Heidelberg Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University INF 205 69120 Heidelberg Germany
| | - Jan Stühmer
- Heidelberg Institute for Theoretical Studies Schloss-Wolfsbrunnenweg 35 69118 Heidelberg Germany
- Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology Kaiserstr. 12 76131 Karlsruhe Germany
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies Schloss-Wolfsbrunnenweg 35 69118 Heidelberg Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University INF 205 69120 Heidelberg Germany
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
10
|
Wang X, Xiong D, Zhang Y, Zhai J, Gu YC, He X. The evolution of the Amber additive protein force field: History, current status, and future. J Chem Phys 2025; 162:030901. [PMID: 39817575 DOI: 10.1063/5.0227517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025] Open
Abstract
Molecular dynamics simulations are pivotal in elucidating the intricate properties of biological molecules. Nonetheless, the reliability of their outcomes hinges on the precision of the molecular force field utilized. In this perspective, we present a comprehensive review of the developmental trajectory of the Amber additive protein force field, delving into researchers' persistent quest for higher precision force fields and the prevailing challenges. We detail the parameterization process of the Amber protein force fields, emphasizing the specific improvements and retained features in each version compared to their predecessors. Furthermore, we discuss the challenges that current force fields encounter in balancing the interactions of protein-protein, protein-water, and water-water in molecular dynamics simulations, as well as potential solutions to overcome these issues.
Collapse
Affiliation(s)
- Xianwei Wang
- School of Physics, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Danyang Xiong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yueqing Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jihang Zhai
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| |
Collapse
|
11
|
He X, Man VH, Gao J, Wang J. Effects of All-Atom and Coarse-Grained Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of a Tau K18 Monomer. J Chem Inf Model 2024; 64:8880-8891. [PMID: 39579121 DOI: 10.1021/acs.jcim.4c01448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
To propose new mechanism-based therapeutics for Alzheimer's disease (AD), it is crucial to study the kinetics and oligomerization/aggregation mechanisms of the hallmark tau proteins, which have various isoforms and are intrinsically disordered. In this study, multiple all-atom (AA) and coarse-grained (CG) force fields (FFs) have been benchmarked on molecular dynamics (MD) simulations of K18 tau (M243-E372), which is a truncated form (130 residues) of full-length tau (441 residues). FF19SB is first excluded because the dynamics are too slow, and the conformations are too stable. All other benchmarked AAFFs (Charmm36m, FF14SB, Gromos54A7, and OPLS-AA) and CGFFs (Martini3 and Sirah2.0) exhibit a trend of shrinking K18 tau into compact structures with the radius of gyration (ROG) around 2.0 nm, which is much smaller than the experimental value of 3.8 nm, within 200 ns of AA-MD or 2000 ns of CG-MD. Gromos54A7, OPLS-AA, and Martini3 shrink much faster than the other FFs. To perform meaningful postanalysis of various properties, we propose a strategy of selecting snapshots with 2.5 < ROG < 4.5 nm, instead of using all sampled snapshots. The calculated chemical shifts of all C, CA, and CB atoms have very good and close root-mean-square error (RMSE) values, while Charmm36m and Sirah2.0 exhibit better chemical shifts of N than other FFs. Comparing the calculated distributions of the distance between the CA atoms of CYS291 and CYS322 with the results of the FRET experiment demonstrates that Charmm36m is a perfect match with the experiment while other FFs exhibit limitations. In summary, Charmm36m is recommended as the best AAFF, and Sirah2.0 is recommended as an excellent CGFF for simulating tau K18.
Collapse
Affiliation(s)
- Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jie Gao
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
12
|
Tolstova AP, Adzhubei AA, Strelkova MA, Makarov AA, Mitkevich VA. Survey of the Aβ-peptide structural diversity: molecular dynamics approaches. Biophys Rev 2024; 16:701-722. [PMID: 39830132 PMCID: PMC11735825 DOI: 10.1007/s12551-024-01253-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 01/22/2025] Open
Abstract
The review deals with the application of Molecular Dynamics (MD) to the structure modeling of beta-amyloids (Aβ), currently classified as intrinsically disordered proteins (IDPs). In this review, we strive to relate the main advances in this area but specifically focus on the approaches and methodology. All relevant papers on the Aβ modeling are cited in the Tables in Supplementary Data, including a concise description of the applied approaches, sorted according to the types of the studied systems: modeling of the monomeric Aβ and Aβ aggregates. Similar sections focused according to the type of modeled object are present in the review. In the final part of the review, novel methods of general IDP modeling not confined to Aβ are described. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-024-01253-y.
Collapse
Affiliation(s)
- Anna P. Tolstova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Alexei A. Adzhubei
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
- Washington University School of Medicine and Health Sciences, Washington, DC USA
| | - Maria A. Strelkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| |
Collapse
|
13
|
Sethi A, Agrawal N, Brezovsky J. Impact of water models on the structure and dynamics of enzyme tunnels. Comput Struct Biotechnol J 2024; 23:3946-3954. [PMID: 39582894 PMCID: PMC11584523 DOI: 10.1016/j.csbj.2024.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Protein hydration plays a vital role in many biological functions, and molecular dynamics simulations are frequently used to study it. However, the accuracy of these simulations is often sensitive to the water model used, a phenomenon particularly evident in intrinsically disordered proteins. Here, we investigated the extent to which the choice of water model alters the behavior of complex networks of tunnels within proteins. Tunnels are essential because they allow the exchange of substrates and products between buried enzyme active sites and the bulk solvent, directly affecting enzyme efficiency and selectivity, making the study of tunnels crucial for a holistic understanding of enzyme function at the molecular level. By performing simulations of haloalkane dehalogenase LinB and its two variants with engineered tunnels using TIP3P and OPC models, we investigated their effects on the overall tunnel topology. We also analyzed the properties of the primary tunnels, including their conformation, bottleneck dimensions, sampling efficiency, and the duration of tunnel openings. Our data demonstrate that all three proteins exhibited similar conformational behavior in both models but differed in the geometrical characteristics of their auxiliary tunnels, consistent with experimental observations. Interestingly, the results indicate that the stability of the open tunnels might be sensitive to the water model used. Because TIP3P can provide comparable data on the overall tunnel network, it is a valid choice when computational resources are limited or compatibility issues impede the use of OPC. However, OPC seems preferable for calculations requiring an accurate description of transport kinetics.
Collapse
Affiliation(s)
- Aaftaab Sethi
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan 61–614, Poland
| | - Nikhil Agrawal
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV, Riga 1006, Latvia
| | - Jan Brezovsky
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan 61–614, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, Warsaw 02–109, Poland
| |
Collapse
|
14
|
Paul S, Biswas P. Dimerization of Full-Length Aβ-42 Peptide: A Comparison of Different Force Fields and Water Models. Chemphyschem 2024; 25:e202400502. [PMID: 38949117 DOI: 10.1002/cphc.202400502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Among the two isoforms of amyloid-β i. e., Aβ-40 and Aβ-42, Aβ-42 is more toxic due to its increased aggregation propensity. The oligomerization pathways of amyloid-β may be investigated by studying its dimerization process at an atomic level. Intrinsically disordered proteins (IDPs) lack well-defined structures and are associated with numerous neurodegenerative disorders. Molecular dynamics simulations of these proteins are often limited by the choice of parameters due to inconsistencies in the empirically developed protein force fields and water models. To evaluate the accuracy of recently developed force fields for IDPs, we study the dimerization of full-length Aβ-42 in aqueous solution with three different combinations of AMBER force field parameters and water models such as ff14SB/TIP3P, ff19SB/OPC, and ff19SB/TIP3P using classical MD and Umbrella Sampling method. This work may be used as a benchmark to compare the performance of different force fields for the simulations of IDPs.
Collapse
Affiliation(s)
- Srijita Paul
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
15
|
Kosarim NA, Fedulova AS, Shariafetdinova AS, Armeev GA, Shaytan AK. Molecular Dynamics Simulations of Nucleosomes Containing Histone Variant H2A.J. Int J Mol Sci 2024; 25:12136. [PMID: 39596203 PMCID: PMC11595175 DOI: 10.3390/ijms252212136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Histone proteins form the building blocks of chromatin-nucleosomes. Incorporation of alternative histone variants instead of the major (canonical) histones into nucleosomes is a key mechanism enabling epigenetic regulation of genome functioning. In humans, H2A.J is a constitutively expressed histone variant whose accumulation is associated with cell senescence, inflammatory gene expression, and certain cancers. It is sequence-wise very similar to the canonical H2A histones, and its effects on the nucleosome structure and dynamics remain elusive. This study employed all-atom molecular dynamics simulations to reveal atomistic mechanisms of structural and dynamical effects conferred by the incorporation of H2A.J into nucleosomes. We showed that the H2A.J C-terminal tail and its phosphorylated form have unique dynamics and interaction patterns with the DNA, which should affect DNA unwrapping and the availability of nucleosomes for interactions with other chromatin effectors. The dynamics of the L1-loop and the hydrogen bonding patterns inside the histone octamer were shown to be sensitive to single amino acid substitutions, potentially explaining the higher thermal stability of H2A.J nucleosomes. Taken together, our study demonstrated unique dynamical features of H2A.J-containing nucleosomes, which contribute to further understanding of the molecular mechanisms employed by H2A.J in regulating genome functioning.
