1
|
Giovannini T, Gómez S, Cappelli C. Modeling Raman Spectra in Complex Environments: From Solutions to Surface-Enhanced Raman Scattering. J Phys Chem Lett 2025; 16:3106-3121. [PMID: 40103209 PMCID: PMC11956141 DOI: 10.1021/acs.jpclett.4c03591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
This perspective highlights the essential physicochemical factors required for accurate computational modeling of Raman and Resonance Raman signals in complex environments. It highlights the theoretical challenges for obtaining a balanced quantum mechanical description of the molecular target, integration of target-environment interactions into the Hamiltonian, and explicit treatment of strong interactions such as hydrogen bonding. The dynamical sampling of solute-solvent phase space and the incorporation of plasmonic effects for Surface-Enhanced Raman Scattering (SERS) are also addressed. Through selected applications, we illustrate how these factors influence Raman signals and propose a framework to tackle these challenges effectively, advancing the reliability of theoretical Raman spectroscopy in real-world scenarios.
Collapse
Affiliation(s)
- Tommaso Giovannini
- Department
of Physics and INFN, University of Rome
Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sara Gómez
- Departamento
de Química, Universidad Nacional
de Colombia, Av. Cra 30 45-03, 111321 Bogotà, Colombia
| | - Chiara Cappelli
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- IMT
School for Advanced Studies Lucca, Piazza San Francesco 19, 55100 Lucca, Italy
| |
Collapse
|
2
|
Huang X, Zhang W, Liang W. Time-dependent Kohn-Sham electron dynamics coupled with nonequilibrium plasmonic response via atomistic electromagnetic model. J Chem Phys 2024; 160:214106. [PMID: 38828813 DOI: 10.1063/5.0205845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Computational modeling of plasmon-mediated molecular photophysical and photochemical behaviors can help us better understand and tune the bound molecular properties and reactivity and make better decisions to design and control nanostructures. However, computational investigations of coupled plasmon-molecule systems are challenging due to the lack of accurate and efficient protocols to simulate these systems. Here, we present a hybrid scheme by combining the real-time time-dependent density functional theory (RT-TDDFT) approach with the time-domain frequency dependent fluctuating charge (TD-ωFQ) model. At first, we transform ωFQ in the frequency-domain, an atomistic electromagnetic model for the plasmonic response of plasmonic metal nanoparticles (PMNPs), into the time-domain and derive its equation-of-motion formulation. The TD-ωFQ introduces the nonequilibrium plasmonic response of PMNPs and atomistic interactions to the electronic excitation of the quantum mechanical (QM) region. Then, we combine TD-ωFQ with RT-TDDFT. The derived RT-TDDFT/TD-ωFQ scheme allows us to effectively simulate the plasmon-mediated "real-time" electronic dynamics and even the coupled electron-nuclear dynamics by combining them with the nuclear dynamics approaches. As a first application of the RT-TDDFT/TD-ωFQ method, we study the nonradiative decay rate and plasmon-enhanced absorption spectra of two small molecules in the proximity of sodium MNPs. Thanks to the atomistic nature of the ωFQ model, the edge effect of MNP on absorption enhancement has also been investigated and unveiled.
Collapse
Affiliation(s)
- Xunkun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Wenshu Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
3
|
Sepali C, Gómez S, Grifoni E, Giovannini T, Cappelli C. Computational Spectroscopy of Aqueous Solutions: The Underlying Role of Conformational Sampling. J Phys Chem B 2024; 128:5083-5091. [PMID: 38733374 DOI: 10.1021/acs.jpcb.4c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Fully atomistic multiscale polarizable quantum mechanics (QM)/molecular mechanics (MM) approaches, combined with techniques to sample the solute-solvent phase space, constitute the most accurate method to compute spectral signals in aqueous solution. Conventional sampling strategies, such as classical molecular dynamics (MD), may encounter drawbacks when the conformational space is particularly complex, and transition barriers between conformers are high. This can lead to inaccurate sampling, which can potentially impact the accuracy of spectral calculations. For this reason, in this work, we compare classical MD with enhanced sampling techniques, i.e., replica exchange MD and metadynamics. In particular, we show how the different sampling techniques affect computed UV, electronic circular dichroism, nuclear magnetic resonance shielding, and optical rotatory dispersion of N-acetylproline-amide in aqueous solution. Such a system is a model peptide characterized by complex conformational variability. Calculated values suggest that spectral properties are influenced by solute conformers, relative population, and solvent effects; therefore, particular care needs to be paid for when choosing the sampling technique.
