1
|
Mao Q, Zhang P, Lin F, Fu X, Zhang B, Liu C, Liu Z, Chen X, Dai X, Yue X, Shi X, Pang J, Wang S. Design, synthesis and biological evaluation of 2-[1-(pyridin-2-ylmethyl)-1H-pyrazole-3-carboxamido]benzoic acids as promising urate transporter 1 inhibitors with potential nephroprotective efficacy for the treatment of hyperuricemic nephropathy. Eur J Med Chem 2025; 290:117507. [PMID: 40101451 DOI: 10.1016/j.ejmech.2025.117507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Hyperuricemic nephropathy (HN) is considered an important risk factor for mortality in patients with hyperuricemia. Reducing serum uric acid (UA) levels and mitigating kidney injury are essential components in the treatment of HN. Thus, UA-lowering drugs that can also protect the kidneys are urgently needed. We identified a urate transporter 1 (URAT-1) inhibitor, T29, with cytoprotective efficacy through screening an internal library against hyperuricemia using a UA-induced HK-2 cell injury model. A bioisosteric strategy was then employed to replace the indole core of T29 with pyrazole moieties; this resulted in a series of 2-[1-(pyridin-2-ylmethyl)-1H-pyrazole-3-carboxamido]benzoic acids. Among them, compound 18 demonstrated the best cytoprotective efficacy (cell viability = 92.2 % vs. model = 31.5 %), and the IC50 value of compound 18 against URAT-1 was 3.36 μM; both of these values exceeded T29. In an HN mice model induced by a 0.75 % adenine diet and intraperitoneal injection of potassium oxonate (400 mg/kg), compound 18 significantly reduced the serum UA levels by inhibiting URAT-1 activity. Furthermore, compound 18 improved kidney function by lowering serum creatinine (CRE) and urea nitrogen (BUN) levels while attenuating tubular dilation and inflammatory cell infiltration in the kidneys. Additionally, it suppressed the release of the proinflammatory cytokines IL-1β and TNF-α and reduced kidney fibrosis by downregulating the expression of α-SMA and TGF-β. In conclusion, compound 18 ameliorated HN by inhibiting URAT-1, alleviating immune-inflammatory responses and mitigating fibrosis; the results from this study demonstrate its potential as a therapeutic agent for HN.
Collapse
Affiliation(s)
- Qing Mao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Peng Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Fengwei Lin
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Xuefeng Fu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Bing Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Chang Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Ziyuan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Xing Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Xiwen Dai
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Xiaoyi Yue
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China; School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiang Shi
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
2
|
Sun M, Lin F, Yue C, Wei Z, Liu C, Liu D, Chen X, Li Q, Liu Z, Han J, Cui Z, Mao Q, Li X, Zhang P, Zhang B, Fu X, Wang H, Mou Y, Wang S. Scaffold hopping-based structural modification of tranilast led to the identification of HNW005 as a promising NLRP3 inflammasome and URAT1 dual inhibitor for the treatment of gouty arthritis. Eur J Med Chem 2025; 292:117644. [PMID: 40286449 DOI: 10.1016/j.ejmech.2025.117644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Hyperuricemia and monosodium urate induced nod-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome activation is the major pathogenesis for gouty arthritis, and urate transporter 1 (URAT1) is a proven target for hyperuricemia. In this study, scaffold hopping modification with tranilast led to the identification of HNW005, an NLRP3 inflammasome and URAT1 dual-target inhibitor, which exhibited notable inhibitory potency against NLRP3 inflammasome activation (KD = 204.6 nM, IC50 = 1.7 μM) and uric acid transmembrane transportation (IC50 = 6.4 μM). Importantly, HNW005 displayed significant in vivo efficacy with respect to anti-inflammatory, analgesic, and uric acid-lowering effects (decreasing rate = 64.8 % at 2 mg/kg). In addition, HNW005 also displayed an acceptable pharmacokinetic profile (F = 41.37 %, t1/2 = 3.07 h). Collectively, the results showed that developing dual-target inhibitors of NLRP3 inflammasomes and URAT1 is a feasible strategy for the treatment of gouty arthritis, and HNW005 is worthy of further investigation.
Collapse
Affiliation(s)
- Ming Sun
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Fengwei Lin
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Chenchen Yue
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Zijie Wei
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Chang Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Dan Liu
- Shenyang Hinewy Pharmaceutical Technology Co., Ltd., Shenyang, Liaoning, 110016, PR China
| | - Xing Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Qi Li
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Ziyuan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Jihong Han
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Zichen Cui
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Qing Mao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Xinyu Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Peng Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Bing Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Xuefeng Fu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Han Wang
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China.
| | - Yanhua Mou
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
3
|
Liu C, Wang W, Miao R, Chen H, Wang N, Cheng W, Zheng F, Li Z, Pang J, Qian H, Tian X. Structure optimization of natural product piperine to obtain novel and potent analogs with anti-inflammation pain and urate-lowering effect. Eur J Med Chem 2025; 292:117649. [PMID: 40305938 DOI: 10.1016/j.ejmech.2025.117649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
Hyperuricemia is a metabolic disorder syndrome caused by a disorder of purine metabolism in the body, followed by urate crystal deposition leading to gouty arthritis, urate nephropathy, and kidney stones, collectively known as gout. Promoting uric acid stone dissolution by continuously reducing blood uric acid levels and reducing acute gout attacks in patients by controlling inflammatory pain reactions are identified as a potential therapy for gout. Starting from the natural product piperine, three analogs of novel piperine derivates were designed and synthesized to improve the anti-inflammation pain efficacy. Among this, compound 39 exhibited remarkable analgesic and urate-lowering effect in formalin-induced inflammatory pain model and hyperuricemic model, respectively. Besides, compound 39 exhibited a relatively potent TRPV1 antagonistic effect with an IC50 = 33.06 ± 3.15 nM, and moderate to weak URAT1 (IC50 = 22.51 ± 5.62 μM) and GLUT9 inhibitory activities (60.25 % at 50 μM). Further experiment showed that 39 exhibited high stability in vitro and in vivo, and its oral bioavailability was 34 %, with a more than 8 h T1/2. Notably, compound 39 showed high selectivity over other ion channel including hERG which indicated a high safety index. Furthermore, no significant acute damage was observed at the liver microsome, cellular and animal levels. In the long-term administration experiment of hyperuricemia model mice, it was confirmed that 39 could reverse the tissue damage and inflammation caused by high uric acid. Overall, these findings identified a promising candidate to target the pathogenesis of gout by simultaneously suppressing pian and the reabsorption of uric acid.
Collapse
Affiliation(s)
- Chunxia Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Ruoyang Miao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Haoyang Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Ning Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Fengxin Zheng
- School of Pharmaceutical Sciences, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, PR China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jianxin Pang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, PR China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
4
|
Li G, Hu Y, Zhao H, Peng Z, Shang X, Zhang J, Xie K, Li M, Zhou X, Zhou Q, Li K, Zhou F, Wang H, Xu Z, Liu J, Sun P. Slow Metabolism-Driven Amplification of Hepatic PPARγ Agonism Mediates Benzbromarone-Induced Obesity-Specific Liver Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409126. [PMID: 39611414 PMCID: PMC11744575 DOI: 10.1002/advs.202409126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/28/2024] [Indexed: 11/30/2024]
Abstract
Obesity and nonalcoholic fatty liver disease (NAFLD) are established risk factors for drug-induced liver injury (DILI). The previous study demonstrates that benzbromarone (BBR), a commonly prescribed pharmaceutical agent for managing gout and hyperuricemia, exacerbates hepatic steatosis and liver injury specifically in obese individuals. However, the precise mechanism underpinning this adverse effect remains incompletely elucidated. Given the significance of BBR and its analogs in anti-gout/hyperuricemia drug discovery, elucidating the mechanism by which BBR exacerbates obesity-specific DILI warrants further investigation. In this study, through a combined multi-omics, pharmacological, and pharmacokinetic approaches, it is found that BBR-induced obesity-specific DILI is primarily through the potentiation of peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathways. Further in vivo and in vitro pharmacokinetic analyses reveal that obese db/db mice exhibited a diminished capacity to metabolize BBR in their livers. This reduction leads to prolonged retention of BBR, subsequently resulting in chronic and sustained hepatic PPARγ agonism. This study demonstrates that a slow metabolism-driven amplification of hepatic PPARγ agonism mediates BBR-induced obesity-specific hepatic steatosis and subsequent DILI, which also emphasizes the importance of the reduced hepatic drug metabolism capacity in patients with obesity or pre-existing NAFLD in both clinical practice and drug discovery processes.