Collapse
Affiliation(s)
- Nikita A. Kosarim
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (N.A.K.); (A.S.F.); (G.A.A.)
| | - Anastasiia S. Fedulova
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (N.A.K.); (A.S.F.); (G.A.A.)
| | | | - Grigoriy A. Armeev
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (N.A.K.); (A.S.F.); (G.A.A.)
| | - Alexey K. Shaytan
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (N.A.K.); (A.S.F.); (G.A.A.)
- Institute of Gene Biology, 119334 Moscow, Russia
| |
Collapse
|
16
|
Ahlawat V, Dhiman A, Mudiyanselage HE, Zhou HX. Protamine-Mediated Tangles Produce Extreme Deoxyribonucleic Acid Compaction. J Am Chem Soc 2024; 146:30668-30677. [PMID: 39469863 PMCID: PMC11540724 DOI: 10.1021/jacs.4c12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In sperm cells, protamine replaces histones to compact DNA 10-20 times more than in somatic cells. To characterize the extreme compaction, we employed confocal microscopy and optical tweezers to determine the conformations and stability of protamine-bound λ-DNA. Confocal images show increasing compaction of λ-DNA at increasing protamine concentration. In the presence of protamine, single λ-DNA molecules form tangles that withstand forces strong enough (∼55 pN) for strand separation and shorten the contour length by up to 40% even at high forces, as well as bends and loops that rupture at 10-40 pN forces. Strand separation nucleates tangles, implicating protamine interactions with DNA bases. Molecular dynamics simulations show that Arg sidechains of protamine each form hydrogen bonds with multiple bases, frequently in the form of a wedge between the two strands of DNA. Protamine may participate in both local and higher-order chromatin organization, leading to extreme compaction and global transcription silencing.
Collapse
Affiliation(s)
- Vikhyaat Ahlawat
- Department of Chemistry University of Illinois Chicago, Chicago IL 60607, United States
- Department of Physics, University of Illinois Chicago, Chicago IL 60607, United States
| | - Anshika Dhiman
- Department of Chemistry University of Illinois Chicago, Chicago IL 60607, United States
| | | | - Huan-Xiang Zhou
- Department of Chemistry University of Illinois Chicago, Chicago IL 60607, United States
- Department of Physics, University of Illinois Chicago, Chicago IL 60607, United States
| |
Collapse
|
17
|
Linhartova K, Falginella FL, Matl M, Sebesta M, Vácha R, Stefl R. Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7. Nat Commun 2024; 15:9163. [PMID: 39448580 PMCID: PMC11502803 DOI: 10.1038/s41467-024-53305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
The intrinsically disordered carboxy-terminal domain (CTD) of the largest subunit of RNA Polymerase II (RNAPII) consists of multiple tandem repeats of the consensus heptapeptide Y1-S2-P3-T4-S5-P6-S7. The CTD promotes liquid-liquid phase-separation (LLPS) of RNAPII in vivo. However, understanding the role of the conserved heptad residues in LLPS is hampered by the lack of direct biochemical characterization of the CTD. Here, we generated a systematic array of CTD variants to unravel the sequence-encoded molecular grammar underlying the LLPS of the human CTD. Using in vitro experiments and molecular dynamics simulations, we report that the aromaticity of tyrosine and cis-trans isomerization of prolines govern CTD phase-separation. The cis conformation of prolines and β-turns in the SPXX motif contribute to a more compact CTD ensemble, enhancing interactions among CTD residues. We further demonstrate that prolines and tyrosine in the CTD consensus sequence are required for phosphorylation by Cyclin-dependent kinase 7 (CDK7). Under phase-separation conditions, CDK7 associates with the surface of the CTD droplets, drastically accelerating phosphorylation and promoting the release of hyperphosphorylated CTD from the droplets. Our results highlight the importance of conformationally restricted local structures within spacer regions, separating uniformly spaced tyrosine stickers of the CTD heptads, which are required for CTD phase-separation.
Collapse
Affiliation(s)
- Katerina Linhartova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Martin Matl
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Marek Sebesta
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia.
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia.
| | - Richard Stefl
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia.
| |
Collapse
|
18
|
Duran C, Casadevall G, Osuna S. Harnessing conformational dynamics in enzyme catalysis to achieve nature-like catalytic efficiencies: the shortest path map tool for computational enzyme redesign. Faraday Discuss 2024; 252:306-322. [PMID: 38910409 PMCID: PMC11389851 DOI: 10.1039/d3fd00156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Enzymes exhibit diverse conformations, as represented in the free energy landscape (FEL). Such conformational diversity provides enzymes with the ability to evolve towards novel functions. The challenge lies in identifying mutations that enhance specific conformational changes, especially if located in distal sites from the active site cavity. The shortest path map (SPM) method, which we developed to address this challenge, constructs a graph based on the distances and correlated motions of residues observed in nanosecond timescale molecular dynamics (MD) simulations. We recently introduced a template based AlphaFold2 (tAF2) approach coupled with 10 nanosecond MD simulations to quickly estimate the conformational landscape of enzymes and assess how the FEL is shifted after mutation. In this study, we evaluate the potential of SPM when coupled with tAF2-MD in estimating conformational heterogeneity and identifying key conformationally-relevant positions. The selected model system is the beta subunit of tryptophan synthase (TrpB). We compare how the SPM pathways differ when integrating tAF2 with different MD simulation lengths from as short as 10 ns until 50 ns and considering two distinct Amber forcefield and water models (ff14SB/TIP3P versus ff19SB/OPC). The new methodology can more effectively capture the distal mutations found in laboratory evolution, thus showcasing the efficacy of tAF2-MD-SPM in rapidly estimating enzyme dynamics and identifying the key conformationally relevant hotspots for computational enzyme engineering.
Collapse
Affiliation(s)
- Cristina Duran
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003, Girona, Spain.
| | - Guillem Casadevall
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003, Girona, Spain.
| | - Sílvia Osuna
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003, Girona, Spain.
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
19
|
Krishna NB, Roopa L, Pravin Kumar R, S GT. Computational studies on the catalytic potential of the double active site for enzyme engineering. Sci Rep 2024; 14:17892. [PMID: 39095391 PMCID: PMC11297320 DOI: 10.1038/s41598-024-60824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/27/2024] [Indexed: 08/04/2024] Open
Abstract
Proteins possessing double active sites have the potential to revolutionise enzyme design strategies. This study extensively explored an enzyme that contains both a natural active site (NAS) and an engineered active site (EAS), focusing on understanding its structural and functional properties. Metadynamics simulations were employed to investigate how substrates interacted with their respective active sites. The results revealed that both the NAS and EAS exhibited similar minimum energy states, indicating comparable binding affinities. However, it became apparent that the EAS had a weaker binding site for the substrate due to its smaller pocket and constrained conformation. Interestingly, the EAS also displayed dynamic behaviour, with the substrate observed to move outside the pocket, suggesting the possibility of substrate translocation. To gain further insights, steered molecular dynamics (SMD) simulations were conducted to study the conformational changes of the substrate and its interactions with catalytic residues. Notably, the substrate adopted distinct conformations, including near-attack conformations, in both the EAS and NAS. Nevertheless, the NAS demonstrated superior binding minima for the substrate compared to the EAS, reinforcing the observation that the engineered active site was less favourable for substrate binding due to its limitations. The QM/MM (Quantum mechanics and molecular mechanics) analyses highlight the energy disparity between NAS and EAS. Specifically, EAS exhibited elevated energy levels due to its engineered active site being located on the surface. This positioning exposes the substrate to solvents and water molecules, adding to the energy challenge. Consequently, the engineered enzyme did not provide a significant advantage in substrate binding over the single active site protein. Further, the investigation of internal channels and tunnels within the protein shed light on the pathways facilitating transport between the two active sites. By unravelling the complex dynamics and functional characteristics of this double-active site protein, this study offers valuable insights into novel strategies of enzyme engineering. These findings establish a solid foundation for future research endeavours aimed at harnessing the potential of double-active site proteins in diverse biotechnological applications.
Collapse
Affiliation(s)
- Naveen Banchallihundi Krishna
- Department of Computational Biology and AI, Kcat Enzymatic Private Limited, #16, Ramakrishnappa Road, Cox Town, Bangalore, 560005, India
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Lalitha Roopa
- Department of Computational Biology and AI, Kcat Enzymatic Private Limited, #16, Ramakrishnappa Road, Cox Town, Bangalore, 560005, India
| | - R Pravin Kumar
- Department of Computational Biology and AI, Kcat Enzymatic Private Limited, #16, Ramakrishnappa Road, Cox Town, Bangalore, 560005, India.
| | - Gopenath T S
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| |
Collapse
|
20
|
Zhang R, Yang L, Xiao X, Liu H. Dissipative Particle Dynamics Simulation of Protein Folding in Explicit and Implicit Solvents: Coarse-Grained Model for Atomic Resolution. J Chem Theory Comput 2024. [PMID: 39053012 DOI: 10.1021/acs.jctc.4c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Advancements have been made to dissipative particle dynamics (DPD), a robust coarse-grained (CG) simulation method, to study the folded structures of four miniproteins (1L2Y, 1WN8, 1YRF, and 2I9M) in explicit and implicit solvents. In this endeavor, we aim to establish model parametrization and enhance computational efficiency. Unlike traditional CG models that use empirical force parameters, ex-force parameters (r0(ex), a ~ , δd, δp) of DPD particles constructed for specific research purposes can be obtained from atomistic molecular dynamics simulations. On the other hand, im-force parameters (r0(im), c, σ) can be derived from ex-DPD simulations, according to the underlying thermodynamic theory. Based on a mapping scheme proposed for the modeling of amino acids, all-atom proteins can be converted into a CG model. Both ex-/im-DPDs are then carried out to investigate the folding pathways of the four mini-proteins. Structural analysis of the RMSDs shows that the im-simulated proteins have greater structural similarity to native proteins than the ex-simulated ones. The constructed CG models achieve a resolution of Angstrom (Å), a level normally associated with atomic models. Additionally, speed tests reveal that im-DPD accelerates the simulation process and significantly improves simulation efficiency.