Collapse
Affiliation(s)
- Chiara Sepali
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Sara Gómez
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Emanuele Grifoni
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
4
|
Xu N, Rosander P, Schäfer C, Lindgren E, Österbacka N, Fang M, Chen W, He Y, Fan Z, Erhart P. Tensorial Properties via the Neuroevolution Potential Framework: Fast Simulation of Infrared and Raman Spectra. J Chem Theory Comput 2024; 20:3273-3284. [PMID: 38572734 PMCID: PMC11044275 DOI: 10.1021/acs.jctc.3c01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
Infrared and Raman spectroscopy are widely used for the characterization of gases, liquids, and solids, as the spectra contain a wealth of information concerning, in particular, the dynamics of these systems. Atomic scale simulations can be used to predict such spectra but are often severely limited due to high computational cost or the need for strong approximations that limit the application range and reliability. Here, we introduce a machine learning (ML) accelerated approach that addresses these shortcomings and provides a significant performance boost in terms of data and computational efficiency compared with earlier ML schemes. To this end, we generalize the neuroevolution potential approach to enable the prediction of rank one and two tensors to obtain the tensorial neuroevolution potential (TNEP) scheme. We apply the resulting framework to construct models for the dipole moment, polarizability, and susceptibility of molecules, liquids, and solids and show that our approach compares favorably with several ML models from the literature with respect to accuracy and computational efficiency. Finally, we demonstrate the application of the TNEP approach to the prediction of infrared and Raman spectra of liquid water, a molecule (PTAF-), and a prototypical perovskite with strong anharmonicity (BaZrO3). The TNEP approach is implemented in the free and open source software package gpumd, which makes this methodology readily available to the scientific community.
Collapse
Affiliation(s)
- Nan Xu
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Petter Rosander
- Department
of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Christian Schäfer
- Department
of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Eric Lindgren
- Department
of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Nicklas Österbacka
- Department
of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Mandi Fang
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wei Chen
- State
Key Laboratory of Multiphase Complex Systems, Institute of Process
Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yi He
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Zheyong Fan
- College
of Physical Science and Technology, Bohai
University, Jinzhou 121013, P. R. China
| | - Paul Erhart
- Department
of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
5
|
Gómez S, Ambrosetti M, Giovannini T, Cappelli C. Close-Up Look at Electronic Spectroscopic Signatures of Common Pharmaceuticals in Solution. J Phys Chem B 2024; 128:2432-2446. [PMID: 38416564 DOI: 10.1021/acs.jpcb.3c07795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Simulating electronic properties and spectral signals requires robust computational approaches that need tuning with the system's peculiarities. In this paper, we test implicit and fully atomistic solvation models for the calculation of UV-vis and electronic circular dichroism (ECD) spectra of two pharmaceutically relevant molecules, namely, (2S)-captopril and (S)-naproxen, dissolved in aqueous solution. Room temperature molecular dynamics simulations reveal that these two drugs establish strong contacts with the surrounding solvent molecules via hydrogen bonds. Such specific interactions, which play a major role in the spectral response and are neglected in implicit approaches, are further characterized and quantified with natural bond orbital methods. Our calculations show that simulated spectra, and especially ECD, are in good agreement with experiments solely when conformational and configurational dynamics, mutual polarization, and solute-solvent repulsion effects are considered.
Collapse
Affiliation(s)
- Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Matteo Ambrosetti
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Tommaso Giovannini
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Chiara Cappelli
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa 56126, Italy
| |
Collapse
|
6
|
Sepali C, Lafiosca P, Gómez S, Giovannini T, Cappelli C. Effective fully polarizable QM/MM approaches to compute Raman and Raman Optical Activity spectra in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123485. [PMID: 37827000 DOI: 10.1016/j.saa.2023.123485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
Raman and Raman Optical Activity (ROA) signals are amply affected by solvent effects, especially in the presence of strongly solute-solvent interactions such as Hydrogen Bonding (HB). In this work, we extend the fully atomistic polarizable Quantum Mechanics/Molecular Mechanics approach, based on the Fluctuating Charges and Fluctuating Dipoles force field to the calculation of Raman and ROA spectra. Such an approach is able to accurately describe specific HB interactions, by also accounting for anisotropic contributions due to the inclusion of fluctuating dipoles. To highlight the potentiality of the novel approach, Raman and ROA spectra of L-Serine and L-Cysteine dissolved in aqueous solution are computed and compared both with alternative theoretical approaches and experimental measurements.
Collapse
Affiliation(s)
- Chiara Sepali
- Scuola Normale Superiore, Piazza dei Cavalieri, 7, Pisa, 56126, Italy
| | - Piero Lafiosca
- Scuola Normale Superiore, Piazza dei Cavalieri, 7, Pisa, 56126, Italy
| | - Sara Gómez
- Scuola Normale Superiore, Piazza dei Cavalieri, 7, Pisa, 56126, Italy
| | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri, 7, Pisa, 56126, Italy.
| |
Collapse
|
7
|
Lafiosca P, Rossi F, Egidi F, Giovannini T, Cappelli C. Multiscale Frozen Density Embedding/Molecular Mechanics Approach for Simulating Magnetic Response Properties of Solvated Systems. J Chem Theory Comput 2024; 20:266-279. [PMID: 38109486 PMCID: PMC10782454 DOI: 10.1021/acs.jctc.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023]
Abstract
We present a three-layer hybrid quantum mechanical/quantum embedding/molecular mechanics approach for calculating nuclear magnetic resonance (NMR) shieldings and J-couplings of molecular systems in solution. The model is based on the frozen density embedding (FDE) and polarizable fluctuating charges (FQ) and fluctuating dipoles (FQFμ) force fields and permits the accurate ab initio description of short-range nonelectrostatic interactions by means of the FDE shell and cost-effective treatment of long-range electrostatic interactions through the polarizable force field FQ(Fμ). Our approach's accuracy and potential are demonstrated by studying NMR spectra of Brooker's merocyanine in aqueous and nonaqueous solutions.