Collapse
Affiliation(s)
- Guanting Li
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| | - Yourong Hu
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| | - Han Zhao
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| | - Ziyu Peng
- State Key Laboratory of Drug ResearchDrug Discovery and Design CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Xin Shang
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Jia Zhang
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| | - Kunxin Xie
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| | - Meiwei Li
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| | - Xiaohang Zhou
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| | - Qinyao Zhou
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| | - Kai Li
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Heyao Wang
- State Key Laboratory of Drug ResearchDrug Discovery and Design CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Zhijian Xu
- State Key Laboratory of Drug ResearchDrug Discovery and Design CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Jiali Liu
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Peng Sun
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| |
Collapse
|
5
|
Li J, Ye B, Gao S, Liu X, Zhan P. The latest developments in the design and discovery of non-nucleoside reverse transcriptase inhibitors (NNRTIs) for the treatment of HIV. Expert Opin Drug Discov 2024; 19:1439-1456. [PMID: 39397419 DOI: 10.1080/17460441.2024.2415309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION This review encapsulates the recent strides in the development of non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV treatment, focusing on the novel structural designs that promise to overcome limitations of existing therapies, such as drug resistance and toxicity. AREAS COVERED We underscore the application of computational chemistry and structure-based drug design in refining NNRTIs with enhanced potency and safety. EXPERT OPINION Highlighting the emergence of diverse chemical scaffolds like diarylpyrimidines, indoles, DABOs and HEPTs, the review reveals compounds with nanomolar efficacy and improved pharmacokinetics. The integration of artificial intelligence in drug discovery is poised to accelerate the evolution of NNRTIs, laying the foundation for addressing drug resistance in the era of anti-HIV therapy through innovative designs and multi-target strategies.
Collapse
Affiliation(s)
- Junyi Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Bing Ye
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
6
|
Sun Z, Zhang X, Zhao Z, Li X, Pang J, Chen J. Recent Progress and Future Perspectives on Anti-Hyperuricemic Agents. J Med Chem 2024; 67:19966-19987. [PMID: 39513478 DOI: 10.1021/acs.jmedchem.4c01260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Increased biosynthesis or underexcretion of uric acid (UA or urate) in the body ultimately leads to the development of hyperuricemia. Epidemiological studies indicate that hyperuricemia is closely associated with the occurrence of various diseases such as gout and cardiovascular diseases. Currently, the first-line therapeutic medications used to reduce UA levels primarily include xanthine oxidase (XO) inhibitors, which limit UA production, and urate transporter 1 (URAT1) inhibitors, which decrease urate reabsorption and enhance urate excretion. Despite significant progress in urate-lowering therapies, long-term use of these drugs can cause hepatorenal toxicity as well as cardiovascular complications. Therefore, there is an urgent need for novel anti-hyperuricemic agents with better efficacy and lower toxicity. This perspective mainly focuses on the current research progress and design strategy of anti-hyperuricemic agents, particularly those targeting XO and URAT1. It is our hope that this perspective will provide insights into the challenges and opportunities for anti-hyperuricemic drug discovery.
Collapse
Affiliation(s)
- Zhiqiang Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuewen Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zean Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoxun Li
- Chengdu Easton Biopharmaceuticals Co., Ltd., Chengdu 611731, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Zhao Z, Chen X, Luo J, Chen M, Luo J, Chen J, Li Z, Wan S, Wu T, Zhang J, Pang J, Tian Y. Design, synthesis and bioactivity evaluation of isobavachin derivatives as hURAT1 inhibitors for hyperuricemia agents. Eur J Med Chem 2024; 277:116753. [PMID: 39142150 DOI: 10.1016/j.ejmech.2024.116753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Previously, we reported a novel natural scaffold compound, isobavachin (4',7-dihydroxy-8-prenylflavanone), as a highly potent hURAT1 inhibitor with anti-hyperuricemia effect. However, the structure-activity relationship remains unknown and the poor pharmacokinetic (PK) parameters may limit further clinical use. Herein, a series of isobavachin derivatives were rationally designed and synthesized to explore the structure-activity relationship of isobavachin target hURAT1, and to improve their PK properties. Among them, compounds 15d, 15f, 15g, 27b and 27d showed promising hURAT1 inhibitory activities, which could comparable to that of isobavachin (IC50 = 0.24 μM). In addition, 27b also inhibited another urate reabsorption transporter GLUT9 with an IC50 of 4.47 μM. Compound 27b displayed greater urate-lowering activity in a hyperuricemia mouse model at a dose of 10 mg/kg compared to isobavachin and lesinurad. Overall, our results suggest that compound 27b represents a novel, safe hURAT1 and GLUT9 dual-target inhibitor with excellent drug availability and is worthy of further investigation as an anti-hyperuricemia agent.
Collapse
Affiliation(s)
- Zean Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China; Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinhua Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Jiajun Luo
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Mengyu Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Jian Luo
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Zhonghuang Li
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China.
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China; Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China; Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Yang X, Li Y, Pan S, Ma F, Chen H, Deng J, Yue J, Gong Q, Zheng M, Zeng Y, Li J, Zhang Y, Wang X, Zhang X. Discovery of a Potent and Orally Bioavailable Xanthine Oxidase/Urate Transporter 1 Dual Inhibitor as a Potential Treatment for Hyperuricemia and Gout. J Med Chem 2024; 67:14668-14691. [PMID: 39108024 DOI: 10.1021/acs.jmedchem.4c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The main uric acid-lowering agents in clinical use for hyperuricemia and gout are xanthine oxidase (XO) inhibitors or urate transporter 1 (URAT1) inhibitors. While these therapies can partially control the disease, they have various limitations. The development of XO/URAT1 dual inhibitors offers the potential to enhance therapeutic potency and reduce toxicity compared with single-target inhibitors. Through scaffold hopping from the XO inhibitor febuxostat (2) and the URAT1 inhibitor probenecid (3), followed by structure-activity relationship (SAR) studies, we identified compound 27 as a potent dual inhibitor of XO and URAT1. Compound 27 demonstrated significant dual inhibition in vitro (XO IC50 = 35 nM; URAT1 IC50 = 31 nM) and exhibited favorable pharmacology and pharmacokinetic (PK) profiles in multiple species including monkeys. Furthermore, toxicity studies in rats and monkeys revealed general safety profiles, supporting that compound 27 emerges as a promising novel drug candidate with potent XO/URAT1 dual inhibition for the treatment of gout.
Collapse
Affiliation(s)
- Xinye Yang
- HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, China
| | - Yong Li
- HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, China
| | - Shengqiang Pan
- HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, China
| | - Facheng Ma
- HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, China
| | - Hong Chen
- HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, China
| | - Jinhui Deng
- HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, China
| | - Jie Yue
- Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Qijie Gong
- Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Mi Zheng
- HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, China
| | - Ying Zeng
- HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, China
| | - Jing Li
- HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, China
| | - Yingjun Zhang
- HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, China
| | - Xiaojun Wang
- HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, China
| | - Xiaojin Zhang
- Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
9
|
Zhou Z, Xu M, Bian M, Nie A, Sun B, Zhu C. Anti-hyperuricemia effect of Clerodendranthus spicatus: a molecular biology study combined with metabolomics. Sci Rep 2024; 14:15449. [PMID: 38965392 PMCID: PMC11224374 DOI: 10.1038/s41598-024-66454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
Hyperuricemia (HUA), a metabolic disease caused by excessive production or decreased excretion of uric acid (UA), has been reported to be closely associated with a variety of UA transporters. Clerodendranthus spicatus (C. spicatus) is an herbal widely used in China for the treatment of HUA. However, the mechanism has not been clarified. Here, the rat model of HUA was induced via 10% fructose. The levels of biochemical indicators, including UA, xanthine oxidase (XOD), adenosine deaminase (ADA), blood urea nitrogen (BUN), and creatinine (Cre), were measured. Western blotting was applied to explore its effect on renal UA transporters, such as urate transporter1 (URAT1), glucose transporter 9 (GLUT9), and ATP-binding cassette super-family G member 2 (ABCG2). Furthermore, the effect of C. spicatus on plasma metabolites was identified by metabolomics. Our results showed that C. spicatus could significantly reduce the serum levels of UA, XOD, ADA and Cre, and improve the renal pathological changes in HUA rats. Meanwhile, C. spicatus significantly inhibited the expression of URAT1 and GLUT9, while increased the expression of ABCG2 in a dose-dependent manner. Metabolomics showed that 13 components, including 1-Palmitoyl-2-Arachidonoyl-sn-glycero-3-PE, Tyr-Leu and N-cis-15-Tetracosenoyl-C18-sphingosine, were identified as potential biomarkers for the UA-lowering effect of C. spicatus. In addition, pathway enrichment analysis revealed that arginine biosynthesis, biosynthesis of amino acids, pyrimidine metabolism and other metabolic pathways might be involved in the protection of C. spicatus against HUA. This study is the first to explore the mechanism of anti-HUA of C. spicatus through molecular biology and metabolomics analysis, which provides new ideas for the treatment of HUA.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450000, China
| | - Manfei Xu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450000, China
| | - Meng Bian
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450000, China
| | - Anzheng Nie
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450000, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China.