Collapse
Affiliation(s)
- Ruzhuang Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou City, Hainan Province 570228, PR China
| | - Li Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Xingqing Xiao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou City, Hainan Province 570228, PR China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
21
|
Kuang K, Chen X, Wang M, Han W, Qiu X, Jin T, Xu R, Yuan B, Qian M, Li C, Xiang R, Li F, Zhang S, Yang Z, Du J, Li D, Zhang C, Wang Q, Jia T. Design and Discovery of New Collagen V-Derived FGF2-Blocking Natural Peptides Inhibiting Lung Squamous Cell Carcinoma In Vitro and In Vivo. J Med Chem 2024. [PMID: 39045829 DOI: 10.1021/acs.jmedchem.4c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Aberrant FGF2/FGFR signaling is implicated in lung squamous cell carcinoma (LSCC), posing treatment challenges due to the lack of targeted therapeutic options. Designing drugs that block FGF2 signaling presents a promising strategy different from traditional kinase inhibitors. We previously reported a ColVα1-derived fragment, HEPV (127AA), that inhibits FGF2-induced angiogenesis. However, its large size may limit therapeutic application. This study combines rational peptide design, molecular dynamics simulations, knowledge-based prediction, and GUV and FRET assays to identify smaller peptides with FGF2-blocking properties. We synthesized two novel peptides, HBS-P1 (45AA) and HBS-P2 (66AA), that retained the heparin-binding site. Both peptides demonstrated anti-LSCC and antiangiogenesis properties in cell viability and microvessel network induction assays. In two LSCC subcutaneous models, HBS-P1, with its affinity for FGF2 and enhanced penetration ability, demonstrated substantial therapeutic potential without apparent toxicities. Our study provides the first evidence supporting the development of collagen V-derived natural peptides as FGF2-blocking agents for LSCC treatment.
Collapse
Affiliation(s)
- Keli Kuang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Maolin Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Weijing Han
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Xue Qiu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory forMarine Drugs and Bioproducts, Qingdao National Laboratory for Marine Scienceand Technology, Ocean University of China, Qingdao 266237, China
| | - Taoli Jin
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Rong Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Meiqi Qian
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory forMarine Drugs and Bioproducts, Qingdao National Laboratory for Marine Scienceand Technology, Ocean University of China, Qingdao 266237, China
| | - Chunyan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Run Xiang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Fei Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuwen Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zi Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Junrong Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Dapeng Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
Otteson L, Nagy G, Kunkel J, Kodis G, Zheng W, Bignon C, Longhi S, Grubmüller H, Vaiana AC, Vaiana SM. Transient Non-local Interactions Dominate the Dynamics of Measles Virus N TAIL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604679. [PMID: 39091801 PMCID: PMC11291014 DOI: 10.1101/2024.07.22.604679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The RNA genome of measles virus is encapsidated by the nucleoprotein within a helical nucleocapsid that serves as template for both transcription and replication. The intrinsically disordered domain of the nucleoprotein (NTAIL), partly protruding outward from the nucleocapsid, is essential for binding the polymerase complex responsible for viral transcription and replication. As for many IDPs, binding of NTAIL occurs through a short molecular recognition element (MoRE) that folds upon binding, with the majority of NTAIL remaining disordered. Though NTAIL regions far from the MoRE influence the binding affinity, interactions between them and the MoRE have not been investigated in depth. Using an integrated approach, relying on photo-induced electron transfer (PET) experiments between tryptophan and cysteine pairs placed at different positions in the protein under varying salt and pH conditions, combined with simulations and analytical models, we identified transient interactions between two disordered regions distant in sequence, which dominate NTAIL dynamics, and regulate the conformational preferences of both the MoRE and the entire NTAIL domain. Co-evolutionary analysis corroborates our findings, and suggests an important functional role for the same intramolecular interactions. We propose mechanisms by which these non-local interactions may regulate binding to the phosphoprotein, polymerase recruitment, and ultimately viral transcription and replication. Our findings may be extended to other IDPs, where non-local intra-protein interactions affect the conformational preferences of intermolecular binding sites.
Collapse
Affiliation(s)
- Lillian Otteson
- Center for Biological Physics, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Gabor Nagy
- Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - John Kunkel
- Center for Biological Physics, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Gerdenis Kodis
- Center for Biological Physics, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA
| | | | - Sonia Longhi
- Aix Marseille Univ, CNRS, AFMB, UMR 7257, Marseille, France
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Andrea C Vaiana
- Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Present address: Nature's Toolbox, Inc. (NTx), Rio Rancho, NM 87144, USA
| | - Sara M Vaiana
- Center for Biological Physics, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
23
|
Andrews B, Schweitzer-Stenner R, Urbanc B. Intrinsic Conformational Dynamics of Glycine and Alanine in Polarizable Molecular Dynamics Force Fields: Comparison to Spectroscopic Data. J Phys Chem B 2024; 128:6217-6231. [PMID: 38877893 PMCID: PMC11215781 DOI: 10.1021/acs.jpcb.4c02278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Molecular dynamics (MD) is a great tool for elucidating conformational dynamics of proteins and peptides in water at the atomistic level that often surpasses the level of detail available experimentally. Structure predictions, however, are limited by the accuracy of the underlying MD force field. This limitation is particularly stark in the case of intrinsically disordered peptides and proteins, which are characterized by solvent-accessible and disordered peptide regions and domains. Recent studies show that most additive MD force fields, including CHARMM36m, do not reproduce the intrinsic conformational distributions of guest amino acid residues x in cationic GxG peptides in water in line with experimental data. Positing that a lack of polarizability in additive MD force fields may be the culprit for the reported discrepancies, we here examine the conformational dynamics of guest glycine and alanine residues in cationic GxG peptides in water using two polarizable MD force fields, CHARMM Drude and AMOEBA. Our results indicate that while AMOEBA captures the experimental data better than CHARMM Drude, neither of the two polarizable force fields offers an improvement of the Ramachandran distributions of glycine and alanine residues in cationic GGG and GAG peptides, respectively, over CHARMM36m.
Collapse
Affiliation(s)
- Brian Andrews
- Department
of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | | | - Brigita Urbanc
- Department
of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
24
|
Patel R, Onyema A, Tang PK, Loverde SM. Conformational Dynamics of the Nucleosomal Histone H2B Tails Revealed by Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:4709-4726. [PMID: 38865599 PMCID: PMC11200259 DOI: 10.1021/acs.jcim.4c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Epigenetic modifications of histone N-terminal tails play a critical role in regulating the chromatin structure and biological processes such as transcription and DNA repair. One of the key post-translational modifications (PTMs) is the acetylation of lysine residues on histone tails. Epigenetic modifications are ubiquitous in the development of diseases, such as cancer and neurological disorders. Histone H2B tails are critical regulators of nucleosome dynamics, biological processes, and certain diseases. Here, we report all-atomistic molecular dynamics (MD) simulations of the nucleosome to demonstrate that acetylation of the histone tails changes their conformational space and interaction with DNA. We perform simulations of H2B tails, critical regulators of gene regulation, in both the lysine-acetylated (ACK) and unacetylated wild type (WT) states. To explore the effects of salt concentration, we use two different NaCl concentrations to perform simulations at microsecond time scales. Salt can modulate the effects of electrostatic interactions between the DNA phosphate backbone and histone tails. Upon acetylation, H2B tails shift their secondary structure helical propensity. The number of contacts between the DNA and the H2B tail decreases. We characterize the conformational dynamics of the H2B tails by principal component analysis (PCA). The ACK tails become more compact at increased salt concentrations, but conformations from the WT tails display the most contacts with DNA at both salt concentrations. Mainly, H2B acetylation may increase the DNA accessibility for regulatory proteins to bind, which can aid in gene regulation and NCP stability.
Collapse
Affiliation(s)
- Rutika Patel
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
| | - Augustine Onyema
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
| | - Phu K. Tang
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
| | - Sharon M. Loverde
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Ph.D.
