1
|
Kurç Ö, Rähse N, Gohlke H, Cramer J. Human chitinases and chitinase-like proteins as emerging drug targets - a medicinal chemistry perspective. RSC Med Chem 2025:d4md01050g. [PMID: 40313579 PMCID: PMC12042104 DOI: 10.1039/d4md01050g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/22/2025] [Indexed: 05/03/2025] Open
Abstract
Human chitinases and chitinase-like proteins (CLPs) provide the immune system with the ability to recognize or process chitin originating from chitinous pathogens. In addition to their role in host defense, most members of this protein family have evolved pleiotropic cellular effector functions broadly related to immune homeostasis, cell proliferation, and tissue remodeling. This wide-ranging ability to modulate crucial cellular processes proceeds via the activation of cellular signal transduction cascades and appears to be fully independent of chitin recognition. Dysregulation of chitinase/CLP functions has been linked to a plethora of inflammatory diseases, such as allergic airway diseases and asthma, fibrosis, as well as cancer. This fact predetermines certain members of this protein family as prime targets for pharmacological intervention. Here, we provide an extensive review of medicinal chemistry efforts targeting the most widely studied members of the human chitinase/CLP family, namely acidic mammalian chitinase (AMCase), chitotriosidase (CHIT1), and chitinase-3-like protein 1 (CHI3L1/YKL-40).
Collapse
Affiliation(s)
- Önder Kurç
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Pharmaceutical and Medicinal Chemistry Universitätsstr. 1 40225 Düsseldorf Germany
| | - Nick Rähse
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Pharmaceutical and Medicinal Chemistry Universitätsstr. 1 40225 Düsseldorf Germany
| | - Holger Gohlke
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Pharmaceutical and Medicinal Chemistry Universitätsstr. 1 40225 Düsseldorf Germany
- Forschungszentrum Jülich, Institute of Bio- and Geosciences (IBG-4: Bioinformatics) Wilhelm-Johnen-Str. 52425 Jülich Germany
| | - Jonathan Cramer
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Pharmaceutical and Medicinal Chemistry Universitätsstr. 1 40225 Düsseldorf Germany
| |
Collapse
|
2
|
Smirnova IE, Volobueva AS, Esaulkova IL, Fedij SB, Zarubaev VV, Kazakova OB. Isoxazole and Pyrazole Derivatives of 28-Oxo-Allobetulone Target Viral Membrane Glycoprotein Hemagglutinin. Chem Biol Drug Des 2025; 105:e70099. [PMID: 40195084 DOI: 10.1111/cbdd.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
A series of [2,3]-isoxazoles and pyrazole annulated with the A-ring of lupane, oleanane, and ursane type triterpenoids was synthesized and screened for antiviral activity. It was found that 28-oxo-allobetulone isoxazole 4 with IC50 7.3 μM (SI 86) and pyrazole 5 with IC50 62.1 μM (SI 10) demonstrated a high inhibitory activity against Flu A/Puerto Rico/8/34 (H1N1) strain virus. The compounds 4 and 5 appeared to be the most active at the earlier stages of the viral cycle (0-2 h post infecting). No inhibiting effect of compounds 4 and 5 on the fusogenic activity of hemagglutinin HA has been detected, but the compounds prevented the binding of virions with the cell receptor. According to the results of molecular docking, compounds 4 and 5 preferentially bound to the interface between HA1 and HA2 subunits of hemagglutinin, near the heptad repeat domain.
Collapse
Affiliation(s)
- Irina E Smirnova
- Ufa Federal Research Center, Russian Academy of Sciences, Ufa Institute of Chemistry, Ufa, Russian Federation
| | - Alexandrina S Volobueva
- Department of Virology, St. Petersburg Pasteur Institute of Epidemiology and Microbiology, St. Petersburg, Russian Federation
| | - Iana L Esaulkova
- Department of Virology, St. Petersburg Pasteur Institute of Epidemiology and Microbiology, St. Petersburg, Russian Federation
| | - Sergei B Fedij
- Biology Department, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Vladimir V Zarubaev
- Department of Virology, St. Petersburg Pasteur Institute of Epidemiology and Microbiology, St. Petersburg, Russian Federation
| | - Oxana B Kazakova
- Ufa Federal Research Center, Russian Academy of Sciences, Ufa Institute of Chemistry, Ufa, Russian Federation
| |
Collapse
|
3
|
Shi Z, Zhou M, Zhai J, Sun J, Wang X. Novel therapeutic strategies and drugs for idiopathic pulmonary fibrosis. Arch Pharm (Weinheim) 2024; 357:e2400192. [PMID: 38961537 DOI: 10.1002/ardp.202400192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease of unknown etiology. Currently, drugs used to treat IPF in clinical practice exhibit severe side effects and limitations. To address these issues, this paper discusses the therapeutic effects of preclinical targeted drugs (such as STAT3 and TGF-β/Smad pathway inhibitors, chitinase inhibitors, PI3K and phosphodiesterase inhibitors, etc.) and natural products on IPF. Through a summary of current research progress, it is found that natural products possess multitarget effects, stable therapeutic efficacy, low side effects, and nondrug dependence. Furthermore, we discuss the significant prospects of natural product molecules in combating fibrosis by influencing the immune system, expecting that current analytical data will aid in the development of new drugs or the investigation of active ingredients in natural products for potential IPF treatments in the future.