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450000, China.
| |
Collapse
|
10
|
Fujita K, Isozumi N, Zhu Q, Matsubayashi M, Taniguchi T, Arakawa H, Shirasaka Y, Mori E, Tamai I. Unique Binding Sites of Uricosuric Agent Dotinurad for Selective Inhibition of Renal Uric Acid Reabsorptive Transporter URAT1. J Pharmacol Exp Ther 2024; 390:99-107. [PMID: 38670801 DOI: 10.1124/jpet.124.002096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Dotinurad was developed as a uricosuric agent, inhibiting urate (UA) reabsorption through the UA transporter URAT1 in the kidneys. Due to its high selectivity for URAT1 among renal UA transporters, we investigated the mechanism underlying this selectivity by identifying dotinurad binding sites specific to URAT1. Dotinurad was docked to URAT1 using AutoDock4, utilizing the AlphaFold2-predicted structure. The inhibitory effects of dotinurad on wild-type and mutated URAT1 at the predicted binding sites were assessed through URAT1-mediated [14C]UA uptake in Xenopus oocytes. Nine amino acid residues in URAT1 were identified as dotinurad-binding sites. Sequence alignment with UA-transporting organic anion transporters (OATs) revealed that H142 and R487 were unique to URAT1 among renal UA-transporting OATs. For H142, IC50 values of dotinurad increased to 62, 55, and 76 nM for mutated URAT1 (H142A, H142E, and H142R, respectively) compared with 19 nM for the wild type, indicating that H142 contributes to URAT1-selective interaction with dotinurad. H142 was predicted to interact with the phenyl-hydroxyl group of dotinurad. The IC50 of the hydroxyl group methylated dotinurad (F13141) was 165 μM, 8420-fold higher than dotinurad, suggesting the interaction of H142 and the phenyl-hydroxyl group by forming a hydrogen bond. Regarding R487, URAT1-R487A exhibited a loss of activity. Interestingly, the URAT1-H142A/R487A double mutant restored UA transport activity, with the IC50 value of dotinurad for the mutant (388 nM) significantly higher than that for H142A (73.5 nM). These results demonstrate that H142 and R487 of URAT1 determine its selectivity for dotinurad, a uniqueness observed only in URAT1 among UA-transporting OATs. SIGNIFICANCE STATEMENT: Dotinurad selectively inhibits the urate reabsorption transporter URAT1 in renal urate-transporting organic ion transporters (OATs). This study demonstrates that dotinurad interacts with H142 and R487 of URAT1, located in the extracellular domain and unique among OATs when aligning amino acid sequences. Mutations in these residues reduce affinity of dotinurad for URAT1, confirming their role in conferring selective inhibition. Additionally, the interaction between dotinurad and URAT1 involving H142 is found to mediate hydrogen bonding.
Collapse
Affiliation(s)
- Kazuki Fujita
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan (K.F., Q.Z., H.A., Y.S., I.T.); Department of Future Basic Medicine (N.I., E.M.) and V-iCliniX Laboratory (E.M.), Nara Medical University, Kashihara, Japan; and Research Laboratories 2, Fuji Yakuhin Co., Ltd., Nishi-Ward, Saitama, Japan (M.M., T.T.)
| | - Noriyoshi Isozumi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan (K.F., Q.Z., H.A., Y.S., I.T.); Department of Future Basic Medicine (N.I., E.M.) and V-iCliniX Laboratory (E.M.), Nara Medical University, Kashihara, Japan; and Research Laboratories 2, Fuji Yakuhin Co., Ltd., Nishi-Ward, Saitama, Japan (M.M., T.T.)
| | - Qiunan Zhu
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan (K.F., Q.Z., H.A., Y.S., I.T.); Department of Future Basic Medicine (N.I., E.M.) and V-iCliniX Laboratory (E.M.), Nara Medical University, Kashihara, Japan; and Research Laboratories 2, Fuji Yakuhin Co., Ltd., Nishi-Ward, Saitama, Japan (M.M., T.T.)
| | - Masaya Matsubayashi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan (K.F., Q.Z., H.A., Y.S., I.T.); Department of Future Basic Medicine (N.I., E.M.) and V-iCliniX Laboratory (E.M.), Nara Medical University, Kashihara, Japan; and Research Laboratories 2, Fuji Yakuhin Co., Ltd., Nishi-Ward, Saitama, Japan (M.M., T.T.)
| | - Tetsuya Taniguchi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan (K.F., Q.Z., H.A., Y.S., I.T.); Department of Future Basic Medicine (N.I., E.M.) and V-iCliniX Laboratory (E.M.), Nara Medical University, Kashihara, Japan; and Research Laboratories 2, Fuji Yakuhin Co., Ltd., Nishi-Ward, Saitama, Japan (M.M., T.T.)
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan (K.F., Q.Z., H.A., Y.S., I.T.); Department of Future Basic Medicine (N.I., E.M.) and V-iCliniX Laboratory (E.M.), Nara Medical University, Kashihara, Japan; and Research Laboratories 2, Fuji Yakuhin Co., Ltd., Nishi-Ward, Saitama, Japan (M.M., T.T.)
| | - Yoshiyuki Shirasaka
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan (K.F., Q.Z., H.A., Y.S., I.T.); Department of Future Basic Medicine (N.I., E.M.) and V-iCliniX Laboratory (E.M.), Nara Medical University, Kashihara, Japan; and Research Laboratories 2, Fuji Yakuhin Co., Ltd., Nishi-Ward, Saitama, Japan (M.M., T.T.)
| | - Eiichiro Mori
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan (K.F., Q.Z., H.A., Y.S., I.T.); Department of Future Basic Medicine (N.I., E.M.) and V-iCliniX Laboratory (E.M.), Nara Medical University, Kashihara, Japan; and Research Laboratories 2, Fuji Yakuhin Co., Ltd., Nishi-Ward, Saitama, Japan (M.M., T.T.)
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan (K.F., Q.Z., H.A., Y.S., I.T.); Department of Future Basic Medicine (N.I., E.M.) and V-iCliniX Laboratory (E.M.), Nara Medical University, Kashihara, Japan; and Research Laboratories 2, Fuji Yakuhin Co., Ltd., Nishi-Ward, Saitama, Japan (M.M., T.T.)
| |
Collapse
|
11
|
Li X, Yuan X, Wu Y, Guo H, Liu Q, Huang S. Synthesis of 3,4,5-Trisubstituted 1,2,4-Triazoles via I 2-Catalyzed Cycloaddition of Amidines with Hydrazones. J Org Chem 2024; 89:5277-5286. [PMID: 38587487 DOI: 10.1021/acs.joc.3c02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A general and practical method for the construction of various 3,4,5-trisubstituted 1,2,4-triazoles via I2-catalyzed cycloaddition of N-functionalized amidines with hydrazones is reported. This strategy features cheap and readily available catalyst and starting materials, broader substrate scope, and moderate-to-good yields. The mechanism study shows that the existence of hydrogen on the nitrogen of hydrazones is crucial for this transformation.
Collapse
Affiliation(s)
- Xing Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Xinyufei Yuan
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Yuting Wu
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Honghong Guo
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Qiang Liu
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Shuangping Huang
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| |
Collapse
|
12
|
Du C, Yin H, Xie A, Yu J, Wang Y, Yao F, Zhang S, Zhang Y, Liu L, Wang P, Dong J, Xu X. Virtual screening and biological evaluation of natural products as urate transporter 1 (URAT1) inhibitors. J Biomol Struct Dyn 2024:1-14. [PMID: 38553409 DOI: 10.1080/07391102.2024.2331101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/10/2024] [Indexed: 04/02/2025]
Abstract
Hyperuricemia is mainly caused by insufficient renal urate excretion. Urate transporter 1 (URAT1), an organic anion transporter, is the main protein responsible for urate reabsorption. In this study, we utilized artificial intelligence-based AlphaFold2 program to construct URAT1 structural model. After molecular docking and conformational evaluation, four e-pharmacophoric models were constructed based on the complex structures of probenecid-URAT1, benzbromarone-URAT1, lesinurad-URAT1, and verinurad-URAT1. Combining pharmacophore modeling, molecular docking, MM/GBSA calculation and ADME prediction, 25 flavonoids were selected from the natural products database containing 10,968 molecules. Then, a model of HEK-293T cells overexpressing URAT1 was constructed, and the inhibitory activity to URAT1 of 25 flavonoids was evaluated by measuring their effect on cellular uptake of 6-carboxyfluorescein (6-CFL). Fisetin, baicalein, and acacetin showed the best activity with IC50 values of 12.77, 26.71, and 57.30 µM, respectively. Finally, the structure-activity relationship of these three flavonoids was analyzed by molecular docking and molecular dynamics simulations. The results showed that the carbonyl group on C-4 and hydroxyl group on C-7, C-4', and C-5' in flavonoids were conducive for URAT1 inhibitory effects. This study facilitates the application of flavonoids in the development of URAT1 inhibitors.