Program in Physics, The Graduate Center
of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
25
|
Smardz P, Anila MM, Rogowski P, Li MS, Różycki B, Krupa P. A Practical Guide to All-Atom and Coarse-Grained Molecular Dynamics Simulations Using Amber and Gromacs: A Case Study of Disulfide-Bond Impact on the Intrinsically Disordered Amyloid Beta. Int J Mol Sci 2024; 25:6698. [PMID: 38928405 PMCID: PMC11204378 DOI: 10.3390/ijms25126698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intrinsically disordered proteins (IDPs) pose challenges to conventional experimental techniques due to their large-scale conformational fluctuations and transient structural elements. This work presents computational methods for studying IDPs at various resolutions using the Amber and Gromacs packages with both all-atom (Amber ff19SB with the OPC water model) and coarse-grained (Martini 3 and SIRAH) approaches. The effectiveness of these methodologies is demonstrated by examining the monomeric form of amyloid-β (Aβ42), an IDP, with and without disulfide bonds at different resolutions. Our results clearly show that the addition of a disulfide bond decreases the β-content of Aβ42; however, it increases the tendency of the monomeric Aβ42 to form fibril-like conformations, explaining the various aggregation rates observed in experiments. Moreover, analysis of the monomeric Aβ42 compactness, secondary structure content, and comparison between calculated and experimental chemical shifts demonstrates that all three methods provide a reasonable choice to study IDPs; however, coarse-grained approaches may lack some atomistic details, such as secondary structure recognition, due to the simplifications used. In general, this study not only explains the role of disulfide bonds in Aβ42 but also provides a step-by-step protocol for setting up, conducting, and analyzing molecular dynamics (MD) simulations, which is adaptable for studying other biomacromolecules, including folded and disordered proteins and peptides.
Collapse
Affiliation(s)
| | | | | | | | | | - Pawel Krupa
- Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland; (P.S.); (M.M.A.); (P.R.); (M.S.L.); (B.R.)
| |
Collapse
|
26
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
27
|
Greener JG. Differentiable simulation to develop molecular dynamics force fields for disordered proteins. Chem Sci 2024; 15:4897-4909. [PMID: 38550690 PMCID: PMC10966991 DOI: 10.1039/d3sc05230c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/08/2024] [Indexed: 11/11/2024] Open
Abstract
Implicit solvent force fields are computationally efficient but can be unsuitable for running molecular dynamics on disordered proteins. Here I improve the a99SB-disp force field and the GBNeck2 implicit solvent model to better describe disordered proteins. Differentiable molecular simulations with 5 ns trajectories are used to jointly optimise 108 parameters to better match explicit solvent trajectories. Simulations with the improved force field better reproduce the radius of gyration and secondary structure content seen in experiments, whilst showing slightly degraded performance on folded proteins and protein complexes. The force field, called GB99dms, reproduces the results of a small molecule binding study and improves agreement with experiment for the aggregation of amyloid peptides. GB99dms, which can be used in OpenMM, is available at https://github.com/greener-group/GB99dms. This work is the first to show that gradients can be obtained directly from nanosecond-length differentiable simulations of biomolecules and highlights the effectiveness of this approach to training whole force fields to match desired properties.
Collapse
Affiliation(s)
- Joe G Greener
- Medical Research Council Laboratory of Molecular Biology Cambridge CB2 0QH UK
| |
Collapse
|
28
|
Xie S, Yue C, Ye S, Li Z. Probing the hierarchical dynamics of DNA-sperm nuclear transition protein complexes through fuzzy interaction and mesoscale condensation. Phys Chem Chem Phys 2024; 26:10408-10418. [PMID: 38502252 DOI: 10.1039/d3cp05957j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Nuclear transition protein TNP1 is a crucial player mediating histone-protamine exchange in condensing spermatids. A unique combination of intrinsic disorder and multivalent properties turns TNP1 into an ideal agent for orchestrating the formation of versatile TNP-DNA assemblies. Despite its significance, the physicochemical property and the molecular mechanism followed by TNP1 for histone replacement and DNA condensation are still poorly understood. This study reports the first-time in vitro expression and purification of human TNP1 and investigates the hierarchical dynamics of TNP1-DNA interaction using a combination of computational simulations, biochemical assays, fluorescence imaging, and atomic force microscopy. We explored three crucial facets of TNP1-DNA interactions. Initially, we delve into the molecular binding process that entails fuzzy interactions between TNP1 and DNA at the atomistic scale. Subsequently, we analyze how TNP1 binding affects the electrostatic and mechanical characteristics of DNA and influences its morphology. Finally, we study the biomolecular condensation of TNP1-DNA when subjected to high concentrations. The findings of our study set the foundation for comprehending the potential involvement of TNP1 in histone replacement and DNA condensation in spermatogenesis.
Collapse
Affiliation(s)
- Shangqiang Xie
- School of Life Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Congran Yue
- School of Life Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Sheng Ye
- School of Life Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Zhenlu Li
- School of Life Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
29
|
Fischer AL, Tichy A, Kokot J, Hoerschinger VJ, Wild RF, Riccabona JR, Loeffler JR, Waibl F, Quoika PK, Gschwandtner P, Forli S, Ward AB, Liedl KR, Zacharias M, Fernández-Quintero ML. The Role of Force Fields and Water Models in Protein Folding and Unfolding Dynamics. J Chem Theory Comput 2024; 20:2321-2333. [PMID: 38373307 PMCID: PMC10938642 DOI: 10.1021/acs.jctc.3c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
Protein folding is a fascinating, not fully understood phenomenon in biology. Molecular dynamics (MD) simulations are an invaluable tool to study conformational changes in atomistic detail, including folding and unfolding processes of proteins. However, the accuracy of the conformational ensembles derived from MD simulations inevitably relies on the quality of the underlying force field in combination with the respective water model. Here, we investigate protein folding, unfolding, and misfolding of fast-folding proteins by examining different force fields with their recommended water models, i.e., ff14SB with the TIP3P model and ff19SB with the OPC model. To this end, we generated long conventional MD simulations highlighting the perks and pitfalls of these setups. Using Markov state models, we defined kinetically independent conformational substates and emphasized their distinct characteristics, as well as their corresponding state probabilities. Surprisingly, we found substantial differences in thermodynamics and kinetics of protein folding, depending on the combination of the protein force field and water model, originating primarily from the different water models. These results emphasize the importance of carefully choosing the force field and the respective water model as they determine the accuracy of the observed dynamics of folding events. Thus, the findings support the hypothesis that the water model is at least equally important as the force field and hence needs to be considered in future studies investigating protein dynamics and folding in all areas of biophysics.
Collapse
Affiliation(s)
- Anna-Lena
M. Fischer
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Anna Tichy
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Janik Kokot
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Valentin J. Hoerschinger
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Robert F. Wild
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Jakob R. Riccabona
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Johannes R. Loeffler
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Franz Waibl
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Patrick K. Quoika
- Center
for Protein Assemblies (CPA), Physics Department, Chair of Theoretical
Biophysics, Technical University of Munich, D-80333 Munich, Germany
| | | | - Stefano Forli
- Department
of Integrative Structural and Computational Biology, Scripps Research Institute, La
Jolla, California 92037, United States
| | - Andrew B. Ward
- Department
of Integrative Structural and Computational Biology, Scripps Research Institute, La
Jolla, California 92037, United States
| | - Klaus R. Liedl
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Martin Zacharias
- Center
for Protein Assemblies (CPA), Physics Department, Chair of Theoretical
Biophysics, Technical University of Munich, D-80333 Munich, Germany
| | - Monica L. Fernández-Quintero
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
30
|
Tolstova AP, Makarov AA, Adzhubei AA. Structure Comparison of Beta Amyloid Peptide Aβ 1-42 Isoforms. Molecular Dynamics Modeling. J Chem Inf Model 2024; 64:918-932. [PMID: 38241093 DOI: 10.1021/acs.jcim.3c01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Beta amyloid peptide Aβ 1-42 (Aβ42) has a unique dual role in the human organism, as both the peptide with an important physiological function and one of the most toxic biological compounds provoking Alzheimer's disease (AD). There are several known Aβ42 isoforms that we discuss here that are highly neurotoxic and lead to the early onset of AD. Aβ42 is an intrinsically disordered protein with no experimentally solved structure under physiological conditions. The objective of this research was to establish the appropriate molecular dynamics (MD) methodology and model a uniform set of structures for the Aβ42 isoforms that form the core of this study. For that purpose, force field selection and verification including convergence testing for MD simulations was made. Replica exchange MD and conventional MD modeling of several Aβ42 and Aβ16 isoforms that have neurotoxic and amyloidogenic effects impacting the severity of Alzheimer's disease were carried out with the optimal force field and solvent parameters. A standardized ensemble of structures for the Aβ42 and Aβ16 isoforms covering 30-50% of the conformational ensembles extracted from the free energy minima was calculated from MD trajectories. The resulting data set of modeled structures includes Aβ42 wild type, isoD7, pS8, D7H, and H6R-Aβ42 and Aβ16 wild type, isoD7, pS8, D7H, and H6R-Aβ16. The representative structures are given in the Supporting Information; they are open for public access. In the study, we also evaluated the differences between the structures of Aβ42 isoforms and speculate on their possible relevance to the known functions. Utilizing several representative structures for a single disordered protein for docking, with their subsequent averaging by conformations, would markedly increase the reliability of docking results.