Collapse
Affiliation(s)
- Zezhou Shi
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Min Zhou
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Jingfang Zhai
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Jie Sun
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Xiaojing Wang
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| |
Collapse
|
4
|
Cha JH, Park NR, Cho SW, Nam H, Yang H, Jung ES, Jang JW, Choi JY, Yoon SK, Sung PS, Bae SH. Chitinase 1: a novel therapeutic target in metabolic dysfunction-associated steatohepatitis. Front Immunol 2024; 15:1444100. [PMID: 39381000 PMCID: PMC11459552 DOI: 10.3389/fimmu.2024.1444100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Background Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by persistent inflammatory cascades, with macrophage activation playing a pivotal role. Chitinase 1 (CHIT1), produced by activated macrophages, is a key player in this cascade. In this study, we aimed to explore the role of CHIT1 in MASH with progressive liver fibrosis. Methods Fibrotic liver tissue and serum from distinct patient groups were analyzed using nCounter MAX, flow cytometry, immunohistochemistry, and enzyme-linked immunosorbent assay. A MASH mouse model was constructed to evaluate the effectiveness of OATD-01, a chitinase inhibitor. Macrophage profiling was performed using single-nuclei RNA sequencing and flow cytometry. Results CHIT1 expression in fibrotic liver tissues was significantly correlated with the extent of liver fibrosis, macrophages, and inflammation. Single-nuclei RNA sequencing demonstrated a notable increase in macrophages numbers, particularly of lipid-associated macrophages, in MASH mice. Treatment with OATD-01 reduced non-alcoholic fatty liver disease activity score and Sirius red-positive area. Additionally, OATD-01-treated mice had lower CHIT1, F4/80, and α-smooth muscle actin positivity, as well as significantly lower levels of inflammatory markers, pro-fibrotic genes, and matrix remodeling-related mRNAs than vehicle-treated mice. Although the population of F4/80+CD11b+ intrahepatic mononuclear phagocytes remained unchanged, their infiltration and activation (CHIT1+MerTK+) significantly decreased in OATD-01-treated mice, compared with that observed in vehicle-treated mice. Conclusions Our study underscores the pivotal role of CHIT1 in MASH. The observed significant improvement in inflammation and hepatic fibrosis, particularly at higher doses of the CHIT1 inhibitor, strongly suggests the potential of CHIT1 as a therapeutic target in MASH accompanied by progressive liver fibrosis.