Collapse
Affiliation(s)
- Chunying Du
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Hua Yin
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Aowei Xie
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Yifan Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Fengli Yao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Siyu Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, Marine Biomedical Institute of Qingdao, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yidan Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, Marine Biomedical Institute of Qingdao, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lu Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Marine Biomedical Institute of Qingdao, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jianjun Dong
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Ximing Xu
- Key Laboratory of Marine Drugs of Ministry of Education, Marine Biomedical Institute of Qingdao, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
13
|
Shi X, Zhao T, Wang S, Xu S, Liao H, Gao S, Gao Z, Zhang J, Qi D, Zhang Z, Zheng F, Wang Y, Wang Z, Yang M, Yang Q, Yi F, Pang J, Liu X, Zhan P. Discovery of a Novel Thienopyrimidine Compound as a Urate Transporter 1 and Glucose Transporter 9 Dual Inhibitor with Improved Efficacy and Favorable Druggability. J Med Chem 2024; 67:5032-5052. [PMID: 38482820 DOI: 10.1021/acs.jmedchem.4c00136] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Gout and hyperuricemia are metabolic diseases characterized with high serum uric acid (SUA) levels that significantly impact human health. Lesinurad, a uricosuric agent, is limited to concurrent use with xanthine oxidase inhibitors (XOIs) in clinical practice due to its restricted efficacy and potential nephrotoxicity. Herein, extensive structural modifications of lesinurad were conducted through scaffold hopping and substituent modification strategies, affording 54 novel derivatives containing pyrimidine-fused cyclic structures. Notably, the thienopyrimidine compound 29 demonstrated a remarkable 2-fold increase in SUA-lowering in vivo activity compared to lesinurad, while exhibiting potent inhibitory activity against the urate transporter 1 (URAT1, IC50 = 2.01 μM) and glucose transporter 9 (GLUT9, IC50 = 18.21 μM). Furthermore, it possessed a lower effective dosage of 0.5 mg/kg, favorable safety profile without any apparent acute toxicity at doses of 1000 mg/kg, and improved pharmacokinetic properties. Overall, we have discovered an efficacious URAT1/GLUT9 dual inhibitor for inhibiting urate reabsorption with favorable pharmacokinetic profiles.
Collapse
Affiliation(s)
- Xiaoyu Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, PR China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, PR China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, PR China
| | - Hui Liao
- School of Pharmaceutical Sciences, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou 510515, PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, PR China
| | - Zhen Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, PR China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, PR China
| | - Danhui Qi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, PR China
| | - Zhijiao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, PR China
| | - Fengxin Zheng
- School of Pharmaceutical Sciences, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou 510515, PR China
| | - Youzhao Wang
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Zhenqian Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, PR China
| | - Mingyu Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, PR China
| | - Qian Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, PR China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Jianxin Pang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou 510515, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, PR China
| |
Collapse
|
14
|
Li L, Zhao K, Luo J, Tian J, Zheng F, Lin X, Xie Z, Jiang H, Li Y, Zhao Z, Wu T, Pang J. Piperine Improves Hyperuricemic Nephropathy by Inhibiting URAT1/GLUT9 and the AKT-mTOR Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6565-6574. [PMID: 38498316 DOI: 10.1021/acs.jafc.3c07655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Uncontrolled hyperuricemia often leads to the development of hyperuricemic nephropathy (HN), characterized by excessive inflammation and oxidative stress. Piperine, a cinnamic acid alkaloid, possesses various pharmacological activities, such as antioxidant and anti-inflammatory effects. In this study, we intended to investigate the protective effects of piperine on adenine and potassium oxonate-induced HN mice and a uric-acid-induced injury model in renal tubular epithelial cells (mRTECs). We observed that treatment with piperine for 3 weeks significantly reduced serum uric acid levels and reversed kidney function impairment in mice with HN. Piperine (5 μM) alleviated uric acid-induced damage in mRTECs. Moreover, piperine inhibited transporter expression and dose-dependently inhibited the activity of both transporters. The results revealed that piperine regulated the AKT/mTOR signaling pathway both in vivo and in vitro. Overall, piperine inhibits URAT1/GLUT9 and ameliorates HN by inhibiting the AKT/mTOR pathway, making it a promising candidate for patients with HN.
Collapse
Affiliation(s)
- Lu Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Kunlu Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jian Luo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jinhong Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Fengxin Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Xueman Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Zijun Xie
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Heyang Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Yongmei Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Zean Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jianxin Pang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| |
Collapse
|
15
|
Yu D, Du J, He P, Wang N, Li L, Liu Y, Yang C, Xu H, Li Y. Identification of natural xanthine oxidase inhibitors: Virtual screening, anti-xanthine oxidase activity, and interaction mechanism. Int J Biol Macromol 2024; 259:129286. [PMID: 38216015 DOI: 10.1016/j.ijbiomac.2024.129286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Xanthine oxidase (XO) is a crucial target for hyperuricemia treatment(s). Naturally occurred XO inhibitors with minimal toxicity and high efficacy have attracted researchers' attention. With the goal of quickly identifying natural XO inhibitors, an integrated computational screening strategy was constructed by molecular docking and calculating the free energy of binding. Twenty-seven hits were achieved from a database containing 19,377 natural molecules. This includes fourteen known XO inhibitors and four firstly-reported inhibitors (isolicoflavonol, 5,7-dihydroxycoumarin, parvifolol D and clauszoline M, IC50 < 40 μM). Iolicoflavonol (hit 8, IC50 = 8.45 ± 0.68 μM) and 5,7-dihydroxycoumarin (hit 25, IC50 = 10.91 ± 0.71 μM) displayed the great potency as mixed-type inhibitors. Docking study and molecular dynamics simulation revealed that both hits could interact with XO's primarily active site residues ARG880, MOS1328, and ASN768 of XO. Fluorescence spectroscopy studies showed that hit 8 bound to the active cavity region of XO, causing changes in XO's conformation and hydrophobicity. Hits 8 and 25 exhibit favorable Absorption, Distribution, Metabolism, and Excretion (ADME) properties. Additionally, no cytotoxicity against human liver cells was observed at their median inhibition concentrations against XO. Therefore, the present study offers isolicoflavonol and 5,7-dihydroxycoumarin with the potential to be disease-modifying agents for hyperuricemia.
Collapse
Affiliation(s)
- Dehong Yu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiana Du
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Pei He
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Na Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lizi Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Can Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Haiqi Xu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
16
|
Hou Z, Ma A, Mao J, Song D, Zhao X. Overview of the pharmacokinetics and pharmacodynamics of URAT1 inhibitors for the treatment of hyperuricemia and gout. Expert Opin Drug Metab Toxicol 2023; 19:895-909. [PMID: 37994776 DOI: 10.1080/17425255.2023.2287477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
INTRODUCTION Hyperuricemia is a common metabolic disease, which is a risk factor for gouty arthritis and ureteral stones and may also lead to cardiovascular and chronic kidney disease (CDK). Therefore, hyperuricemia should be treated early. Xanthine oxidase inhibitors (XOIs) and uricosuric agents (UAs), which target uric acid, are two types of medications that are used to treat gout and hyperuricemia. XOIs stop the body from producing excessive uric acid, while UAs eliminate it rapidly via the kidneys. Urate transporter 1 (URAT1) belongs to the organic anion transporter family (OAT) and is specifically localized to the apical membrane of the epithelial cells of proximal tubules. Unlike other organic anion transporter family members, URAT1 identifies and transports organic anions that are primarily responsible for urate transport. AREAS COVERED This article reviews the pharmacokinetics and pharmacodynamics of the existing URAT1 inhibitors to serve as a reference for subsequent drug studies. EXPERT OPINION The URAT1 inhibitors that are currently used as clinical drugs mainly include dotinurad, benzbromarone, and probenecid. Results indicate that RDEA3170 may be the most promising inhibitor, in addition to SHR4640, URC-102, and MBX-102, which are in the early stages of development.