Collapse
Affiliation(s)
- Anna P Tolstova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexei A Adzhubei
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Washington University School of Medicine and Health Sciences, Washington 20052, D.C., United States
| |
Collapse
|
31
|
Gunasinghe KJ, Rahman T, Chee Wezen X. Unraveling the Behavior of Intrinsically Disordered Protein c-Myc: A Study Utilizing Gaussian-Accelerated Molecular Dynamics. ACS OMEGA 2024; 9:2250-2262. [PMID: 38250404 PMCID: PMC10795134 DOI: 10.1021/acsomega.3c05822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 01/23/2024]
Abstract
The protein c-Myc is a transcription factor that remains largely intrinsically disordered and is known to be involved in various biological processes and is overexpressed in various cancers, making it an attractive drug target. However, intrinsically disordered proteins such as c-Myc do not show funnel-like basins in their free-energy landscapes; this makes their druggability a challenge. For the first time, we propose a heterodimer model of c-Myc/Max in full length in this work. We used Gaussian-accelerated molecular dynamics (GaMD) simulations to explore the behavior of c-Myc and its various regions, including the transactivation domain (TAD) and the basic helix-loop-helix-leucine-zipper (bHLH-Zipper) motif in three different conformational states: (a) monomeric c-Myc, (b) c-Myc when bound to its partner protein, Max, and (c) when Max was removed after binding. We analyzed the GaMD trajectories using root-mean-square deviation (RMSD), radius of gyration, root-mean-square fluctuation, and free-energy landscape (FEL) calculations to elaborate the behaviors of these regions. The results showed that the monomeric c-Myc structure showed a higher RMSD fluctuation as compared with the c-Myc/Max heterodimer in the bHLH-Zipper motif. This indicated that the bHLH-Zipper motif of c-Myc is more stable when it is bound to Max. The TAD region in both monomeric and Max-bound states showed similar plasticity in terms of RMSD. We also conducted residue decomposition calculations and showed that the c-Myc and Max interaction could be driven mainly by electrostatic interactions and the residues Arg299, Ile403, and Leu420 seemed to play important roles in the interaction. Our work provides insights into the behavior of c-Myc and its regions that could support the development of drugs that target c-Myc and other intrinsically disordered proteins.
Collapse
Affiliation(s)
| | - Taufiq Rahman
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Xavier Chee Wezen
- Faculty
of Engineering, Computing and Science, Swinburne
University of Technology Sarawak, Kuching 93350, Malaysia
| |
Collapse
|
32
|
Lebedenko OO, Salikov VA, Izmailov SA, Podkorytov IS, Skrynnikov NR. Using NMR diffusion data to validate MD models of disordered proteins: Test case of N-terminal tail of histone H4. Biophys J 2024; 123:80-100. [PMID: 37990496 PMCID: PMC10808029 DOI: 10.1016/j.bpj.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
MD simulations can provide uniquely detailed models of intrinsically disordered proteins (IDPs). However, these models need careful experimental validation. The coefficient of translational diffusion Dtr, measurable by pulsed field gradient NMR, offers a potentially useful piece of experimental information related to the compactness of the IDP's conformational ensemble. Here, we investigate, both experimentally and via the MD modeling, the translational diffusion of a 25-residue N-terminal fragment from histone H4 (N-H4). We found that the predicted values of Dtr, as obtained from mean-square displacement of the peptide in the MD simulations, are largely determined by the viscosity of the MD water (which has been reinvestigated as a part of our study). Beyond that, our analysis of the diffusion data indicates that MD simulations of N-H4 in the TIP4P-Ew water give rise to an overly compact conformational ensemble for this peptide. In contrast, TIP4P-D and OPC simulations produce the ensembles that are consistent with the experimental Dtr result. These observations are supported by the analyses of the 15N spin relaxation rates. We also tested a number of empirical methods to predict Dtr based on IDP's coordinates extracted from the MD snapshots. In particular, we show that the popular approach involving the program HYDROPRO can produce misleading results. This happens because HYDROPRO is not intended to predict the diffusion properties of highly flexible biopolymers such as IDPs. Likewise, recent empirical schemes that exploit the relationship between the small-angle x-ray scattering-informed conformational ensembles of IDPs and the respective experimental Dtr values also prove to be problematic. In this sense, the first-principle calculations of Dtr from the MD simulations, such as demonstrated in this work, should provide a useful benchmark for future efforts in this area.
Collapse
Affiliation(s)
- Olga O Lebedenko
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
| | - Vladislav A Salikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
| | - Sergei A Izmailov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
| | - Ivan S Podkorytov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
| | - Nikolai R Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia; Department of Chemistry, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
33
|
Aduriz-Arrizabalaga J, Lopez X, De Sancho D. Atomistic molecular simulations of Aβ-Zn conformational ensembles. Proteins 2024; 92:134-144. [PMID: 37746887 DOI: 10.1002/prot.26590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
The amyloid-forming Aβ peptide is able to interact with metal cations to form very stable complexes that influence fibril formation and contribute to the onset of Alzheimer's disease. Multiple structures of peptides derived from Aβ in complex with different metals have been resolved experimentally to provide an atomic-level description of the metal-protein interactions. However, Aβ is intrinsically disordered, and hence more amenable to an ensemble description. Molecular dynamics simulations can now reach the timescales needed to generate ensembles for these type of complexes. However, this requires accurate force fields both for the protein and the protein-metal interactions. Here we use state-of-the-art methods to generate force field parameters for the Zn(II) cations in a set of complexes formed by different Aβ variants and combine them with the Amber99SB*-ILDN optimized force field. Upon comparison of NMR experiments with the simulation results, further optimized with a Bayesian/Maximum entropy approach, we provide an accurate description of the molecular ensembles for most Aβ-metal complexes. We find that the resulting conformational ensembles are more heterogeneous than the NMR models deposited in the Protein Data Bank.
Collapse
Affiliation(s)
- Julen Aduriz-Arrizabalaga
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, UPV/EHU & Donostia International Physics Center (DIPC), Donostia-San Sebastian, Euskadi, Spain
| | - Xabier Lopez
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, UPV/EHU & Donostia International Physics Center (DIPC), Donostia-San Sebastian, Euskadi, Spain
| | - David De Sancho
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, UPV/EHU & Donostia International Physics Center (DIPC), Donostia-San Sebastian, Euskadi, Spain
| |
Collapse
|
34
|
Tolmachev DA, Malkamäki M, Linder MB, Sammalkorpi M. Spidroins under the Influence of Alcohol: Effect of Ethanol on Secondary Structure and Molecular Level Solvation of Silk-Like Proteins. Biomacromolecules 2023; 24:5638-5653. [PMID: 38019577 PMCID: PMC10716855 DOI: 10.1021/acs.biomac.3c00637] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Abstract
Future sustainable materials based on designer biomolecules require control of the solution assembly, but also interfacial interactions. Alcohol treatments of protein materials are an accessible means to this, making understanding of the process at the molecular level of seminal importance. We focus here on the influence of ethanol on spidroins, the main proteins of silk. By large-scale atomistically detailed molecular dynamics (MD) simulations and interconnected experiments, we characterize the protein aggregation, secondary structure changes, molecular level origins of them, and solvation environment changes for the proteins, as induced by ethanol as a solvation additive. The MD and circular dichoroism (CD) findings jointly show that ethanol promotes ordered structure in the protein molecules, leading to an increase of helix content and turns but also increased aggregation, as revealed by dynamic light scattering (DLS) and light microscopy. The structural changes correlate at the molecular level with increased intramolecular hydrogen bonding. The simulations reveal that polar amino acids, such as glutamine and serine, are most influenced by ethanol, whereas glycine residues are most prone to be involved in the ethanol-induced secondary structure changes. Furthermore, ethanol engages in interactions with the hydrophobic alanine-rich regions of the spidroin, significantly decreasing the hydrophobic interactions of the protein with itself and its surroundings. The protein solutes also change the microstructure of water/ethanol mixtures, essentially decreasing the level of larger local clustering. Overall, the work presents a systematic characterization of ethanol effects on a widely used, common protein type, spidroins, and generalizes the findings to other intrinsically disordered proteins by pinpointing the general features of the response. The results can aid in designing effective alcohol treatments for proteins, but also enable design and tuning of protein material properties by a relatively controllable solvation handle, the addition of ethanol.
Collapse
Affiliation(s)
- Dmitry A. Tolmachev
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Maaria Malkamäki
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Markus B. Linder
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Maria Sammalkorpi
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
35
|
Sun W, Lebedenko OO, Salguero NG, Shannon MD, Zandian M, Poirier MG, Skrynnikov NR, Jaroniec CP. Conformational and Interaction Landscape of Histone H4 Tails in Nucleosomes Probed by Paramagnetic NMR Spectroscopy. J Am Chem Soc 2023; 145:25478-25485. [PMID: 37943892 PMCID: PMC10719895 DOI: 10.1021/jacs.3c10340] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The fundamental repeat unit of chromatin, the nucleosome, consists of approximately 147 base pairs of double-stranded DNA and a histone protein octamer containing two copies each of histones H2A, H2B, H3, and H4. Each histone possesses a dynamically disordered N-terminal tail domain, and it is well-established that the tails of histones H3 and H4 play key roles in chromatin compaction and regulation. Here we investigate the conformational ensemble and interactions of the H4 tail in nucleosomes by means of solution NMR measurements of paramagnetic relaxation enhancements (PREs) in recombinant samples reconstituted with 15N-enriched H4 and nitroxide spin-label tagged H3. The experimental PREs, which report on the proximities of individual H4 tail residues to the different H3 spin-label sites, are interpreted by using microsecond time-scale molecular dynamics simulations of the nucleosome core particle. Collectively, these data enable improved localization of histone H4 tails in nucleosomes and support the notion that H4 tails engage in a fuzzy complex interaction with nucleosomal DNA.