Collapse
Affiliation(s)
- Jung Hoon Cha
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Na Ri Park
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Woo Cho
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Heechul Nam
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Uijeongbu, Gyeonggi-do, Republic of Korea
| | - Hyun Yang
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Divison of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sun Jung
- Department of Hospital Pathology, College of Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Divison of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Czestkowski W, Krzemiński Ł, Piotrowicz MC, Mazur M, Pluta E, Andryianau G, Koralewski R, Matyszewski K, Olejniczak S, Kowalski M, Lisiecka K, Kozieł R, Piwowar K, Papiernik D, Nowotny M, Napiórkowska-Gromadzka A, Nowak E, Niedziałek D, Wieczorek G, Siwińska A, Rejczak T, Jędrzejczak K, Mulewski K, Olczak J, Zasłona Z, Gołębiowski A, Drzewicka K, Bartoszewicz A. Structure-Based Discovery of High-Affinity Small Molecule Ligands and Development of Tool Probes to Study the Role of Chitinase-3-Like Protein 1. J Med Chem 2024; 67:3959-3985. [PMID: 38427954 DOI: 10.1021/acs.jmedchem.3c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Chitinase-3-like-1 (CHI3L1), also known as YKL-40, is a glycoprotein linked to inflammation, fibrosis, and cancer. This study explored CHI3L1's interactions with various oligosaccharides using microscale thermophoresis (MST) and AlphaScreen (AS). These investigations guided the development of high-throughput screening assays to assess interference of small molecules in binding between CHI3L1 and biotinylated small molecules or heparan sulfate-based probes. Small molecule binders of YKL-40 were identified in our chitotriosidase inhibitors library with MST and confirmed through X-ray crystallography. Based on cocrystal structures of potent hit compounds with CHI3L1, small molecule probes 19 and 20 were designed for an AS assay. Structure-based optimization led to compounds 30 and 31 with nanomolar activities and drug-like properties. Additionally, an orthogonal AS assay using biotinylated heparan sulfate as a probe was developed. The compounds' affinity showed a significant correlation in both assays. These screening tools and compounds offer novel avenues for investigating the role of CHI3L1.
Collapse
Affiliation(s)
| | | | | | - Marzena Mazur
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | - Elżbieta Pluta
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | | | | | | | | | | | | | - Rafał Kozieł
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | | | | | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, Warsaw 02-109, Poland
| | - Agnieszka Napiórkowska-Gromadzka
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, Warsaw 02-109, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, Warsaw 02-109, Poland
| | | | | | - Anna Siwińska
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | - Tomasz Rejczak
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | | | | | - Jacek Olczak
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | | | | | | | | |
Collapse
|
6
|
Drzewicka K, Zasłona Z. Metabolism-driven glycosylation represents therapeutic opportunities in interstitial lung diseases. Front Immunol 2024; 15:1328781. [PMID: 38550597 PMCID: PMC10973144 DOI: 10.3389/fimmu.2024.1328781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
Metabolic changes are coupled with alteration in protein glycosylation. In this review, we will focus on macrophages that are pivotal in the pathogenesis of pulmonary fibrosis and sarcoidosis and thanks to their adaptable metabolism are an attractive therapeutic target. Examples presented in this review demonstrate that protein glycosylation regulates metabolism-driven immune responses in macrophages, with implications for fibrotic processes and granuloma formation. Targeting proteins that regulate glycosylation, such as fucosyltransferases, neuraminidase 1 and chitinase 1 could effectively block immunometabolic changes driving inflammation and fibrosis, providing novel avenues for therapeutic interventions.
Collapse
|
7
|
Luo W, Gu Y, Fu S, Wang J, Zhang J, Wang Y. Emerging opportunities to treat idiopathic pulmonary fibrosis: Design, discovery, and optimizations of small-molecule drugs targeting fibrogenic pathways. Eur J Med Chem 2023; 260:115762. [PMID: 37683364 DOI: 10.1016/j.ejmech.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fibrotic form of idiopathic diffuse lung disease. Due to limited treatment options, IPF patients suffer from poor survival. About ten years ago, Pirfenidone (Shionogi, 2008; InterMune, 2011) and Nintedanib (Boehringer Ingelheim, 2014) were approved, greatly changing the direction of IPF drug design. However, limited efficacy and side effects indicate that neither can reverse the process of IPF. With insights into the occurrence of IPF, novel targets and agents have been proposed, which have fundamentally changed the treatment of IPF. With the next-generation agents, targeting pro-fibrotic pathways in the epithelial-injury model offers a promising approach. Besides, several next-generation IPF drugs have entered phase II/III clinical trials with encouraging results. Due to the rising IPF treatment requirements, there is an urgent need to completely summarize the mechanisms, targets, problems, and drug design strategies over the past ten years. In this review, we summarize known mechanisms, target types, drug design, and novel technologies of IPF drug discovery, aiming to provide insights into the future development and clinical application of next-generation IPF drugs.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Siyu Fu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
8
|
Yu D, Xiang Y, Gou T, Tong R, Xu C, Chen L, Zhong L, Shi J. New therapeutic approaches against pulmonary fibrosis. Bioorg Chem 2023; 138:106592. [PMID: 37178650 DOI: 10.1016/j.bioorg.2023.106592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Pulmonary fibrosis is the end-stage change of a large class of lung diseases characterized by the proliferation of fibroblasts and the accumulation of a large amount of extracellular matrix, accompanied by inflammatory damage and tissue structure destruction, which also shows the normal alveolar tissue is damaged and then abnormally repaired resulting in structural abnormalities (scarring). Pulmonary fibrosis has a serious impact on the respiratory function of the human body, and the clinical manifestation is progressive dyspnea. The incidence of pulmonary fibrosis-related diseases is increasing year by year, and no curative drugs have appeared so far. Nevertheless, research on pulmonary fibrosis have also increased in recent years, but there are no breakthrough results. Pathological changes of pulmonary fibrosis appear in the lungs of patients with coronavirus disease 2019 (COVID-19) that have not yet ended, and whether to improve the condition of patients with COVID-19 by means of the anti-fibrosis therapy, which are the questions we need to address now. This review systematically sheds light on the current state of research on fibrosis from multiple perspectives, hoping to provide some references for design and optimization of subsequent drugs and the selection of anti-fibrosis treatment plans and strategies.