Collapse
Affiliation(s)
- Piero Lafiosca
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Federico Rossi
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Franco Egidi
- Software
for Chemistry and Materials BV, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | - Chiara Cappelli
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
8
|
Rojas-Valencia N, Gómez S, Giovannini T, Cappelli C, Restrepo A, Núñez Zarur F. Water Maintains the UV-Vis Spectral Features During the Insertion of Anionic Naproxen and Ibuprofen into Model Cell Membranes. J Phys Chem B 2023; 127:2146-2155. [PMID: 36877579 DOI: 10.1021/acs.jpcb.2c08332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
UV-vis spectra of anionic ibuprofen and naproxen in a model lipid bilayer of the cell membrane are investigated using computational techniques in combination with a comparative analysis of drug spectra in purely aqueous environments. The simulations aim at elucidating the intricacies behind the negligible changes in the maximum absorption wavelength in the experimental spectra. A set of configurations of the systems constituted by lipid, water, and drugs or just water and drugs are obtained from classical Molecular Dynamics simulations. UV-vis spectra are computed in the framework of atomistic Quantum Mechanical/Molecular Mechanics (QM/MM) approaches together with Time-Dependent Density Functional Theory (TD-DFT). Our results suggest that the molecular orbitals involved in the electronic transitions are the same, regardless of the chemical environment. A thorough analysis of the contacts between the drug and water molecules reveals that no significant changes in UV-vis spectra are a consequence of ibuprofen and naproxen molecules being permanently microsolvated by water molecules, despite the presence of lipid molecules. Water molecules microsolvate the charged carboxylate group as expected but also microsolvate the aromatic regions of the drugs.
Collapse
Affiliation(s)
- Natalia Rojas-Valencia
- Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026, Medellín, Colombia
| | - Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Tommaso Giovannini
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Chiara Cappelli
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia, UdeA, Calle 70 No. 52-21 050010, Medellín, Colombia
| | - Francisco Núñez Zarur
- Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026, Medellín, Colombia
| |
Collapse
|
9
|
Csizi K, Reiher M. Universal
QM
/
MM
approaches for general nanoscale applications. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2023. [DOI: 10.1002/wcms.1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Markus Reiher
- Laboratorium für Physikalische Chemie ETH Zürich Zürich Switzerland
| |
Collapse
|
10
|
Nicoli L, Giovannini T, Cappelli C. Assessing the quality of QM/MM approaches to describe vacuo-to-water solvatochromic shifts. J Chem Phys 2022; 157:214101. [PMID: 36511555 DOI: 10.1063/5.0118664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The performance of different quantum mechanics/molecular mechanics embedding models to compute vacuo-to-water solvatochromic shifts is investigated. In particular, both nonpolarizable and polarizable approaches are analyzed and computed results are compared to reference experimental data. We show that none of the approaches outperform the others and that errors strongly depend on the nature of the molecular transition to be described. Thus, we prove that the best choice of embedding model highly depends on the molecular system and that the use of a specific approach as a black box can lead to significant errors and, sometimes, totally wrong predictions.
Collapse
Affiliation(s)
- Luca Nicoli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
11
|
Gómez S, Giovannini T, Cappelli C. Multiple Facets of Modeling Electronic Absorption Spectra of Systems in Solution. ACS PHYSICAL CHEMISTRY AU 2022; 3:1-16. [PMID: 36718266 PMCID: PMC9881242 DOI: 10.1021/acsphyschemau.2c00050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
Abstract
In this Perspective, we outline the essential physicochemical aspects that need to be considered when building a reliable approach to describe absorption properties of solvated systems. In particular, we focus on how to properly model the complexity of the solvation phenomenon, arising from dynamical aspects and specific, strong solute-solvent interactions. To this end, conformational and configurational sampling techniques, such as Molecular Dynamics, have to be coupled to accurate fully atomistic Quantum Mechanical/Molecular Mechanics (QM/MM) methodologies. By exploiting different illustrative applications, we show that an effective reproduction of experimental spectral signals can be achieved by delicately balancing exhaustive sampling, hydrogen bonding, mutual polarization, and nonelectrostatic effects.