Collapse
Affiliation(s)
- Wenjun Sun
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Olga O. Lebedenko
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Nicole Gonzalez Salguero
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Matthew D. Shannon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mohamad Zandian
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michael G. Poirier
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nikolai R. Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
- Department of Chemistry, Purdue University, West Lafayette 47907, United States
| | - Christopher P. Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
36
|
Laurent H, Hughes MDG, Walko M, Brockwell DJ, Mahmoudi N, Youngs TGA, Headen TF, Dougan L. Visualization of Self-Assembly and Hydration of a β-Hairpin through Integrated Small and Wide-Angle Neutron Scattering. Biomacromolecules 2023; 24:4869-4879. [PMID: 37874935 PMCID: PMC10646990 DOI: 10.1021/acs.biomac.3c00583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/03/2023] [Indexed: 10/26/2023]
Abstract
Fundamental understanding of the structure and assembly of nanoscale building blocks is crucial for the development of novel biomaterials with defined architectures and function. However, accessing self-consistent structural information across multiple length scales is challenging. This limits opportunities to exploit atomic scale interactions to achieve emergent macroscale properties. In this work we present an integrative small- and wide-angle neutron scattering approach coupled with computational modeling to reveal the multiscale structure of hierarchically self-assembled β hairpins in aqueous solution across 4 orders of magnitude in length scale from 0.1 Å to 300 nm. Our results demonstrate the power of this self-consistent cross-length scale approach and allows us to model both the large-scale self-assembly and small-scale hairpin hydration of the model β hairpin CLN025. Using this combination of techniques, we map the hydrophobic/hydrophilic character of this model self-assembled biomolecular surface with atomic resolution. These results have important implications for the multiscale investigation of aqueous peptides and proteins, for the prediction of ligand binding and molecular associations for drug design, and for understanding the self-assembly of peptides and proteins for functional biomaterials.
Collapse
Affiliation(s)
- Harrison Laurent
- School
of Physics and Astronomy, University of
Leeds, Leeds, United Kingdom, LS2
9JT
| | - Matt D. G. Hughes
- School
of Physics and Astronomy, University of
Leeds, Leeds, United Kingdom, LS2
9JT
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom LS2
9JT
| | - Martin Walko
- School
of Chemistry, University of Leeds, Leeds, United
Kingdom, LS2 9JT
| | - David J. Brockwell
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom LS2
9JT
| | - Najet Mahmoudi
- ISIS
Neutron and Muon Source, Rutherford Appleton
Laboratory, Harwell Oxford, Didcot, United Kingdom, OX11 0QX
| | - Tristan G. A. Youngs
- ISIS
Neutron and Muon Source, Rutherford Appleton
Laboratory, Harwell Oxford, Didcot, United Kingdom, OX11 0QX
| | - Thomas F. Headen
- ISIS
Neutron and Muon Source, Rutherford Appleton
Laboratory, Harwell Oxford, Didcot, United Kingdom, OX11 0QX
| | - Lorna Dougan
- School
of Physics and Astronomy, University of
Leeds, Leeds, United Kingdom, LS2
9JT
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom LS2
9JT
| |
Collapse
|
37
|
Ramans-Harborough S, Kalverda AP, Manfield IW, Thompson GS, Kieffer M, Uzunova V, Quareshy M, Prusinska JM, Roychoudhry S, Hayashi KI, Napier R, del Genio C, Kepinski S. Intrinsic disorder and conformational coexistence in auxin coreceptors. Proc Natl Acad Sci U S A 2023; 120:e2221286120. [PMID: 37756337 PMCID: PMC10556615 DOI: 10.1073/pnas.2221286120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/17/2023] [Indexed: 09/29/2023] Open
Abstract
AUXIN/INDOLE 3-ACETIC ACID (Aux/IAA) transcriptional repressor proteins and the TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB) proteins to which they bind act as auxin coreceptors. While the structure of TIR1 has been solved, structural characterization of the regions of the Aux/IAA protein responsible for auxin perception has been complicated by their predicted disorder. Here, we use NMR, CD and molecular dynamics simulation to investigate the N-terminal domains of the Aux/IAA protein IAA17/AXR3. We show that despite the conformational flexibility of the region, a critical W-P bond in the core of the Aux/IAA degron motif occurs at a strikingly high (1:1) ratio of cis to trans isomers, consistent with the requirement of the cis conformer for the formation of the fully-docked receptor complex. We show that the N-terminal half of AXR3 is a mixture of multiple transiently structured conformations with a propensity for two predominant and distinct conformational subpopulations within the overall ensemble. These two states were modeled together with the C-terminal PB1 domain to provide the first complete simulation of an Aux/IAA. Using MD to recreate the assembly of each complex in the presence of auxin, both structural arrangements were shown to engage with the TIR1 receptor, and contact maps from the simulations match closely observations of NMR signal-decreases. Together, our results and approach provide a platform for exploring the functional significance of variation in the Aux/IAA coreceptor family and for understanding the role of intrinsic disorder in auxin signal transduction and other signaling systems.
Collapse
Affiliation(s)
- Sigurd Ramans-Harborough
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Arnout P. Kalverda
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Iain W. Manfield
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Gary S. Thompson
- Wellcome Biological Nuclear Magnetic Resonance Facility, Division of Natural Sciences, University of Kent, CanterburyCT2 7NJ, United Kingdom
| | - Martin Kieffer
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Veselina Uzunova
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | | | - Suruchi Roychoudhry
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Ken-ichiro Hayashi
- Department of Bioscience, Okayama University of Science, Okayama700-0005, Japan
| | - Richard Napier
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Charo del Genio
- Centre for Fluid and Complex Systems, Coventry University, CoventryCV1 5FB, United Kingdom
| | - Stefan Kepinski
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| |
Collapse
|
38
|
Maiti S, Heyden M. Model-Dependent Solvation of the K-18 Domain of the Intrinsically Disordered Protein Tau. J Phys Chem B 2023; 127:7220-7230. [PMID: 37556237 DOI: 10.1021/acs.jpcb.3c01726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
A known imbalance between intra-protein and protein-water interactions in many empirical force fields results in collapsed conformational ensembles of intrinsically disordered proteins in explicit solvent simulations that disagree with experiments. Multiple strategies have been introduced in the literature to modify protein-water interactions, which improve agreement between experiments and simulations. In this work, we combine simulations with standard and modified force fields with a spatially resolved analysis of solvation free energy contributions and compare the consequences of each strategy. We find that enhanced Lennard-Jones (LJ) interactions between protein atoms and water oxygens primarily improve the solvation of nonpolar functional groups of the protein. In contrast, modified electrostatics in the water model or strengthened LJ interactions between the protein and water hydrogens mainly affect the hydration of polar functional groups. Modified electrostatics further impact the average orientation of water molecules in the hydration shell. As a result, protein-water interactions with the first hydration layers are strengthened, while interactions with water molecules in higher hydration shells are weakened. Hence, distinct strategies to balance intra-protein and protein-water interactions in simulations have qualitatively different effects on protein solvation. These differences are not necessarily captured by comparisons to experiments that report on global parameters describing protein conformational ensembles, e.g., the radius of gyration, but will influence the tendency of a protein to form aggregates or phase-separated droplets.
Collapse
Affiliation(s)
- Sthitadhi Maiti
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
39
|
Mori T, Yoshida N. Tuning the ATP-ATP and ATP-disordered protein interactions in high ATP concentration by altering water models. J Chem Phys 2023; 159:035102. [PMID: 37458354 DOI: 10.1063/5.0158046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
The adenosine triphosphate (ATP)-protein interactions have been of great interest since the recent experimental finding of ATP's role as a hydrotrope. The interaction between ATP and disordered proteins is fundamental to the dissolution of protein aggregates and the regulation of liquid-liquid phase separation by ATP. Molecular dynamics simulation is a powerful tool for analyzing these interactions in molecular detail but often suffers from inaccuracies in describing disordered proteins and ATPs in high concentrations. Recently, several water models have been proposed to improve the description of the protein-disordered states, yet how these models work with ATP has not been explored. To this end, here, we study how water models affect ATP and alter the ATP-ATP and ATP-protein interactions for the intrinsically disordered protein, α-Synuclein. Three water models, TIP4P-D, OPC, and TIP3P, are compared, while the protein force field is fixed to ff99SBildn. The results show that ATP over-aggregates into a single cluster in TIP3P water, but monomers and smaller clusters are found in TIP4P-D and OPC waters. ATP-protein interaction is also over-stabilized in TIP3P, whereas repeated binding/unbinding of ATP to α-Synuclein is observed in OPC and TIP4P-D waters, which is in line with the recent nuclear magnetic resonance experiment. The adenine ring-mediated interaction is found to play a major role in ATP-ATP and ATP-protein contacts. Interestingly, changing Mg2+ into Na+ strengthened the electrostatic interaction and promoted ATP oligomerization and ATP-α-Synuclein binding. Overall, this study shows that changing the water model can be an effective approach to improve the properties of ATP in high concentration.