Collapse
Affiliation(s)
- Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Xiang
- College of Medicine, University of Electronic Science and Technology, Chengdu 610072, China
| | - Tingting Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lu Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
9
|
Abstract
An analysis of 156 published clinical candidates from the Journal of Medicinal Chemistry between 2018 and 2021 was conducted to identify lead generation strategies most frequently employed leading to drug candidates. As in a previous publication, the most frequent lead generation strategies resulting in clinical candidates were from known compounds (59%) followed by random screening approaches (21%). The remainder of the approaches included directed screening, fragment screening, DNA-encoded library screening (DEL), and virtual screening. An analysis of similarity was also conducted based on Tanimoto-MCS and revealed most clinical candidates were distant from their original hits; however, most shared a key pharmacophore that translated from hit-to-clinical candidate. An examination of frequency of oxygen, nitrogen, fluorine, chlorine, and sulfur incorporation in clinical candidates was also conducted. The three most similar and least similar hit-to-clinical pairs from random screening were examined to provide perspective on changes that occur that lead to successful clinical candidates.
Collapse
Affiliation(s)
- Dean G Brown
- Jnana Therapeutics, One Design Center Pl Suite 19-400, Boston, Massachusetts 02210, United States
| |
Collapse
|
10
|
Balestri LI, Trivisani CI, Orofino F, Fiorucci D, Truglio GI, D’Agostino I, Poggialini F, Botta L, Docquier JD, Dreassi E. Discovery and Optimization of a Novel Macrocyclic Amidinourea Series Active as Acidic Mammalian Chitinase Inhibitors. ACS Med Chem Lett 2023; 14:417-424. [PMID: 37077400 PMCID: PMC10107916 DOI: 10.1021/acsmedchemlett.2c00472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/14/2023] [Indexed: 04/21/2023] Open
Abstract
Our research group has been involved for a long time in the development of macrocyclic amidinoureas (MCAs) as antifungal agents. The mechanistic investigation drove us to perform an in silico target fishing study, which allowed the identification of chitinases as one of their putative targets, with 1a showing a submicromolar inhibition of Trichoderma viride chitinase. In this work, we investigated the possibility to further inhibit the corresponding human enzymes, acidic mammalian chitinase (AMCase) and chitotriosidase (CHIT1), involved in several chronic inflammatory lung diseases. Thus, we first validated the inhibitory activity of 1a against AMCase and CHIT1 and then designed and synthesized new derivatives aimed at improving the potency and selectivity against AMCase. Among them, compound 3f emerged for its activity profile along with its promising in vitro ADME properties. We also gained a good understanding of the key interactions with the target enzyme through in silico studies.