Collapse
|
12
|
Pei Z, Mao Y, Shao Y, Liang W. Analytic high-order energy derivatives for metal nanoparticle-mediated infrared and Raman scattering spectra within the framework of quantum mechanics/molecular mechanics model with induced charges and dipoles. J Chem Phys 2022; 157:164110. [PMID: 36319412 PMCID: PMC9616608 DOI: 10.1063/5.0118205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/30/2022] [Indexed: 11/14/2022] Open
Abstract
This work is devoted to deriving and implementing analytic second- and third-order energy derivatives with respect to the nuclear coordinates and external electric field within the framework of the hybrid quantum mechanics/molecular mechanics method with induced charges and dipoles (QM/DIM). Using these analytic energy derivatives, one can efficiently compute the harmonic vibrational frequencies, infrared (IR) and Raman scattering (RS) spectra of the molecule in the proximity of noble metal clusters/nanoparticles. The validity and accuracy of these analytic implementations are demonstrated by the comparison of results obtained by the finite-difference method and the analytic approaches and by the full QM and QM/DIM calculations. The complexes formed by pyridine and two sizes of gold clusters (Au18 and Au32) at varying intersystem distances of 3, 4, and 5 Å are used as the test systems, and Raman spectra of 4,4'-bipyridine in the proximity of Au2057 and Ag2057 metal nanoparticles (MNP) are calculated by the QM/DIM method and compared with experimental results as well. We find that the QM/DIM model can well reproduce the IR spectra obtained from full QM calculations for all the configurations, while although it properly enhances some of the vibrational modes, it artificially overestimates RS spectral intensities of several modes for the systems with very short intersystem distance. We show that this could be improved, however, by incorporating the hyperpolarizability of the gold metal cluster in the evaluation of RS intensities. Additionally, we address the potential impact of charge migration between the adsorbate and MNPs.
Collapse
Affiliation(s)
- Zheng Pei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
13
|
Lafiosca P, Gómez S, Giovannini T, Cappelli C. Absorption Properties of Large Complex Molecular Systems: The DFTB/Fluctuating Charge Approach. J Chem Theory Comput 2022; 18:1765-1779. [PMID: 35184553 PMCID: PMC8908768 DOI: 10.1021/acs.jctc.1c01066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
We report on the
first formulation of a novel polarizable QM/MM
approach, where the density functional tight binding (DFTB) is coupled
to the fluctuating charge (FQ) force field. The resulting method (DFTB/FQ)
is then extended to the linear response within the TD-DFTB framework
and challenged to study absorption spectra of large condensed-phase
systems.
Collapse
Affiliation(s)
- Piero Lafiosca
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Tommaso Giovannini
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Chiara Cappelli
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
14
|
Ambrosetti M, Skoko S, Giovannini T, Cappelli C. Quantum Mechanics/Fluctuating Charge Protocol to Compute Solvatochromic Shifts. J Chem Theory Comput 2021; 17:7146-7156. [PMID: 34619965 PMCID: PMC8582258 DOI: 10.1021/acs.jctc.1c00763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Despite the potentialities
of the quantum mechanics (QM)/fluctuating
charge (FQ) approach to model the spectral properties of solvated
systems, its extensive use has been hampered by the lack of reliable
parametrizations of solvents other than water. In this paper, we substantially
extend the applicability of QM/FQ to solvating environments of different
polarities and hydrogen-bonding capabilities. The reliability and
robustness of the approach are demonstrated by challenging the model
to simulate solvatochromic shifts of four organic chromophores, which
display large shifts when dissolved in apolar, aprotic or polar, protic
solvents.
Collapse
Affiliation(s)
| | - Sulejman Skoko
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
15
|
Yagi K, Re S, Mori T, Sugita Y. Weight average approaches for predicting dynamical properties of biomolecules. Curr Opin Struct Biol 2021; 72:88-94. [PMID: 34592697 DOI: 10.1016/j.sbi.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
Recent advances in atomistic molecular dynamics (MD) simulations of biomolecules allow us to explore their conformational spaces widely, observing large-scale conformational fluctuations or transitions between distinct structures. To reproduce or refine experimental data using MD simulations, structure ensembles, which are characterized by multiple structures and their statistical weights on the rugged free-energy landscapes, are often used. Here, we summarize weight average approaches for various experimental measurements. Weight average approaches are now applied to hybrid quantum mechanics/molecular mechanics MD simulations to predict fast vibrational motions in a protein with a high accuracy for better understanding of molecular functions from atomic structures.
Collapse
Affiliation(s)
- Kiyoshi Yagi
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Suyong Re
- RIKEN Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health, and Nutrition 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Takaharu Mori
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuji Sugita
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; RIKEN Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
16
|
Dundas KHM, Beerepoot MTP, Ringholm M, Reine S, Bast R, List NH, Kongsted J, Ruud K, Olsen JMH. Harmonic Infrared and Raman Spectra in Molecular Environments Using the Polarizable Embedding Model. J Chem Theory Comput 2021; 17:3599-3617. [PMID: 34009969 PMCID: PMC8278393 DOI: 10.1021/acs.jctc.0c01323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/14/2022]
Abstract
We present a fully analytic approach to calculate infrared (IR) and Raman spectra of molecules embedded in complex molecular environments modeled using the fragment-based polarizable embedding (PE) model. We provide the theory for the calculation of analytic second-order geometric derivatives of molecular energies and first-order geometric derivatives of electric dipole moments and dipole-dipole polarizabilities within the PE model. The derivatives are implemented using a general open-ended response theory framework, thus allowing for an extension to higher-order derivatives. The embedding-potential parameters used to describe the environment in the PE model are derived through first-principles calculations, thus allowing a wide variety of systems to be modeled, including solvents, proteins, and other large and complex molecular environments. Here, we present proof-of-principle calculations of IR and Raman spectra of acetone in different solvents. This work is an important step toward calculating accurate vibrational spectra of molecules embedded in realistic environments.