Collapse
Affiliation(s)
- Zihan Hou
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Aijinxiu Ma
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiale Mao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Danni Song
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Xu Zhao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
17
|
Huang X, Dong W, Luo X, Xu L, Wang Y. Target Screen of Anti-Hyperuricemia Compounds from Cortex Fraxini In Vivo Based on ABCG2 and Bioaffinity Ultrafiltration Mass Spectrometry. Molecules 2023; 28:7896. [PMID: 38067624 PMCID: PMC10708028 DOI: 10.3390/molecules28237896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
The ATP-binding cassette (ABC) transporter ABCG2 is a significant urate transporter with a high capacity, and it plays a crucial role in the development of hyperuricemia and gout. Therefore, it has the potential to be targeted for therapeutic interventions. Cortex Fraxini, a traditional Chinese medicine (TCM), has been found to possess anti-hyperuricemia properties. However, the specific constituents of Cortex Fraxini responsible for this effect are still unknown, particularly the compound that is responsible for reducing uric acid levels in vivo. In this study, we propose a target screening protocol utilizing bio-affinity ultrafiltration mass spectrometry (BA-UF-MS) to expediently ascertain ABCG2 ligands from the plasma of rats administered with Cortex Fraxini. Our screening protocol successfully identified fraxin as a potential ligand that interacts with ABCG2 when it functions as the target protein. Subsequent investigations substantiated fraxin as an activated ligand of ABCG2. These findings imply that fraxin exhibits promise as a drug candidate for the treatment of hyperuricemia. Furthermore, the utilization of BA-UF-MS demonstrates its efficacy as a valuable methodology for identifying hit compounds that exhibit binding affinity towards ABCG2 within TCMs.
Collapse
Affiliation(s)
| | | | | | - Lu Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China; (X.H.); (W.D.); (X.L.)
| | - Yinan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China; (X.H.); (W.D.); (X.L.)
| |
Collapse
|
18
|
Zeng X, Liu Y, Fan Y, Wu D, Meng Y, Qin M. Agents for the Treatment of Gout: Current Advances and Future Perspectives. J Med Chem 2023; 66:14474-14493. [PMID: 37908076 DOI: 10.1021/acs.jmedchem.3c01710] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Gout is characterized by hyperuricemia and the deposition of monosodium urate (MSU) crystals around joints. Despite the availability of several drugs on the market, its treatment remains challenging owing to the notable side effects, such as hepatorenal toxicity and cardiovascular complications, that are associated with most existing agents. This perspective aims to summarize the current research progress in the development of antigout agents, particularly focusing on xanthine oxidase (XO) and urate anion transporter 1 (URAT1) inhibitors from a medicinal chemistry viewpoint and their preliminary structure-activity relationships (SARs). This perspective provides valuable insights and theoretical guidance to medicinal chemists for the discovery of antigout agents with novel chemical structures, better efficiency, and lower toxicity.
Collapse
Affiliation(s)
- Xiaoyi Zeng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yajing Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yuxin Fan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Di Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yangyang Meng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Mingze Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| |
Collapse
|
19
|
Li Y, Lin Z, Wang Y, Wu H, Zhang B. Are hyperuricemia and gout different diseases? Comment on the guidelines for the diagnosis and management of hyperuricemia and gout with the healthcare professional perspectives in China. Int J Rheum Dis 2023; 26:1866-1868. [PMID: 36719050 DOI: 10.1111/1756-185x.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/01/2023]
Affiliation(s)
- Yaolei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhijian Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Li K, Li K, Yao Q, Shui X, Zheng J, He Y, Lei W. The potential relationship of coronary artery disease and hyperuricemia: A cardiometabolic risk factor. Heliyon 2023; 9:e16097. [PMID: 37215840 PMCID: PMC10199191 DOI: 10.1016/j.heliyon.2023.e16097] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Coronary arterial disease (CAD) is the leading cause of mortality in the world. Hyperuricemia has recently emerged as a novel independent risk factor of CAD, in addition to the traditional risk factors such as hyperlipidemia, smoking, and obesity. Several clinical studies have shown that hyperuricemia is strongly associated with the risk, progression and poor prognosis of CAD, as well as verifying an association with traditional CAD risk factors. Uric acid or enzymes in the uric acid production pathway are associated with inflammation, oxidative stress, regulation of multiple signaling pathways and the renin-angiotensin-aldosterone system (RAAS), and these pathophysiological alterations are currently the main mechanisms of coronary atherosclerosis formation. The risk of death from CAD can be effectively reduced by the uric acid-lowering therapy, but the interventional treatment of uric acid levels in patients with CAD remains controversial due to the diversity of co-morbidities and the complexity of causative factors. In this review, we analyze the association between hyperuricemia and CAD, elucidate the possible mechanisms by which uric acid induces or exacerbates CAD, and discuss the benefits and drawbacks of uric acid-lowering therapy. This review could provide theoretical references for the prevention and management of hyperuricemia-associated CAD.
Collapse
Affiliation(s)
- Kaiyue Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Kongwei Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qingmei Yao
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
| | - Yuan He
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wei Lei
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
21
|
Zhao Z, Luo J, Liao H, Zheng F, Chen X, Luo J, Chen Y, Zhao K, Zhang S, Tian J, Wu T, Li Y, Li L, Yang Y, Lin C, Zhang Q, Tian Y, Pang J. Pharmacological evaluation of a novel skeleton compound isobavachin (4',7-dihydroxy-8-prenylflavanone) as a hypouricemic agent: Dual actions of URAT1/GLUT9 and xanthine oxidase inhibitory activity. Bioorg Chem 2023; 133:106405. [PMID: 36753966 DOI: 10.1016/j.bioorg.2023.106405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Previously we discovered a novel natural scaffold compound, isobavachin (4', 7-dihydroxy-8-prenylflavanone), as a potent URAT1 inhibitor by shape and structure based on a virtue screening approach. In this study, further urate-lowering mechanism, pharmacokinetics and toxicities of isobavachin were conducted. Isobavachin inhibited URAT1 with an IC50 value of 0.24 ± 0.06 μM, and residues S35, F365, I481 and R477 of URAT1 contributed to high affinity for isobavachin. Isobavachin also inhibited glucose transporter 9 (GLUT9), another pivotal urate reabsorption transporter, with an IC50 value of 1.12 ± 0.26 μM. Molecular docking and MMGBSA results indicated that isobavachin might compete residues R171, L75 and N333 with uric acid, which leads to inhibition of uric acid transport of GLUT9. Isobavachin weakly inhibited urate secretion transporters OAT1 with an IC50 value of 4.38 ± 1.27 μM, OAT3 with an IC50 of 3.64 ± 0.62 μM, and ABCG2 with an IC50 of 10.45 ± 2.17 μM. Isobavachin also inhibited xanthine oxidase (XOD) activity in vitro with an IC50 value of 14.43 ± 3.56 μM, and inhibited the hepatic XOD activities at 5-20 mg/kg in vivo. Docking and MMGBSA analysis indicated that isobavachin might bind to the Mo-Pt catalyze center of XOD, which leads to inhibition of uric acid production. In vivo, isobavachin exhibited powerful urate-lowering and uricosuric effects at 5-20 mg/kg compared with the positive drugs morin (20 mg/kg) and RDEA3170 (10 mg/kg). Safety assessments revealed that isobavachin was safe and had no obvious toxicities. Isobavachin has little cell toxicity in HK2 cells as indicated by the MTT assay. In vivo, after treatment with 50 mg/kg isobavachin for 14 days, isobavachin had little renal toxicity, as revealed by serum CR/BUN levels, and no hepatotoxicity as revealed by ALT/AST levels. Further HE examination also suggests that isobavachin has no obvious kidney/liver damage. A pharmacokinetic study in SD rats indicated isobavachin had lower bioavailability (12.84 ± 5.13 %) but long half-time (7.04 ± 2.68 h) to maintain a continuous plasma concentration. Collectively, these results indicate that isobavachin deserves further investigation as a candidate anti-hyperuricemic drug with a novel mechanism of action: selective urate reabsorption inhibitor (URAT1/GLUT9) with a moderate inhibitory effect on XOD.