Collapse
Affiliation(s)
| | | | - Francesco Orofino
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Diego Fiorucci
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Giuseppina Ivana Truglio
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Ilaria D’Agostino
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Federica Poggialini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Lorenzo Botta
- Lead
Discovery Siena s.r.l., Via Vittorio Alfieri 31, I-53019 Castelnuovo Berardenga, Italy
- Department
of Ecological and Biological Sciences, University
of Tuscia, Largo Università s.n.c., I-01100 Viterbo, Italy
| | - Jean-Denis Docquier
- Dipartimento
di Biotecnologie Mediche, University of
Siena, Viale Bracci 16, I-53100, Siena, Italy
- Laboratoire
de Bactériologie Moléculaire, Centre d’Ingénierie
des Protéines, UR-InBioS, University
of Liège, Allée
du 6 Août, 4000 Liège, Belgium
| | - Elena Dreassi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| |
Collapse
|
11
|
Choi YJ, Han H, Lee JH, Lee J, Kim CY, Byun MK, Cho JH, Park HJ. Particulate matter 10-induced airway inflammation and fibrosis can be regulated by chitinase-1 suppression. Respir Res 2023; 24:85. [PMID: 36934237 PMCID: PMC10024831 DOI: 10.1186/s12931-023-02392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/09/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND Particulate matter10 (PM10) can induce airway inflammation and fibrosis. Recently, chitinase-1 has been shown to play key roles in inflammation and fibrosis. We aimed to investigate the effects of chitinase-1 inhibitor in PM10-treated murine mice models. METHODS In female BALB/c mice, PM10 was intranasally administered six times over 3 weeks, and ovalbumin (OVA) was intraperitoneally injected and then intranasally administered. Chitinase-1 inhibitor (CPX) 6 times over 3 weeks or dexamethasone 3 times in the last week were intraperitoneally administered. Two days after the last challenges, mice were euthanized. Messenger RNA sequencing using lung homogenates was conducted to evaluate signaling pathways. RESULTS PM10 and/or OVA-induced airway inflammation and fibrosis murine models were established. CPX and dexamethasone ameliorated PM10 or PM10/OVA-induced airway hyper-responsiveness, airway inflammation, and fibrosis. CPX and dexamethasone also reduced levels of various inflammatory markers in lung homogenates. PM10 and OVA also induced changes in mRNA expression across an extreme range of genes. CPX and dexamethasone decreased levels of mRNA expression especially associated with inflammation and immune regulation. They also significantly regulated asthma and asthma-related pathways, including the JACK-STAT signaling pathway. CONCLUSIONS Chitinase-1 suppression by CPX can regulate PM10- and OVA-induced and aggravated airway inflammation and fibrosis via an asthma-related signaling pathway.
Collapse
Affiliation(s)
- Yong Jun Choi
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Heejae Han
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Jae-Hyun Lee
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Jaeuk Lee
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Chi Young Kim
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Min Kwang Byun
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Jae Hwa Cho
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Hye Jung Park
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| |
Collapse
|
12
|
Hsu JY, Hsu KC, Sun C, Chou CH, Lin TE, Sung TY, Tseng HJ, Yen SC, Yang CR, Huang WJ. Design, synthesis, and biological evaluation of indolin-2-one derivatives as novel cyclin-dependent protein kinase 8 (CDK8) inhibitors. Biomed Pharmacother 2023; 159:114258. [PMID: 36708700 DOI: 10.1016/j.biopha.2023.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/27/2023] Open
Abstract
Cyclin-dependent protein kinase 8 (CDK8) plays important roles in regulating fibrotic growth factors and inflammatory signaling pathways. Long-term chronic inflammation of the lungs can lead to idiopathic pulmonary fibrosis (IPF). Abnormal alveolar epithelial regeneration leads to the release of various fibrotic growth factors and the activation of inflammatory cells. CDK8 regulates profibrotic cytokines broadly implicated in the pathogenesis of fibrosis. Therefore, inhibition of CDK8 is considered a promising strategy for treating IPF. Here, CDK8 inhibitors were designed and optimized using a fragment-based drug design strategy. Testing results revealed that 71% of the synthesized compounds inhibited CDK8 activity better than the original compound E966-0530. Of these compounds, compound 4k exhibited the strongest CDK8 enzyme-inhibiting activity (IC50 =129 nM). Notably, it displayed a 13-fold increase in potency when compared to E966-0530. Experiments on toxicity and inhibition of epithelial-mesenchymal transition (EMT) protein expressions showed that compound 4k can inhibit EMT protein expressions, but with no significant cytotoxicity for alveolar epithelial cells. Compound 4k showed a potent inhibitory effect in cell migration assays. Furthermore, compound 4k significantly inhibited the phosphorylation of p-Smad3 and RNA Pol II, which are critical mediators in the fibrotic response signaling pathway. Compound 4k remarkably reduced TGF-β1-induced oxidative stress. The above results reveal optimized CDK8 inhibitors with potential use for IPF therapeutic treatment.