Collapse
Affiliation(s)
- Karen
Oda Hjorth Minde Dundas
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Maarten T. P. Beerepoot
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Magnus Ringholm
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Simen Reine
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Radovan Bast
- Department
of Information Technology, UiT The Arctic
University of Norway, N-9037 Tromsø, Norway
| | - Nanna Holmgaard List
- Department
of Chemistry and the PULSE Institute, Stanford
University, 94305 Stanford, California, United States
- SLAC
National Accelerator Laboratory, 94025 Menlo Park, California, United States
| | - Jacob Kongsted
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, DK-5230 Odense M, Denmark
| | - Kenneth Ruud
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Jógvan Magnus Haugaard Olsen
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
17
|
Egidi F, Angelico S, Lafiosca P, Giovannini T, Cappelli C. A polarizable three-layer frozen density embedding/molecular mechanics approach. J Chem Phys 2021; 154:164107. [PMID: 33940798 DOI: 10.1063/5.0045574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We present a novel multilayer polarizable embedding approach in which the system is divided into three portions, two of which are treated using density functional theory and their interaction is based on frozen density embedding (FDE) theory, and both also mutually interact with a polarizable classical layer described using an atomistic model based on fluctuating charges (FQ). The efficacy of the model is demonstrated by extending the formalism to linear response properties and applying it to the simulation of the excitation energies of organic molecules in aqueous solution, where the solute and the first solvation shell are treated using FDE, while the rest of the solvent is modeled using FQ charges.
Collapse
Affiliation(s)
- Franco Egidi
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Sara Angelico
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Piero Lafiosca
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
18
|
Huix-Rotllant M, Schwinn K, Ferré N. Infrared spectroscopy from electrostatic embedding QM/MM: local normal mode analysis of infrared spectra of arabidopsis thaliana plant cryptochrome. Phys Chem Chem Phys 2021; 23:1666-1674. [PMID: 33415326 DOI: 10.1039/d0cp06070d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Infrared (IR) spectroscopy is an undoubtedly valuable tool for analyzing vibrations, conformational changes, and chemical reactions of biological macromolecules. Currently, there is a lack of theoretical methods to create a model successfully and efficiently simulate and interpret the origin of the spectral signatures, which are often complex to analyze. Here, we develop a new method for IR vibrational spectroscopy based on analytic second derivatives of electrostatic embedding QM/MM energy, the computation of electric dipole moments with respect to nuclear perturbations and the localization of normal modes. In addition to the IR spectrum, the method can provide the origin of each peak from clearly identified molecular motions of constituent fragments. As a proof of concept, we analyze the IR spectra of flavin adenine dinucleotides in water and in Arabidopsis thaliana cryptochrome proteins for four redox forms, in addition to the difference IR spectra before and after illumination with blue light. We show that the main peaks in the difference spectrum are due to N-H hydrogen out-of-plane motions and hydrogen bendings.
Collapse
|
19
|
Marrazzini G, Giovannini T, Scavino M, Egidi F, Cappelli C, Koch H. Multilevel Density Functional Theory. J Chem Theory Comput 2021; 17:791-803. [PMID: 33449681 PMCID: PMC7880574 DOI: 10.1021/acs.jctc.0c00940] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
Following recent
developments in multilevel embedding methods,
we introduce a novel density matrix-based multilevel approach within
the framework of density functional theory (DFT). In this multilevel
DFT, the system is partitioned in an active and an inactive fragment,
and all interactions are retained between the two parts. The decomposition
of the total system is performed upon the density matrix. The orthogonality
between the two parts is maintained by solving the Kohn–Sham
equations in the MO basis for the active part only, while keeping
the inactive density matrix frozen. This results in the reduction
of computational cost. We outline the theory and implementation and
discuss the differences and similarities with state-of-the-art DFT
embedding methods. We present applications to aqueous solutions of
methyloxirane and glycidol.
Collapse
Affiliation(s)
- Gioia Marrazzini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Marco Scavino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Franco Egidi
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Henrik Koch
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
20
|
Goletto L, Giovannini T, Folkestad SD, Koch H. Combining multilevel Hartree–Fock and multilevel coupled cluster approaches with molecular mechanics: a study of electronic excitations in solutions. Phys Chem Chem Phys 2021; 23:4413-4425. [DOI: 10.1039/d0cp06359b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the coupling of different quantum-embedding approaches with a third molecular-mechanics layer, which can be either polarizable or non-polarizable.