Collapse
Affiliation(s)
- Toshifumi Mori
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Norio Yoshida
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
40
|
Li M, Chen G, Zhang Z. Modeling the effects of phosphorylation on phase separation of the FUS low-complexity domain. Biophys J 2023; 122:2636-2645. [PMID: 37211763 PMCID: PMC10397571 DOI: 10.1016/j.bpj.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023] Open
Abstract
Aggregation of the RNA-binding protein fused in sarcoma (FUS) is a hallmark of neurodegenerative diseases. Phosphorylation of Ser/Thr in the FUS low-complexity domain (FUS-LC) may regulate phase separation of FUS and prevent pathological aggregation in cells. However, many details of this process remain elusive to date. In this work, we systematically investigated the phosphorylation of FUS-LC and the underlying molecular mechanism by molecular dynamics (MD) simulations and free energy calculations. The results clearly show that phosphorylation can destroy the fibril core structure of FUS-LC by breaking interchain interactions, particularly contacts involving residues like Tyr, Ser, and Gln. Among the six phosphorylation sites, Ser61 and Ser84 may have more important effects on the stability of the fibril core. Our study reveals structural and dynamic details of FUS-LC phase separation modulated by phosphorylation.
Collapse
Affiliation(s)
- Mingwei Li
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Guanglin Chen
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Zhiyong Zhang
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China; Department of Physics, University of Science and Technology of China, Hefei, Anhui, P.R. China.
| |
Collapse
|
41
|
Sarthak K, Winogradoff D, Ge Y, Myong S, Aksimentiev A. Benchmarking Molecular Dynamics Force Fields for All-Atom Simulations of Biological Condensates. J Chem Theory Comput 2023; 19:3721-3740. [PMID: 37134270 PMCID: PMC11169342 DOI: 10.1021/acs.jctc.3c00148] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Proteins containing intrinsically disordered regions are integral parts of the cellular signaling pathways and common components of biological condensates. Point mutations in the protein sequence, genetic at birth or acquired through aging, can alter the properties of the condensates, marking the onset of neurodegenerative diseases such as ALS and dementia. While the all-atom molecular dynamics method can, in principle, elucidate the conformational changes that arise from point mutations, the applications of this method to protein condensate systems is conditioned upon the availability of molecular force fields that can accurately describe both structured and disordered regions of such proteins. Using the special-purpose Anton 2 supercomputer, we benchmarked the efficacy of nine presently available molecular force fields in describing the structure and dynamics of a Fused in sarcoma (FUS) protein. Five-microsecond simulations of the full-length FUS protein characterized the effect of the force field on the global conformation of the protein, self-interactions among its side chains, solvent accessible surface area, and the diffusion constant. Using the results of dynamic light scattering as a benchmark for the FUS radius of gyration, we identified several force fields that produced FUS conformations within the experimental range. Next, we used these force fields to perform ten-microsecond simulations of two structured RNA binding domains of FUS bound to their respective RNA targets, finding the choice of the force field to affect stability of the RNA-FUS complex. Taken together, our data suggest that a combination of protein and RNA force fields sharing a common four-point water model provides an optimal description of proteins containing both disordered and structured regions and RNA-protein interactions. To make simulations of such systems available beyond the Anton 2 machines, we describe and validate implementation of the best performing force fields in a publicly available molecular dynamics program NAMD. Our NAMD implementation enables simulations of large (tens of millions of atoms) biological condensate systems and makes such simulations accessible to a broader scientific community.
Collapse
Affiliation(s)
- Kumar Sarthak
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - David Winogradoff
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Yingda Ge
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sua Myong
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Aleksei Aksimentiev
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| |
Collapse
|
42
|
Coppa C, Bazzoli A, Barkhordari M, Contini A. Accelerated Molecular Dynamics for Peptide Folding: Benchmarking Different Combinations of Force Fields and Explicit Solvent Models. J Chem Inf Model 2023; 63:3030-3042. [PMID: 37163419 DOI: 10.1021/acs.jcim.3c00138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Accelerated molecular dynamics (aMD) protocols were assessed on predicting the secondary structure of eight peptides, of which two are helical, three are β-hairpins, and three are disordered. Protocols consisted of combinations of three force fields (ff99SB, ff14SB, ff19SB) and two explicit solvation models (TIP3P and OPC), and were evaluated in two independent aMD simulations, one starting from an extended conformation, the other starting from a misfolded conformation. The results of these analyses indicate that all three combinations performed well on helical peptides. As for β-hairpins, ff19SB performed well with both solvation methods, with a slight preference for the TIP3P solvation model, even though performance was dependent on both peptide sequence and initial conformation. The ff19SB/OPC combination had the best performance on intrinsically disordered peptides. In general, ff14SB/TIP3P suffered the strongest helical bias.
Collapse
Affiliation(s)
- Crescenzo Coppa
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Generale e Organica "Alessandro Marchesini", Università degli Studi di Milano, Via Venezian, 21, 20133 Milano, Italy
| | - Andrea Bazzoli
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Generale e Organica "Alessandro Marchesini", Università degli Studi di Milano, Via Venezian, 21, 20133 Milano, Italy
| | - Maral Barkhordari
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Generale e Organica "Alessandro Marchesini", Università degli Studi di Milano, Via Venezian, 21, 20133 Milano, Italy
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Generale e Organica "Alessandro Marchesini", Università degli Studi di Milano, Via Venezian, 21, 20133 Milano, Italy
| |
Collapse
|
43
|
Gaalswyk K, Haider A, Ghosh K. Critical Assessment of Self-Consistency Checks in the All-Atom Molecular Dynamics Simulation of Intrinsically Disordered Proteins. J Chem Theory Comput 2023; 19:2973-2984. [PMID: 37133846 DOI: 10.1021/acs.jctc.2c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All atom simulations can be used to quantify conformational properties of Intrinsically Disordered Proteins (IDP). However, simulations must satisfy convergence checks to ensure observables computed from simulation are reliable and reproducible. While absolute convergence is purely a theoretical concept requiring infinitely long simulation, a more practical, yet rigorous, approach is to impose Self Consistency Checks (SCCs) to gain confidence in the simulated data. Currently there is no study of SCCs in IDPs, unlike their folded counterparts. In this paper, we introduce different criteria for self-consistency checks for IDPs. Next, we impose these SCCs to critically assess the performance of different simulation protocols using the N terminal domain of HIV Integrase and the linker region of SARS-CoV-2 Nucleoprotein as two model IDPs. All simulation protocols begin with all-atom implicit solvent Monte Carlo (MC) simulation and subsequent clustering of MC generated conformations to create the representative structures of the IDPs. These representative structures serve as the initial structure for subsequent molecular dynamics (MD) runs with explicit solvent. We conclude that generating multiple short (∼3 μs) MD simulation trajectories─all starting from the most representative MC generated conformation─and merging them is the protocol of choice due to (i) its ability to satisfy multiple SCCs, (ii) consistently reproducing experimental data, and (iii) the efficiency of running independent trajectories in parallel by harnessing multiple cores available in modern GPU clusters. Running one long trajectory (greater than 20 μs) can also satisfy the first two criteria but is less desirable due to prohibitive computation time. These findings help resolve the challenge of identifying a usable starting configuration, provide an objective measure of SCC, and establish rigorous criteria to determine the minimum length (for one long simulation) or number of trajectories needed in all-atom simulation of IDPs.
Collapse
Affiliation(s)
- Kari Gaalswyk
- Department of Physics and Astronomy, University of Denver, Denver, Colorado 80208, United States
| | - Austin Haider
- Department of Molecular and Cellular Biophysics, University of Denver, Denver, Colorado 80208, United States
| | - Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, Denver, Colorado 80208, United States
- Department of Molecular and Cellular Biophysics, University of Denver, Denver, Colorado 80208, United States
| |
Collapse
|
44
|
Sarthak K, Winogradoff D, Ge Y, Myong S, Aksimentiev A. Benchmarking Molecular Dynamics Force Fields for All-Atom Simulations of Biological Condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527891. [PMID: 36798393 PMCID: PMC9934651 DOI: 10.1101/2023.02.09.527891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Proteins containing intrinsically disordered regions are integral components of the cellular signaling pathways and common components of biological condensates. Point mutations in the protein sequence, genetic at birth or acquired through aging, can alter the properties of the condensates, marking the onset of neurodegenerative diseases such as ALS and dementia. While the all-atom molecular dynamics method can, in principle, elucidate the conformational changes that arise from point mutations, the applications of this method to protein condensate systems is conditioned upon the availability of molecular force fields that can accurately describe both structured and disordered regions of such proteins. Using the special-purpose Anton 2 supercomputer, we benchmarked the efficacy of nine presently available molecular force fields in describing the structure and dynamics of a Fused in sarcoma (FUS) protein. Five-microsecond simulations of the full-length FUS protein characterized the effect of the force field on the global conformation of the protein, self-interactions among its side chains, solvent accessible surface area and the diffusion constant. Using the results of dynamic light scattering as a benchmark for the FUS radius of gyration, we identified several force fields that produced FUS conformations within the experimental range. Next, we used these force fields to perform ten-microsecond simulations of two structured RNA binding domains of FUS bound to their respective RNA targets, finding the choice of the force field to affect stability of the RNA-FUS complex. Taken together, our data suggest that a combination of protein and RNA force fields sharing a common four-point water model provides an optimal description of proteins containing both disordered and structured regions and RNA-protein interactions. To make simulations of such systems available beyond the Anton 2 machines, we describe and validate implementation of the best performing force fields in a publicly available molecular dynamics program NAMD. Our NAMD implementation enables simulations of large (tens of millions of atoms) biological condensate systems and makes such simulations accessible to a broader scientific community.