Collapse
Affiliation(s)
- Jui-Yi Hsu
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ching Sun
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsuan Chou
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ying Sung
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Hui-Ju Tseng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - Shih-Chung Yen
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, People's Republic of China
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
13
|
Sklepkiewicz P, Dymek B, Mlacki M, Zagozdzon A, Salamon M, Siwińska AM, Mazurkiewicz MP, de Souza Xavier Costa N, Mazur M, Mauad T, Gołębiowski A, Dzwonek K, Gołąb J, Zasłona Z. Inhibition of Macrophage-Specific CHIT1 as an Approach to Treat Airway Remodeling in Severe Asthma. Int J Mol Sci 2023; 24:ijms24054719. [PMID: 36902148 PMCID: PMC10003607 DOI: 10.3390/ijms24054719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Chitotriosidase (CHIT1) is an enzyme produced by macrophages that regulates their differentiation and polarization. Lung macrophages have been implicated in asthma development; therefore, we asked whether pharmacological inhibition of macrophage-specific CHIT1 would have beneficial effects in asthma, as it has been shown previously in other lung disorders. CHIT1 expression was evaluated in the lung tissues of deceased individuals with severe, uncontrolled, steroid-naïve asthma. OATD-01, a chitinase inhibitor, was tested in a 7-week-long house dust mite (HDM) murine model of chronic asthma characterized by accumulation of CHIT1-expressing macrophages. CHIT1 is a dominant chitinase activated in fibrotic areas of the lungs of individuals with fatal asthma. OATD-01 given in a therapeutic treatment regimen inhibited both inflammatory and airway remodeling features of asthma in the HDM model. These changes were accompanied by a significant and dose-dependent decrease in chitinolytic activity in BAL fluid and plasma, confirming in vivo target engagement. Both IL-13 expression and TGFβ1 levels in BAL fluid were decreased and a significant reduction in subepithelial airway fibrosis and airway wall thickness was observed. These results suggest that pharmacological chitinase inhibition offers protection against the development of fibrotic airway remodeling in severe asthma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Natalia de Souza Xavier Costa
- Department of Pathology, Faculty of Medicine, University of São Paulo, Avenida Dr. Arnaldo, 455, Room 1150, Cerqueira Cesar, São Paulo 01246-903, Brazil
| | | | - Thais Mauad
- Department of Pathology, Faculty of Medicine, University of São Paulo, Avenida Dr. Arnaldo, 455, Room 1150, Cerqueira Cesar, São Paulo 01246-903, Brazil
| | | | | | - Jakub Gołąb
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | |
Collapse
|
14
|
Dymek B, Sklepkiewicz P, Mlacki M, Güner NC, Nejman-Gryz P, Drzewicka K, Przysucha N, Rymaszewska A, Paplinska-Goryca M, Zagozdzon A, Proboszcz M, Krzemiński Ł, von der Thüsen JH, Górska K, Dzwonek K, Zasłona Z, Dobrzanski P, Krenke R. Pharmacological Inhibition of Chitotriosidase (CHIT1) as a Novel Therapeutic Approach for Sarcoidosis. J Inflamm Res 2022; 15:5621-5634. [PMID: 36199746 PMCID: PMC9529231 DOI: 10.2147/jir.s378357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
Affiliation(s)
- Barbara Dymek
- Molecure SA, Warsaw, 02-089, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, 02-097, Poland
- Correspondence: Barbara Dymek, Żwirki i Wigury 101, Warsaw, 02-089, Poland, Tel +48 22 552 67 24, Email
| | | | | | | | - Patrycja Nejman-Gryz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | | | - Natalia Przysucha
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | | | - Magdalena Paplinska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | | | - Małgorzata Proboszcz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | | | - Jan H von der Thüsen
- Department of Pathology, Erasmus Medical Center, Rotterdam, 3015 GD, the Netherlands
| | - Katarzyna Górska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | | | | | | | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, 02-097, Poland
| |
Collapse
|
15
|