Collapse
Affiliation(s)
- Zean Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jian Luo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Hui Liao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Fengxin Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xinhua Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jiajun Luo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Yongjun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Kunlu Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Shuqin Zhang
- Good clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jinhong Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Yongmei Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Lu Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Yang Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Cuiting Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Qun Zhang
- Good clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| | - Yuanxin Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| | - Jianxin Pang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| |
Collapse
|
22
|
Zhang J, Dong Y, Gao S, Zhang X, Liao H, Shi X, Zhang Z, Zhao T, Liang R, Qi D, Wu T, Pang J, Liu X, Zhan P. Design, synthesis and activity evaluation of novel lesinurad analogues containing thienopyrimidinone or pyridine substructure as human urate transporter 1 inhibitors. Eur J Med Chem 2022; 244:114816. [PMID: 36219903 DOI: 10.1016/j.ejmech.2022.114816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
Abstract
Urate Transporter 1 (URAT1) plays a crucial role in uric acid transport, making it an attractive target for the treatment of gout and hyperuricemia. As a representative URAT1 inhibitor, Lesinurad treat gout by promoting the uric acid excretion. However, its lower in vitro and in vivo activity should be highly attracted attention. Herein, the bioisosterism, molecular hybridization and scaffold hopping strategies were exploited to modify all the structural components of Lesinurad and finally thirty novel compounds bearing thienopyrimidinone or pyridine core were obtained. Most of the compounds displayed certain URAT1 inhibitory activity in vitro. Among them, thienopyrimidinones 6 (IC50 = 7.68 μM), 10 (IC50 = 7.56 μM), 14 (IC50 = 7.31 μM) and 15 (IC50 = 7.90 μM) showed slightly better potency than positive control Lesinurad (IC50 = 9.38 μM). Notably, 10 also displayed inhibitory activity (IC50 = 55.96 μM) against GLUT9. Additionally, in vivo serum uric acid (SUA)-lowering experiments were performed on some representative compounds and it was revealed that all the selected compounds could decrease the SUA level in mice, of which the decrease rate of SUA was 73.29% for the most promising compound 10, significantly greater than that of Lesinurad (26.89%). Meanwhile, the preliminary SARs based on the URAT1 inhibitory activity were discussed in detail, which pointed out the direction for further structural optimization. Overall, the thienopyrimidinone and pyridine are prospective skeletons for the developing novel URAT1 inhibitors with considerable potential for optimization.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Yue Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Hui Liao
- School of Pharmaceutical Sciences, Southern Medical University, 1838 North Guangzhou Ave, 510515, Guangzhou, PR China
| | - Xiaoyu Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Zhijiao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Ruipeng Liang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Danhui Qi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Ting Wu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 North Guangzhou Ave, 510515, Guangzhou, PR China.
| | - Jianxin Pang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 North Guangzhou Ave, 510515, Guangzhou, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
23
|
Shi X, Zhao T, da Silva-Júnior EF, Zhang J, Xu S, Gao S, Liu X, Zhan P. Novel urate transporter 1 (URAT1) inhibitors: a review of recent patent literature (2020-present). Expert Opin Ther Pat 2022; 32:1175-1184. [PMID: 36625031 DOI: 10.1080/13543776.2022.2165911] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The urate transporter 1 (URAT1) is a membrane transporter located in the apical membrane of human renal proximal tubule epithelial cells, which mediates most of the reabsorption of urate. Hyperuricemia (HUA) is a common disease caused by metabolic disorders, which has been considered as the key factor of gout. Approximately 90% of patients suffer from hyperuricemia due to insufficient or poor uric acid excretion. Therefore, the drug design of URAT1 inhibitors targeting improve the renal urate excretion by reducing the reabsorption of urate anions represent a hot topic in searching for anti-gout drugs currently. AREAS COVERED In this review, we summarize URAT1 inhibitors patents reported since 2020 to present through the public database at https://worldwide.espacenet.com and some medicinal chemistry strategies employed to develop novel drug candidates. EXPERT OPINION Ligand-based drug design (LBDD) strategies have been frequently used developing new URAT1 inhibitors. Meanwhile, the discovery of dual drugs targeting both inhibition of xanthine oxidase (XOD) and URAT1 may be an emerging horizon for designing novel uric acid-lowering candidates in future. Furthermore, advanced techniques in the field of molecular biology and computer science can increase the chances to discover and/or optimize URAT1 inhibitors, contributing to the development of novel drug candidates.
Collapse
Affiliation(s)
- Xiaoyu Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Shandong, PR China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Shandong, PR China
| | | | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Shandong, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Shandong, PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Shandong, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Shandong, PR China
| |
Collapse
|
24
|
Yang B, Xin M, Liang S, Xu X, Cai T, Dong L, Wang C, Wang M, Cui Y, Song X, Sun J, Sun W. New insight into the management of renal excretion and hyperuricemia: Potential therapeutic strategies with natural bioactive compounds. Front Pharmacol 2022; 13:1026246. [PMID: 36483739 PMCID: PMC9723165 DOI: 10.3389/fphar.2022.1026246] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/26/2022] [Indexed: 10/05/2023] Open
Abstract
Hyperuricemia is the result of increased production and/or underexcretion of uric acid. Hyperuricemia has been epidemiologically associated with multiple comorbidities, including metabolic syndrome, gout with long-term systemic inflammation, chronic kidney disease, urolithiasis, cardiovascular disease, hypertension, rheumatoid arthritis, dyslipidemia, diabetes/insulin resistance and increased oxidative stress. Dysregulation of xanthine oxidoreductase (XOD), the enzyme that catalyzes uric acid biosynthesis primarily in the liver, and urate transporters that reabsorb urate in the renal proximal tubules (URAT1, GLUT9, OAT4 and OAT10) and secrete urate (ABCG2, OAT1, OAT3, NPT1, and NPT4) in the renal tubules and intestine, is a major cause of hyperuricemia, along with variations in the genes encoding these proteins. The first-line therapeutic drugs used to lower serum uric acid levels include XOD inhibitors that limit uric acid biosynthesis and uricosurics that decrease urate reabsorption in the renal proximal tubules and increase urate excretion into the urine and intestine via urate transporters. However, long-term use of high doses of these drugs induces acute kidney disease, chronic kidney disease and liver toxicity. Therefore, there is an urgent need for new nephroprotective drugs with improved safety profiles and tolerance. The current systematic review summarizes the characteristics of major urate transporters, the mechanisms underlying the pathogenesis of hyperuricemia, and the regulation of uric acid biosynthesis and transport. Most importantly, this review highlights the potential mechanisms of action of some naturally occurring bioactive compounds with antihyperuricemic and nephroprotective potential isolated from various medicinal plants.
Collapse
Affiliation(s)
- Bendong Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yuting Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- Shandong Qingyujiangxing Biotechnology Co., Ltd., Zibo, China
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- Shandong Qingyujiangxing Biotechnology Co., Ltd., Zibo, China
| |
Collapse
|
25
|
Li Y, Li L, Tian J, Zheng F, Liao H, Zhao Z, Chen Y, Pang J, Wu T. Insoluble Fiber in Barley Leaf Attenuates Hyperuricemic Nephropathy by Modulating Gut Microbiota and Short-Chain Fatty Acids. Foods 2022; 11:3482. [PMID: 36360095 PMCID: PMC9656210 DOI: 10.3390/foods11213482] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 08/12/2023] Open
Abstract
Hyperuricemia (HUA), characterized by abnormal serum uric acid (UA) levels, is recognized as an important risk factor for hyperuricemic nephropathy (HN), which is strongly linked to gut microbiota. This study investigated the protective effects and regulatory mechanisms of insoluble fiber from barley leaves (BL) against HN, induced by adenine (Ad) and potassium oxonate (PO). The results showed that BL dramatically reduced the levels of serum UA and creatinine (CR) and alleviated renal injury and fibrosis. Moreover, BL modulated oxidative stress and downregulated the expression of urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) in the kidneys of mice with HN. In addition, the 16S rRNA sequence data showed that BL also increased the relative abundance of short-chain fatty acids (SCFAs)-producing bacteria, including Bacteroides, Alloprevotella, and Eisenbergiella. Besides, BL treatment also increased SCFAs levels. Of interest, the application of SCFAs in hyperuricemic mice effectively reduced their serum UA. Furthermore, SCFAs dose-dependently inhibited URAT1 and GLUT9 in vitro and potently interacted with URAT1 and GLUT9 in the docking analysis. When taken together, our results indicate that BL and its metabolite SCFAs may be potential candidates for relieving HUA or HN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ting Wu
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
26
|
Recent advances in gout drugs. Eur J Med Chem 2022; 245:114890. [DOI: 10.1016/j.ejmech.2022.114890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022]
|
27
|
Kong Q, Li G, Zhang F, Yu T, Chen X, Jiang Q, Wang Y. N-Arylimidazoliums as Highly Selective Biomimetic Antimicrobial Agents. J Med Chem 2022; 65:11309-11321. [PMID: 35930690 DOI: 10.1021/acs.jmedchem.2c00818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Antibiotic resistance has become one of the greatest health threats in the world. In this study, a charge-dispersed dimerization strategy is described for the antimicrobial peptide (AMP) mimics via a tunable cationic charge to improve the selectivity between prokaryotic microbes and eukaryotic cells. This strategy is demonstrated with a series of charge-dispersed AMP mimics based on N-arylimidazolium skeletons. These N-arylimidazolium AMP mimics show potent antibacterial activity against strains along with a low rate of drug resistance, good hemocompatibility, and low cytotoxicity. In addition to the elimination of planktonic bacteria, N-arylimidazolium AMP mimics can also inhibit biofilm formation and destroy the established biofilm. More importantly, methicillin-resistant Staphylococcus aureus (MRSA)-induced lung-infected mice can be effectively treated by the intravenous administration of N-arylimidazolium AMP mimic, which enable the design of N-arylimidazolium AMP mimics to offer an alternative avenue to eradicate drug-resistant bacterial infection.