Collapse
|
45
|
Bekker GJ, Araki M, Oshima K, Okuno Y, Kamiya N. Mutual induced-fit mechanism drives binding between intrinsically disordered Bim and cryptic binding site of Bcl-xL. Commun Biol 2023; 6:349. [PMID: 36997643 PMCID: PMC10063584 DOI: 10.1038/s42003-023-04720-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
The intrinsically disordered region (IDR) of Bim binds to the flexible cryptic site of Bcl-xL, a pro-survival protein involved in cancer progression that plays an important role in initiating apoptosis. However, their binding mechanism has not yet been elucidated. We have applied our dynamic docking protocol, which correctly reproduced both the IDR properties of Bim and the native bound configuration, as well as suggesting other stable/meta-stable binding configurations and revealed the binding pathway. Although the cryptic site of Bcl-xL is predominantly in a closed conformation, initial binding of Bim in an encounter configuration leads to mutual induced-fit binding, where both molecules adapt to each other; Bcl-xL transitions to an open state as Bim folds from a disordered to an α-helical conformation while the two molecules bind each other. Finally, our data provides new avenues to develop novel drugs by targeting newly discovered stable conformations of Bcl-xL.
Collapse
Affiliation(s)
- Gert-Jan Bekker
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Mitsugu Araki
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kanji Oshima
- Bio-Pharma Research Laboratories, KANEKA CORPORATION, 1-8 Miyamae-cho, Takasago-cho, Takasago, Hyogo, 676-8688, Japan
| | - Yasushi Okuno
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Narutoshi Kamiya
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
46
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
47
|
Zheng W, Du Z, Ko SB, Wickramasinghe N, Yang S. Incorporation of D 2O-Induced Fluorine Chemical Shift Perturbations into Ensemble-Structure Characterization of the ERalpha Disordered Region. J Phys Chem B 2022; 126:9176-9186. [PMID: 36331868 PMCID: PMC10066504 DOI: 10.1021/acs.jpcb.2c05456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Structural characterization of intrinsically disordered proteins (IDPs) requires a concerted effort between experiments and computations by accounting for their conformational heterogeneity. Given the diversity of experimental tools providing local and global structural information, constructing an experimental restraint-satisfying structural ensemble remains challenging. Here, we use the disordered N-terminal domain (NTD) of the estrogen receptor alpha (ERalpha) as a model system to combine existing small-angle X-ray scattering (SAXS) and hydroxyl radical protein footprinting (HRPF) data and newly acquired solvent accessibility data via D2O-induced fluorine chemical shifting (DFCS) measurements. A new set of DFCS data for the solvent exposure of a set of 12 amino acid positions were added to complement previously acquired HRPF measurements for the solvent exposure of the other 16 nonoverlapping amino acids, thereby improving the NTD ensemble characterization considerably. We also found that while choosing an initial ensemble of structures generated from a different atomic-level force field or sampling/modeling method can lead to distinct contact maps even when the same sets of experimental measurements were used for ensemble-fitting, comparative analyses from these initial ensembles reveal commonly recurring structural features in their ensemble-averaged contact map. Specifically, nonlocal or long-range transient interactions were found consistently between the N-terminal segments and the central region, sufficient to mediate the conformational ensemble and regulate how the NTD interacts with its coactivator proteins.
Collapse
Affiliation(s)
- Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, Arizona 85212, United States
| | - Zhanwen Du
- Center for Proteomics and Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, United States
| | - Soo Bin Ko
- Center for Proteomics and Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, United States
| | - Nalinda Wickramasinghe
- Chemistry-NMR Facility, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Sichun Yang
- Center for Proteomics and Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, United States
| |
Collapse
|
48
|
Bhattacharya S, Zhang M, Hu W, Qi T, Heisterkamp N. Targeting disordered-structured domain interactions in Galectin-3 based on NMR and enhanced MD. Biophys J 2022; 121:4342-4357. [PMID: 36209362 PMCID: PMC9703043 DOI: 10.1016/j.bpj.2022.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/18/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
Intrinsically disordered regions (IDRs) are common and important functional domains in many proteins. However, IDRs are difficult to target for drug development due to the lack of defined structures that would facilitate the identification of possible drug-binding pockets. Galectin-3 is a carbohydrate-binding protein of which overexpression has been implicated in a wide variety of disorders, including cancer and inflammation. Apart from its carbohydrate-recognition/binding domain (CRD), Galectin-3 also contains a functionally important disordered N-terminal domain (NTD) that contacts the C-terminal domain (CTD) and could be a target for drug development. To overcome challenges involved in inhibitor design due to lack of structure and the highly dynamic nature of the NTD, we used a protocol combining nuclear magnetic resonance data from recombinant Galectin-3 with accelerated molecular dynamics (MD) simulations. This approach identified a pocket in the CTD with which the NTD makes frequent contact. In accordance with this model, mutation of residues L131 and L203 in this pocket caused loss of Galectin-3 agglutination ability, signifying the functional relevance of the cavity. In silico screening was used to design candidate inhibitory peptides targeting the newly discovered cavity, and experimental testing of only three of these yielded one peptide that inhibits the agglutination promoted by wild-type Galectin-3. NMR experiments further confirmed that this peptide indeed binds to a cavity in the CTD, not within the actual CRD. Our results show that it is possible to apply a combination of MD simulations and NMR experiments to precisely predict the binding interface of a disordered domain with a structured domain, and furthermore use this predicted interface for designing inhibitors. This procedure can potentially be extended to many other targets in which similar IDR interactions play a vital functional role.
Collapse
Affiliation(s)
- Supriyo Bhattacharya
- Integrative Genomics Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mingfeng Zhang
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, California
| | - Weidong Hu
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California
| | - Tong Qi
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, California
| | - Nora Heisterkamp
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, California.
| |
Collapse
|
49
|
Abstract
Simulating water accurately has been a major challenge in atomistic simulations for decades. Inclusion of electronic polarizability effects holds considerable promise, yet existing approaches suffer from significant computational overheads compared to the widely used nonpolarizable water models. We have developed a globally optimal polarizable water model, OPC3-pol, that explicitly accounts for electronic polarizability with minimal impact on the computational efficiency. OPC3-pol reproduces five key bulk water properties at room temperature with an average relative error of 0.6%. In atomistic simulations, OPC3-pol's computational efficiency is in between that of 3- and 4-point nonpolarizable models; the model supports increased (4 fs) integration time step. OPC3-pol is tested in simulations of globular protein ubiquitin and a B-DNA dodecamer with several AMBER force fields, ff99SB, ff14SB, ff19SB, and OL15, demonstrating structure stability close to reference on multi-microsecond time scale. Simulation of an intrinsically disordered amyloid β-peptide yields an ensemble with the radius of gyration of a random coil. The proposed water model can be trivially adopted by any package that supports standard nonpolarizable force fields and water models; its intended use is in long classical atomistic simulations where water polarization effects are expected to be important.
Collapse
Affiliation(s)
- Yeyue Xiong
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg24061, United States
| | - Saeed Izadi
- Pharmaceutical Development Department, Genentech, South San Francisco94080, United States
| | - Alexey V Onufriev
- Department of Computer Science, Virginia Tech, Blacksburg24061, United States
- Department of Physics, Virginia Tech, Blacksburg24061, United States
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg24061, United States
| |
Collapse
|
50
|
Hao X, Li C, Liu C, Meng Q, Sun J. The performance of OPC water model in prediction of the phase equilibria of methane hydrate. J Chem Phys 2022; 157:014504. [DOI: 10.1063/5.0093659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular dynamics (MD) simulations were performed to determine the three-phase coexistence line of sI methane hydrates. The MD simulations were carried out at four different pressures (4, 10, 40 and 100 MPa) by using direct phase coexistence method. In current simulations, water was described by either TIP4P/Ice or OPC models and methane was described as a simple Lennard-Jones (LJ) interaction site. Lorentz-Berthelot combining rules were used to calculate the parameters of the cross interactions. For OPC model, positive deviations from the energetic Lorentz-Berthelot rule were also considered based on the solubility of methane in water. For TIP4P/Ice water model, the obtained three phase coexistence temperatures showed good agreement with experiment data at higher pressures, which is consistent with previous predictions. For OPC water model, simulations using the classic and the modified LB parameters both showed negative deviations to the experimental values. Our results also indicated that the deviation of the T3 prediction by OPC model not much correlated with the predicted melting point of ice. At 4 MPa, the modified OPC model showed outstanding prediction of hydrate equilibrium temperature, even better than the prediction by TIP4P/Ice. The relative higher accuracy in biomolecular MD of OPC model suggests that this model may have a better performance in hydrate MD simulations of biomolecule-based additives.
Collapse
Affiliation(s)
- Xiluo Hao
- Qingdao Institute of Marine Geology, China
| | | | | | | | - Jianye Sun
- Qingdao Institute of Marine Geology, China
| |
Collapse
|