Collapse
Affiliation(s)
- Linda Goletto
- Department of Chemistry
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim
- Norway
| | - Tommaso Giovannini
- Department of Chemistry
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim
- Norway
| | - Sarai D. Folkestad
- Department of Chemistry
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim
- Norway
| | | |
Collapse
|
21
|
Skoko S, Ambrosetti M, Giovannini T, Cappelli C. Simulating Absorption Spectra of Flavonoids in Aqueous Solution: A Polarizable QM/MM Study. Molecules 2020; 25:E5853. [PMID: 33322361 PMCID: PMC7764712 DOI: 10.3390/molecules25245853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022] Open
Abstract
We present a detailed computational study of the UV/Vis spectra of four relevant flavonoids in aqueous solution, namely luteolin, kaempferol, quercetin, and myricetin. The absorption spectra are simulated by exploiting a fully polarizable quantum mechanical (QM)/molecular mechanics (MM) model, based on the fluctuating charge (FQ) force field. Such a model is coupled with configurational sampling obtained by performing classical molecular dynamics (MD) simulations. The calculated QM/FQ spectra are compared with the experiments. We show that an accurate reproduction of the UV/Vis spectra of the selected flavonoids can be obtained by appropriately taking into account the role of configurational sampling, polarization, and hydrogen bonding interactions.
Collapse
Affiliation(s)
- Sulejman Skoko
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy; (S.S.); (M.A.)
| | - Matteo Ambrosetti
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy; (S.S.); (M.A.)
| | - Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway;
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy; (S.S.); (M.A.)
| |
Collapse
|
22
|
Multiscale mechanisms of reaction-diffusion process in electrode systems: A classical density functional study. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Schwinn K, Ferré N, Huix-Rotllant M. UV-visible absorption spectrum of FAD and its reduced forms embedded in a cryptochrome protein. Phys Chem Chem Phys 2020; 22:12447-12455. [PMID: 32458897 DOI: 10.1039/d0cp01714k] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryptochromes are a class of flavoproteins proposed as candidates to explain magnetoreception of animals, plants and bacteria. The main hypothesis is that a biradical is formed upon blue-light absorption by flavin adenine dinucleotide (FAD). In a protein milieu, the oxidized form of FAD can be reduced, leading to four redox derivative forms: anionic and neutral semi-reduced radicals, and anionic and neutral fully reduced forms. All these forms have a characteristic electronic absorption spectrum, with a strong vibrational resolution. Here, we carried out a normal mode analysis at the electrostatic embedding QM/MM level of theory to compute the vibrationally resolved absorption spectra of the five redox forms of FAD embedded in a plant cryptochrome. We show that explicitly accounting for vibrational broadening contributions to electronic transitions is essential to reproduce the experimental spectra. In the case of the neutral radical form of FAD, the absorption spectrum is reproduced only if the presence of a tryptophan radical is considered.
Collapse
|
24
|
Marrazzini G, Giovannini T, Egidi F, Cappelli C. Calculation of Linear and Non-linear Electric Response Properties of Systems in Aqueous Solution: A Polarizable Quantum/Classical Approach with Quantum Repulsion Effects. J Chem Theory Comput 2020; 16:6993-7004. [PMID: 33058671 PMCID: PMC8015238 DOI: 10.1021/acs.jctc.0c00674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 01/10/2023]
Abstract
We present a computational study of polarizabilities and hyperpolarizabilities of organic molecules in aqueous solutions, focusing on solute-water interactions and the way they affect a molecule's linear and non-linear electric response properties. We employ a polarizable quantum mechanics/molecular mechanics (QM/MM) computational model that treats the solute at the QM level while the solvent is treated classically using a force field that includes polarizable charges and dipoles, which dynamically respond to the solute's quantum-mechanical electron density. Quantum confinement effects are also treated by means of a recently implemented method that endows solvent molecules with a parametric electron density, which exerts Pauli repulsion forces upon the solute. By applying the method to a set of aromatic molecules in solution we show that, for both polarizabilities and first hyperpolarizabilities, observed solution values are the result of a delicate balance between electrostatics, hydrogen-bonding, and non-electrostatic solute solvent interactions.
Collapse
Affiliation(s)
- Gioia Marrazzini
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Tommaso Giovannini
- Department
of Chemistry, Norwegian University of Science
and Technology, Trondheim 7491, Norway
| | - Franco Egidi
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Chiara Cappelli
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, Pisa 56126, Italy
| |
Collapse
|
25
|
Giovannini T, Egidi F, Cappelli C. Theory and algorithms for chiroptical properties and spectroscopies of aqueous systems. Phys Chem Chem Phys 2020; 22:22864-22879. [PMID: 33043930 DOI: 10.1039/d0cp04027d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chiroptical properties and spectroscopies are valuable tools to study chiral molecules and assign absolute configurations. The spectra that result from chiroptical measurements may be very rich and complex, and hide much of their information content. For this reason, the interplay between experiments and calculations is especially useful, provided that all relevant physico-chemical interactions that are present in the experimental sample are accurately modelled. The inherent difficulty associated to the calculation of chiral signals of systems in aqueous solutions requires the development of specific tools, able to account for the peculiarities of water-solute interactions, and especially its ability to form hydrogen bonds. In this perspective we discuss a multiscale approach, which we have developed and challenged to model the most used chiroptical techniques.