Collapse
Affiliation(s)
- Qunshou Kong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Tao Yu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Xiaotong Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
28
|
Discovery of novel benzbromarone analogs with improved pharmacokinetics and benign toxicity profiles as antihyperuricemic agents. Eur J Med Chem 2022; 242:114682. [PMID: 36001935 DOI: 10.1016/j.ejmech.2022.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Benzbromarone (BM) is a potent URAT1 inhibitor approved for the treatment of gout. However, the low URAT1-selectivity and hepatotoxcity limit its clinical use. To solve these problems, we rationally designed and synthesized a series of BM derivatives by chemotype hybridization and bioisosteric replacement. Most compounds exhibited potent inhibitory activities against URAT1 with IC50 values ranging from 5.83 μM to 0.80 μM. Among them, JNS4 exhibited the highest URAT1 inhibitory activity with an IC50 of 0.80 μM, comparable to that of BM (IC50 = 0.53 μM). Molecular dynamic simulations showed that JNS4 formed π-cation interaction with R477, the same as BM. Different from BM, JNS4 bound to W357 and H245 via π-π interactions and formed a hydrogen bond with S35, which might contribute to the high URAT1 binding affinity of JNS4. JNS4 hardly inhibited GLUT9 (IC50 > 20 μM), another urate reabsorption transporter. In addition, JNS4 showed little inhibitory effects against OAT1 and ABCG2 with IC50 of 4.04 μM and 10.16 μM, respectively. Importantly, JNS4 displayed higher in vivo urate-lowering effects at doses of 1-4 mg/kg in a mouse model of hyperuricemia, as compared to BM and lesinurad. Furthermore, JNS4 possessed favorable pharmacokinetic properties with an oral bioavailability of 55.28%, significantly higher than that of BM (36.11%). Moreover, JNS4 demonstrated benign toxicity profiles (no cytotoxicities against HepG2 and HK2 cells; no hepatic and renal toxicities observed in vivo). Collectively, these results suggest that JNS4 represents a novel, safe and selective URAT1 inhibitor with excellent druggabilities and is worthy of further investigation as an anti-hyperuricemic agent.
Collapse
|
29
|
Zhang Q, Du S, Tian F, Long X, Xie S, Tang S, Bao L. Silver Nanoparticle-Functionalised Nitrogen-Doped Carbon Quantum Dots for the Highly Efficient Determination of Uric Acid. Molecules 2022; 27:molecules27144586. [PMID: 35889460 PMCID: PMC9323390 DOI: 10.3390/molecules27144586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The fabrication of efficient fluorescent probes that possess an excellent sensitivity and selectivity for uric acid is highly desirable and challenging. In this study, composites of silver nanoparticles (AgNPs) wrapped with nitrogen-doped carbon quantum dots (N-CQDs) were synthesised utilising N-CQDs as the reducing and stabilising agents in a single reaction with AgNO3. The morphology and structure, absorption properties, functional groups, and fluorescence properties were characterised by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, ultraviolet spectroscopy, fluorescence spectroscopy, and X-ray diffraction spectroscopy. In addition, we developed a novel method based on AgNPs/N-CQDs for the detection of uric acid using the enzymatic reaction of uric acid oxidase. The fluorescence enhancement of the AgNPs/N-CQDs composite was linear (R2 = 0.9971) in the range of 2.0–60 μmol/L, and gave a detection limit of 0.53 μmol/L. Trace uric acid was successfully determined in real serum samples from the serum of 10 healthy candidates and 10 gout patients, and the results were consistent with those recorded by Qianxinan Prefecture People’s Hospital. These results indicate that the developed AgNP/N-CQD system can provide a universal platform for detecting the multispecies ratio fluorescence of H2O2 generation in other biological systems.
Collapse
Affiliation(s)
- Qianchun Zhang
- Correspondence: (Q.Z.); (S.X.); Tel.: +86-589-3296359 (Q.Z.)
| | | | | | | | - Siqi Xie
- Correspondence: (Q.Z.); (S.X.); Tel.: +86-589-3296359 (Q.Z.)
| | | | | |
Collapse
|
30
|
Zhao Z, Liu J, Kuang P, Luo J, Surineni G, Cen X, Wu T, Cao Y, Zhou P, Pang J, Zhang Q, Chen J. Discovery of novel verinurad analogs as dual inhibitors of URAT1 and GLUT9 with improved Druggability for the treatment of hyperuricemia. Eur J Med Chem 2022; 229:114092. [PMID: 34998055 DOI: 10.1016/j.ejmech.2021.114092] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/28/2022]
Abstract
Verinurad (RDEA3170) is a selective URAT1 inhibitor under investigation for the treatment of gout and hyperuricemia. In an effort to further improve the pharmacodynamics/pharmacokinetics of verinurad and to increase the structural diversity, we designed novel verinurad analogs by introducing a linker (e.g. aminomethyl, amino or oxygen) between the naphthalene and the pyridine ring to increase the flexibility. These compounds were synthesized and tested for their in vitro URAT1-inhibitory activity. Most compounds exhibited potent inhibitory activities against URAT1 with IC50 values ranging from 0.24 μM to 16.35 μM. Among them, compound KPH2f exhibited the highest URAT1-inhibitory activity with IC50 of 0.24 μM, comparable to that of verinurad (IC50 = 0.17 μM). KPH2f also inhibited GLUT9 with an IC50 value of 9.37 ± 7.10 μM, indicating the dual URAT1/GLUT9 targeting capability. In addition, KPH2f showed little effects on OAT1 and ABCG2, and thus was unlikely to cause OAT1/ABCG2-mediated drug-drug interactions and/or to neutralize the uricosuric effects of URAT1/GLUT9 inhibitors. Importantly, KPH2f (10 mg/kg) was equally effective in reducing serum uric acid levels and exhibited higher uricosuric effects in a mice hyperuricemia model, as compared to verinurad (10 mg/kg). Furthermore, KPH2f demonstrated favorable pharmacokinetic properties with an oral bioavailability of 30.13%, clearly better than that of verinurad (21.47%). Moreover, KPH2f presented benign safety profiles without causing hERG toxicity, cytotoxicity in vitro (lower than verinurad), and renal damage in vivo. Collectively, these results suggest that KPH2f represents a novel, safe and effective dual URAT1/GLUT9 inhibitor with improved druggabilities and is worthy of further investigation as an anti-hyperuricemic drug candidate.
Collapse
Affiliation(s)
- Zean Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jin Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Peihua Kuang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Luo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Goverdhan Surineni
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaolin Cen
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Qun Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
31
|
Zhan P. Meet the Editorial Board Member. Curr Med Chem 2022. [DOI: 10.2174/092986732905220211160202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Zhao T, Zhang J, Tao Y, Liao H, Zhao F, Liang R, Shi X, Zhang Z, Ji J, Wu T, Pang J, Liu X, Zhan P. Discovery of Novel Bicyclic Imidazolopyridine-Containing Human Urate Transporter 1 Inhibitors as Hypouricemic Drug Candidates with Improved Efficacy and Favorable Druggability. J Med Chem 2022; 65:4218-4237. [PMID: 35084182 DOI: 10.1021/acs.jmedchem.1c02057] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lesinurad is a uricosuric agent for the treatment of hyperuricemia associated with gout, which was found lacking in efficacy and safety. Here, scaffold hopping and molecular hybridization were exploited to modify all the structural components of lesinurad, and 36 novel compounds bearing bicyclic imidazolopyridine core were obtained. In a mouse model of acute hyperuricemia, 29 compounds demonstrated increased serum uric acid (SUA)-reducing activity; SUA was treated with 12, 23, and 29 about fourfold lower compared with that of lesinurad. Moreover, 23 exhibited stronger URAT1 inhibition activity (IC50 = 1.36 μM) than lesinurad (IC50 = 5.54 μM). Additionally, 23 showed favorable safety profiles, and no obvious acute toxicity was observed in Kunming mice under a single dose of 1000 mg·kg-1. 23 also achieved excellent pharmacokinetic properties with the oral bioavailability of 59.3%. Overall, all the results indicated that 23 is a promising drug candidate in the treatment of hyperuricemia and gout.