Majewski S, Szewczyk K, Jerczyńska H, Miłkowska-Dymanowska J, Białas AJ, Gwadera Ł, Piotrowski WJ. Longitudinal and Comparative Measures of Serum Chitotriosidase and YKL-40 in Patients With Idiopathic Pulmonary Fibrosis. Front Immunol 2022; 13:760776. [PMID: 35222369 PMCID: PMC8866556 DOI: 10.3389/fimmu.2022.760776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background Although chitin is absent in humans, chitinases are present in healthy subjects and show dysregulated expression in a variety of diseases resulting from abnormal tissue injury and repair responses. It was shown that chitotriosidase (chitinase 1/CHIT1) and structurally-related chitinase 3-like 1 protein (CHI3L1/YKL-40) play important roles in the pathobiology of idiopathic pulmonary fibrosis (IPF), however little is known about their longitudinal serum levels and relationship to clinical measures in IPF. Methods The present study is the first to evaluate serial measurements of serum CHIT1 activity and YKL-40 concentrations in patients with IPF starting antifibrotic treatment and followed up for 24 months. In addition, baseline serum CHIT1 and YKL-40 were compared between patients with IPF and control subjects, and possible CHIT1 and YKL-40 relationships to longitudinal clinical assessments in IPF were explored. Results Baseline serum CHIT1 activity and YKL-40 concentrations were significantly elevated in patients with IPF compared to control subjects and showed similar discriminatory ability in distinguishing IPF from controls. No significant differences between the median serum CHIT1 activity and YKL-40 concentration measured over a study follow-up were noted. We found significantly elevated baseline serum CHIT1 activity in the progressors compared with the stables in the first year, while significantly increased baseline serum CHIT1 activity was noted in the stables compared to the progressors in the second year. Additionally, we observed a significant negative correlation between a change in serum YKL-40 concentration and a change in forced vital capacity (FVC) % predicted (% pred.) in the stables subgroup, whereas, a change in serum CHIT1 activity correlated negatively with a change in FVC% pred. in the progressors subgroup. Conclusions This explorative study findings add further evidence that CHIT1 and YKL-40 are upregulated in patients with IPF, and suggest that longitudinally stable serum CHIT1 activity and YKL-40 concentration levels may potentially be associated with the antifibrotic treatment response. In addition, our findings are supporting the possible role of CHIT1 and YKL-40 as candidate diagnostic and prognostic biomarkers in IPF. Further research is needed to validate present study findings.
Collapse
Affiliation(s)
| | - Karolina Szewczyk
- Department of Pathobiology of Respiratory Diseases, Medical University of Lodz, Lodz, Poland
| | - Hanna Jerczyńska
- Central Scientific Laboratory (CoreLab), Medical University of Lodz, Lodz, Poland
| | | | - Adam J Białas
- Department of Pathobiology of Respiratory Diseases, Medical University of Lodz, Lodz, Poland
| | - Łukasz Gwadera
- Department of Pneumology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
16
|
Sklepkiewicz P, Dymek BA, Mlacki M, Koralewski R, Mazur M, Nejman-Gryz P, Korur S, Zagozdzon A, Rymaszewska A, von der Thüsen JH, Siwińska AM, Güner NC, Cheda Ł, Paplinska-Goryca M, Proboszcz M, van den Bosch TPP, Górska K, Golab J, Kamiński RM, Krenke R, Golebiowski A, Dzwonek K, Dobrzanski P. Inhibition of CHIT1 as a novel therapeutic approach in idiopathic pulmonary fibrosis. Eur J Pharmacol 2022; 919:174792. [PMID: 35122869 DOI: 10.1016/j.ejphar.2022.174792] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and eventually fatal lung disease with a complex etiology. Approved drugs, nintedanib and pirfenidone, modify disease progression, but IPF remains incurable and there is an urgent need for new therapies. We identified chitotriosidase (CHIT1) as new driver of fibrosis in IPF and a novel therapeutic target. We demonstrate that CHIT1 activity and expression are significantly increased in serum (3-fold) and induced sputum (4-fold) from IPF patients. In the lungs CHIT1 is expressed in a distinct subpopulation of profibrotic, disease-specific macrophages, which are only present in patients with ILDs and CHIT1 is one of the defining markers of this fibrosis-associated gene cluster. To define CHIT1 role in fibrosis, we used the therapeutic protocol of the bleomycin-induced pulmonary fibrosis mouse model. We demonstrate that in the context of chitinase induction and the macrophage-specific expression of CHIT1, this model recapitulates lung fibrosis in ILDs. Genetic inactivation of Chit1 attenuated bleomycin-induced fibrosis (decreasing the Ashcroft scoring by 28%) and decreased expression of profibrotic factors in lung tissues. Pharmacological inhibition of chitinases by OATD-01 reduced fibrosis and soluble collagen concentration. OATD-01 exhibited anti-fibrotic activity comparable to pirfenidone resulting in the reduction of the Ashcroft score by 32% and 31%, respectively. These studies provide a preclinical proof-of-concept for the antifibrotic effects of OATD-01 and establish CHIT1 as a potential new therapeutic target for IPF.