Collapse
Affiliation(s)
- Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | | | | |
Collapse
|
26
|
Giovannini T, Bonatti L, Polini M, Cappelli C. Graphene Plasmonics: Fully Atomistic Approach for Realistic Structures. J Phys Chem Lett 2020; 11:7595-7602. [PMID: 32805117 PMCID: PMC7503861 DOI: 10.1021/acs.jpclett.0c02051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We demonstrate that the plasmonic properties of realistic graphene and graphene-based materials can effectively and accurately be modeled by a novel, fully atomistic, yet classical, approach, named ωFQ. Such a model is able to reproduce all plasmonic features of these materials and their dependence on shape, dimension, and fundamental physical parameters (Fermi energy, relaxation time, and two-dimensional electron density). Remarkably, ωFQ is able to accurately reproduce experimental data for realistic structures of hundreds of nanometers (∼370k atoms), which cannot be afforded by any ab initio method. Also, the atomistic nature of ωFQ permits the investigation of complex shapes, which can hardly be dealt with by exploiting widespread continuum approaches.
Collapse
Affiliation(s)
- Tommaso Giovannini
- Department
of Chemistry, Norwegian University of Science
and Technology, 7491 Trondheim, Norway
| | - Luca Bonatti
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| | - Marco Polini
- Dipartimento
di Fisica dell’Universitá di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
- Istituto
Italiano di Tecnologia, Graphene Laboratories, Via Morego 30, 16163 Genova, Italy
| | - Chiara Cappelli
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| |
Collapse
|
27
|
Giovannini T, Egidi F, Cappelli C. Molecular spectroscopy of aqueous solutions: a theoretical perspective. Chem Soc Rev 2020; 49:5664-5677. [PMID: 32744278 DOI: 10.1039/c9cs00464e] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Computational spectroscopy is an invaluable tool to both accurately reproduce the spectra of molecular systems and provide a rationalization for the underlying physics. However, the inherent difficulty to accurately model systems in aqueous solutions, owing to water's high polarity and ability to form hydrogen bonds, has severely hampered the development of the field. In this tutorial review we present a technique developed and tested in recent years based on a fully atomistic and polarizable classical modeling of water coupled with a quantum mechanical description of the solute. Thanks to its unparalleled accuracy and versatility, this method can change the perspective of computational and experimental chemists alike.
Collapse
Affiliation(s)
| | - Franco Egidi
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| |
Collapse
|
28
|
Bonatti L, Gil G, Giovannini T, Corni S, Cappelli C. Plasmonic Resonances of Metal Nanoparticles: Atomistic vs. Continuum Approaches. Front Chem 2020; 8:340. [PMID: 32457870 PMCID: PMC7221199 DOI: 10.3389/fchem.2020.00340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
The fully atomistic model, ωFQ, based on textbook concepts (Drude theory, electrostatics, quantum tunneling) and recently developed by some of the present authors in Nanoscale, 11, 6004-6015 is applied to the calculation of the optical properties of complex Na, Ag, and Au nanostructures. In ωFQ, each atom of the nanostructures is endowed with an electric charge that can vary according to the external electric field. The electric conductivity between nearest atoms is modeled by adopting the Drude model, which is reformulated in terms of electric charges. Quantum tunneling effects are considered by letting the dielectric response of the system arise from atom-atom conductivity. ωFQ is challenged to reproduce the optical response of metal nanoparticles of different sizes and shapes, and its performance is compared with continuum Boundary Element Method (BEM) calculations.
Collapse
Affiliation(s)
- Luca Bonatti
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, Italy
| | - Gabriel Gil
- Institute of Cybernetics, Mathematics and Physics (ICIMAF), La Habana, Cuba
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, Padova, Italy
- Institute of Nanoscience, National Research Council (CNR), Modena, Italy
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, Italy
| |
Collapse
|
29
|
Schwinn K, Ferré N, Huix-Rotllant M. Efficient Analytic Second Derivative of Electrostatic Embedding QM/MM Energy: Normal Mode Analysis of Plant Cryptochrome. J Chem Theory Comput 2020; 16:3816-3824. [PMID: 32320612 DOI: 10.1021/acs.jctc.9b01145] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Analytic second derivatives of electrostatic embedding (EE) quantum mechanics/molecular mechanics (QM/MM) energy are important for performing vibrational analysis and simulating vibrational spectra of quantum systems interacting with an environment represented as a classical electrostatic potential. The main bottleneck of EE-QM/MM second derivatives is the solution of coupled perturbed equations for each MM atom perturbation. Here, we exploit the Q-vector method [J. Chem. Phys., 2019, 151, 041102] to workaround this bottleneck. We derive the full analytic second derivative of the EE-QM/MM energy, which allows us to compute QM, MM, and QM-MM Hessian blocks in an efficient and easy to implement manner. To show the capabilities of our method, we compute the normal modes for the full Arabidopsis thaliana plant cryptochrome. We show that the flavin adenine dinucleotide vibrations (QM subsystem) strongly mix with protein modes. We compute approximate vibronic couplings for the lowest bright transition, from which we extract spectral densities and the homogeneous broadening of FAD absorption spectrum in protein using vibrationally resolved electronic spectrum simulations.