Collapse
Affiliation(s)
- Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, P. R. China
| | - Yucen Tao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, P. R. China
| | - Hui Liao
- School of Pharmaceutical Sciences, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, P. R. China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, P. R. China
| | - Ruipeng Liang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, P. R. China
| | - Xiaoyu Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, P. R. China
| | - Zhijiao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, P. R. China
| | - Jianbo Ji
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, P. R. China
| | - Ting Wu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, P. R. China
| | - Jianxin Pang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, P. R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012 Shandong, P. R. China
| |
Collapse
|
33
|
Huang Z, Li Z, He B, Li W, Yang P, Chen L. Efficient Ultrasound-Assisted Approach to N-Benzensulfonyl Phenylacetamide via CuSO 4/NaAsc Catalysis in Water and Its Inhibition Activity of Seed Germination. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
34
|
Zhai N, Chen Y, Wang C, Wu F, Luo X, Ju X, Liu H, Liu G. A multiscale screening strategy for the identification of novel xanthine oxidase inhibitors based on the pharmacological features of febuxostat analogues. NEW J CHEM 2022. [DOI: 10.1039/d2nj00115b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two compounds as potential XOI hits were identified by a novel screening strategy based on the pharmacophores of well-known scaffolds.
Collapse
Affiliation(s)
- Na Zhai
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yanming Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Chenchen Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, Henan Province, P. R. China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hui Liu
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P. R. China
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| |
Collapse
|
35
|
Chen X, Zhao Z, Luo J, Wu T, Shen Y, Chang S, Wan S, Li Z, Zhang J, Pang J, Tian Y. Novel natural scaffold as hURAT1 inhibitor identified by 3D-shape-based, docking-based virtual screening approach and biological evaluation. Bioorg Chem 2021; 117:105444. [PMID: 34775203 DOI: 10.1016/j.bioorg.2021.105444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022]
Abstract
As a promising therapeutic target for gout, hURAT1 has attracted increasing attention. In this work, we identified a novel scaffold of hURAT1 inhibitors from a personal natural product database of verified herb-treated gout. First, we constructed more than 800 natural compounds from Chinese medicine that were verified to treat gout. Following the application of both shape-based and docking-based virtual screening (VS) methods, taking into account the shape similarity and flexibility of the target, we identified isopentenyl dihydroflavones that might inhibit hURAT1. Specifically, 9 compounds with commercial availability were tested with biochemical assays for the inhibition of 14C-uric acid uptake in high-expression hURAT1 cells (HEK293-hURAT1), and their structure-activity relationship was evaluated. As a result, 8-isopentenyl dihydroflavone was identified as a novel scaffold of hURAT1 inhibitors since isobavachin (DHF3) inhibited hURAT1 with an IC50 value of 0.39 ± 0.17 μM, which was comparable to verinurad with an IC50 value of 0.32 ± 0.23 μM. Remarkably, isobavachin also displayed an eminent effect in the decline of serum uric acid in vivo experiments. Taken together, isobavachin is a promising candidate for the treatment of hyperuricemia and gout.
Collapse
Affiliation(s)
- Xinhua Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zean Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jiajun Luo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yudong Shen
- College of Food Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information, Engineering, Jiangsu University of Technology, Changzhou 213001, People's Republic of China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zhonghuang Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| |
Collapse
|
36
|
Recent Updates of Natural and Synthetic URAT1 Inhibitors and Novel Screening Methods. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5738900. [PMID: 34754317 PMCID: PMC8572588 DOI: 10.1155/2021/5738900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/23/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022]
Abstract
Human urate anion transporter 1 (hURAT1) is responsible for the reabsorption of uric acid in the proximal renal tubules and is a promising therapeutic target for treating hyperuricemia. To mitigate the side effects of URAT1-targeted clinical agents such as benzbromarone, there is significant interest in discovering new URAT1 inhibitors and developing technology that can evaluate URAT1 inhibition. This review summarizes the methods for assay of URAT1 inhibition and the progress on the discovery of natural and synthetic URAT1 inhibitors in the past five years.
Collapse
|
37
|
Sun ZR, Liu HR, Hu D, Fan MS, Wang MY, An MF, Zhao YL, Xiang ZM, Sheng J. Ellagic Acid Exerts Beneficial Effects on Hyperuricemia by Inhibiting Xanthine Oxidase and NLRP3 Inflammasome Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12741-12752. [PMID: 34672194 DOI: 10.1021/acs.jafc.1c05239] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hyperuricemia is a metabolic disease caused by impaired uric acid (UA) metabolism. Ellagic acid (EA) is a natural small-molecule polyphenolic compound with known antioxidative and anti-inflammatory properties. Here, we evaluated the regulatory effects of EA on hyperuricemia and explored the underlying mechanisms. We found that EA is an effective xanthine oxidase (XOD) inhibitor (IC50 = 165.6 μmol/L) and superoxide anion scavenger (IC50 = 27.66 μmol/L). EA (5 and 10 μmol/L) treatment significantly and dose-dependently reduced UA levels in L-O2 cells; meanwhile, intraperitoneal EA administration (50 and 100 mg/kg) also significantly reduced serum XOD activity and UA levels in hyperuricemic mice and markedly improved their liver and kidney histopathology. EA treatment significantly reduced the degree of foot edema and inhibited the expression of NLPR3 pathway-related proteins in foot tissue of monosodium urate (MSU)-treated mice. The anti-inflammatory effect was also observed in lipopolysaccharide-stimulated RAW-264.7 cells. Furthermore, EA significantly inhibited the expressions of XOD and NLRP3 pathway-related proteins (TLR4, p-p65, caspase-1, TNF-α, and IL-18) in vitro and in vivo. Our results indicated that EA exerts ameliorative effects in experimental hyperuricemia and foot edema via regulating the NLRP3 signaling pathway and represents a promising therapeutic option for the management of hyperuricemia.
Collapse
Affiliation(s)
- Ze-Rui Sun
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China
| | - Hua-Rong Liu
- College of Health Nursing Sciences, Yunnan Open University, Kunming 650223, P. R. China
| | - Di Hu
- Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| | - Mao-Si Fan
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China
| | - Ming-Yue Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China
| | - Meng-Fei An
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Ze-Min Xiang
- College of Science, Yunnan Agricultural University, Kunming 650224, P. R. China
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China
- College of Science, Yunnan Agricultural University, Kunming 650224, P. R. China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650224, P. R. China
| |
Collapse
|
38
|
Wang X, Fu J, Mo J, Tian Y, Liu C, Tang H, Sun Z, Pan Y. Assembly of 5‐Aminoimidazoles via Palladium‐Catalysed Double Isocyanide Insertion Reaction. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xu Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Jin‐Ping Fu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Jia‐Hui Mo
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Yu‐Hong Tian
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Chun‐You Liu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Zi‐Jun Sun
- Research Centre for Materials Science and Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| |
Collapse
|
39
|
Jiang WN, Zhao QL, Cheng WS, Xiao JA, Xiang HY, Chen K, Yang H. CuI-mediated benzannulation of ( ortho-arylethynyl)phenylenaminones to assemble α-aminonaphthalene derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00298h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-mediated annulation protocol for new (ortho-arylethynyl)phenyl enaminones bearing a N,N-dimethylamine moiety was developed to facilely install a series of α-aminonaphthalene derivatives.
Collapse
Affiliation(s)
- Wen-Nian Jiang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Qing-Lan Zhao
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Wen-Shuo Cheng
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science
- Nanning Normal University
- Nanning 530001
- P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| |
Collapse
|
40
|
Zhao Z, Jiang Y, Li L, Chen Y, Li Y, Lan Q, Wu T, Lin C, Cao Y, Nandakumar KS, Zhou P, Tian Y, Pang J. Structural Insights into the Atomistic Mechanisms of Uric Acid Recognition and Translocation of Human Urate Anion Transporter 1. ACS OMEGA 2020; 5:33421-33432. [PMID: 33403304 PMCID: PMC7774290 DOI: 10.1021/acsomega.0c05360] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Background: Human urate transporter 1 (hURAT1) is the most pivotal therapeutic target for treating hyperuricemia. However, the molecular interactions between uric acid and URAT1 are still unknown due to lack of structural details. Methods: In the present study, several methods (homology modeling, sequence alignment, docking, and mutagenesis) were used to explain the atomistic mechanisms of uric acid transport of hURAT1. Results: Residues W357-F365 in the TMD7 and P484-R487 in the TMD11 present in the hURAT1 have unique roles in both binding to the uric acid and causing subsequent structural changes. These residues, located in the transport tunnel, were found to be related to the structural changes, as demonstrated by the reduced V max values and an unaltered expression of protein level. In addition, W357, G361, T363, F365, and R487 residues may confer high affinity for binding to uric acid. An outward-open homology model of hURAT1 revealed a crucial role for these two domains in the conformational changes of hURAT1. F241 and H245 in TMD5, and R477 and R487 in TMD11 may confer high affinity for uric acid, and as the docking analysis suggests, they may also enhance the affinity for the inhibitors. R477 relation to the structural changes was demonstrated by the V max values of the mutants and the contribution of positive charge to the uric acid selectivity. Conclusions: W357-F365 in TMD7, P484-R487 in TMD11, and residues F241, H245, and R477 were found to be critical for the translocation and recognition of uric acid.
Collapse
|