Collapse
Affiliation(s)
| | - Barbara A Dymek
- OncoArendi Therapeutics SA, 02-089, Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-097, Warsaw, Poland.
| | | | | | | | - Patrycja Nejman-Gryz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Serdar Korur
- OncoArendi Therapeutics SA, 02-089, Warsaw, Poland
| | | | | | - Jan H von der Thüsen
- Department of Pathology, Erasmus Medical Center, 3015 GD, Rotterdam, the Netherlands
| | | | | | - Łukasz Cheda
- OncoArendi Therapeutics SA, 02-089, Warsaw, Poland
| | - Magdalena Paplinska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Małgorzata Proboszcz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-097, Warsaw, Poland
| | | | - Katarzyna Górska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, 02-097, Warsaw, Poland
| | | | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-097, Warsaw, Poland
| | | | | | | |
Collapse
|
17
|
Elmonem MA, Veys KRP, Prencipe G. Nephropathic Cystinosis: Pathogenic Roles of Inflammation and Potential for New Therapies. Cells 2022; 11:cells11020190. [PMID: 35053306 PMCID: PMC8773784 DOI: 10.3390/cells11020190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 01/18/2023] Open
Abstract
The activation of several inflammatory pathways has recently been documented in patients and different cellular and animal models of nephropathic cystinosis. Upregulated inflammatory signals interact with many pathogenic aspects of the disease, such as enhanced oxidative stress, abnormal autophagy, inflammatory cell recruitment, enhanced cell death, and tissue fibrosis. Cysteamine, the only approved specific therapy for cystinosis, ameliorates many but not all pathogenic aspects of the disease. In the current review, we summarize the inflammatory mechanisms involved in cystinosis and their potential impact on the disease pathogenesis and progression. We further elaborate on the crosstalk between inflammation, autophagy, and apoptosis, and discuss the potential of experimental drugs for suppressing the inflammatory signals in cystinosis.
Collapse
Affiliation(s)
- Mohamed A. Elmonem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo 11628, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
- Correspondence:
| | - Koenraad R. P. Veys
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Department of Pediatrics, AZ Delta Campus, 8820 Torhout, Belgium
| | - Giusi Prencipe
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| |
Collapse
|
18
|
Yang M, Shrestha SK, Soh Y, Heo SM. Effects of aloe-emodin on alveolar bone in Porphyromonas gingivalis-induced periodontitis rat model: a pilot study. J Periodontal Implant Sci 2022; 52:383-393. [DOI: 10.5051/jpis.2104060203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/27/2022] [Accepted: 04/04/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ming Yang
- Department of Periodontology, School of Dentistry, Jeonbuk National University, Jeonju, South Korea
- Department of Periodontology, School of Dentistry, Beihua University, Jilin, China
| | - Saroj K Shrestha
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju, South Korea
| | - Yunjo Soh
- Laboratory of Pharmacology, School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, South Korea
| | - Seok-Mo Heo
- Department of Periodontology, School of Dentistry, Jeonbuk National University, Jeonju, South Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
19
|
Chitinases and Chitinase-Like Proteins as Therapeutic Targets in Inflammatory Diseases, with a Special Focus on Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms22136966. [PMID: 34203467 PMCID: PMC8268069 DOI: 10.3390/ijms22136966] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
Chitinases belong to the evolutionarily conserved glycosyl hydrolase family 18 (GH18). They catalyze degradation of chitin to N-acetylglucosamine by hydrolysis of the β-(1-4)-glycosidic bonds. Although mammals do not synthesize chitin, they possess two enzymatically active chitinases, i.e., chitotriosidase (CHIT1) and acidic mammalian chitinase (AMCase), as well as several chitinase-like proteins (YKL-40, YKL-39, oviductin, and stabilin-interacting protein). The latter lack enzymatic activity but still display oligosaccharides-binding ability. The physiologic functions of chitinases are still unclear, but they have been shown to be involved in the pathogenesis of various human fibrotic and inflammatory disorders, particularly those of the lung (idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, sarcoidosis, and asthma) and the gastrointestinal tract (inflammatory bowel diseases (IBDs) and colon cancer). In this review, we summarize the current knowledge about chitinases, particularly in IBDs, and demonstrate that chitinases can serve as prognostic biomarkers of disease progression. Moreover, we suggest that the inhibition of chitinase activity may be considered as a novel therapeutic strategy for the treatment of IBDs.
Collapse
|