Collapse
|
30
|
Gómez S, Giovannini T, Cappelli C. Absorption spectra of xanthines in aqueous solution: a computational study. Phys Chem Chem Phys 2020; 22:5929-5941. [PMID: 32115599 DOI: 10.1039/c9cp05420k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a detailed computational analysis of the UV/Vis spectra of caffeine, paraxanthine and theophylline in aqueous solution. A hierarchy of solvation approaches for modeling the aqueous environment have been tested, ranging from the continuum model to the non-polarizable and polarizable quantum mechanical (QM)/molecular mechanics (MM) models, with and without the explicit inclusion of water molecules in the QM portion. The computed results are directly compared with the experimental data, thus highlighting the role of electrostatic, polarization and hydrogen boding solute-solvent interactions.
Collapse
Affiliation(s)
- Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| | | | | |
Collapse
|
31
|
Inakollu VS, Geerke DP, Rowley CN, Yu H. Polarisable force fields: what do they add in biomolecular simulations? Curr Opin Struct Biol 2020; 61:182-190. [PMID: 32044671 DOI: 10.1016/j.sbi.2019.12.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
The quality of biomolecular simulations critically depends on the accuracy of the force field used to calculate the potential energy of the molecular configurations. Currently, most simulations employ non-polarisable force fields, which describe electrostatic interactions as the sum of Coulombic interactions between fixed atomic charges. Polarisation of these charge distributions is incorporated only in a mean-field manner. In the past decade, extensive efforts have been devoted to developing simple, efficient, and yet generally applicable polarisable force fields for biomolecular simulations. In this review, we summarise the latest developments in accounting for key biomolecular interactions with polarisable force fields and applications to address challenging biological questions. In the end, we provide an outlook for future development in polarisable force fields.
Collapse
Affiliation(s)
- Vs Sandeep Inakollu
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong NSW 2522 Australia; Illawarra Health and Medical Research Institute, Wollongong NSW 2522, Australia
| | - Daan P Geerke
- AIMMS Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| | - Christopher N Rowley
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong NSW 2522 Australia; Illawarra Health and Medical Research Institute, Wollongong NSW 2522, Australia.
| |
Collapse
|
32
|
Giovannini T, Riso RR, Ambrosetti M, Puglisi A, Cappelli C. Electronic transitions for a fully polarizable QM/MM approach based on fluctuating charges and fluctuating dipoles: Linear and corrected linear response regimes. J Chem Phys 2019; 151:174104. [PMID: 31703497 DOI: 10.1063/1.5121396] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The fully polarizable Quantum Mechanics/Molecular Mechanics (QM/MM) approach based on fluctuating charges and fluctuating dipoles, named QM/FQFμ [T. Giovannini et al., J. Chem. Theory Comput. 15, 2233 (2019)], is extended to the calculation of vertical excitation energies of solvated molecular systems. Excitation energies are defined within two different solvation regimes, i.e., linear response (LR), where the response of the MM portion is adjusted to the QM transition density, and corrected-Linear Response (cLR) in which the MM response is adjusted to the relaxed QM density, thus being able to account for charge equilibration in the excited state. The model, which is specified in terms of three physical parameters (electronegativity, chemical hardness, and polarizability) is applied to vacuo-to-water solvatochromic shifts of aqueous solutions of para-nitroaniline, pyridine, and pyrimidine. The results show a good agreement with their experimental counterparts, thus highlighting the potentialities of this approach.
Collapse
Affiliation(s)
- Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | | | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
33
|
Giovannini T, Ambrosetti M, Cappelli C. Quantum Confinement Effects on Solvatochromic Shifts of Molecular Solutes. J Phys Chem Lett 2019; 10:5823-5829. [PMID: 31518133 DOI: 10.1021/acs.jpclett.9b02318] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We demonstrate the pivotal role of quantum mechanics density confinement effects on solvatochromic shifts. In particular, by resorting to a quantum mechanics/molecular mechanics (QM/MM) approach capable of accounting for confinement effects we successfully reproduce vacuo-to-water solvatochromic shifts for dark n → π* and bright π → π* transitions of acrolein and dark n → π* transitions of pyridine and pyrimidine without the need of including explicit water molecules in the QM portion. Remarkably, our approach is also able to dissect the effects of the single forces acting on the solute-solvent couple and allows for a rationalization of the experimental findings in terms of physicochemical quantities.
Collapse
Affiliation(s)
- Tommaso Giovannini
- Department of Chemistry , Norwegian University of Science and Technology , 7491 Trondheim , Norway
| | - Matteo Ambrosetti
- Scuola Normale Superiore , Piazza dei Cavalieri 7 , 56126 Pisa , Italy
| | - Chiara Cappelli
- Scuola Normale Superiore , Piazza dei Cavalieri 7 , 56126 Pisa , Italy
| |
Collapse
|