1
|
Oršolić N, Jazvinšćak Jembrek M. Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy. Nutrients 2024; 16:3741. [PMID: 39519572 PMCID: PMC11547968 DOI: 10.3390/nu16213741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Conventional cancer treatments include surgical resection, chemotherapy, hyperthermia, immunotherapy, hormone therapy, and locally targeted therapies such as radiation therapy. Standard cancer therapies often require the use of multiple agents, which can activate nuclear factor kappa B (NF-κB) in tumor cells, leading to reduced cell death and increased drug resistance. Moreover, the use of multiple agents also contributes to added toxicity, resulting in poor treatment outcomes. Cancer cells gradually develop resistance to almost all chemotherapeutics through various mechanisms, such as drug efflux, alterations in drug metabolism and transport, changes in signal transduction pathways, enhanced DNA repair capacity, evasion of apoptosis, increased mutations, reactivation of drug targets, interaction with the cancer microenvironment, cancer cell-stroma interactions, epithelial-mesenchymal transition (EMT)-mediated chemoresistance, epigenetic modifications, metabolic alterations, and the effect of cancer stem cells (CSCs). Developing new strategies to improve chemotherapy sensitivity while minimizing side effects is essential for achieving better therapeutic outcomes and enhancing patients' quality of life. One promising approach involves combining conventional cancer treatments with propolis and its flavonoids. These natural compounds may enhance tumor response to treatment while reducing toxicity. Propolis and its components can sensitize cancer cells to chemotherapeutic agents, likely by inhibiting NF-κB activation, reprogramming tumor-associated macrophages (TAMs; an M2-like phenotype), and thereby reducing the release of matrix metalloproteinase (MMP)-9, cytokines, chemokines, and the vascular endothelial growth factor (VEGF). By reducing TAMs, propolis and its components may also overcome EMT-mediated chemoresistance, disrupt the crosstalk between macrophages and CSCs, inhibit the maintenance of stemness, and reverse acquired immunosuppression, thus promoting an antitumor response mediated by cytotoxic T-cells. This review highlights the potential of flavonoids to modulate the responsiveness of cancer to conventional treatment modalities. The evidence suggests that novel therapeutic strategies incorporating flavonoids could be developed to improve treatment outcomes. The positive effects of combining propolis with chemotherapeutics include reduced cytotoxicity to peripheral blood leukocytes, liver, and kidney cells. Therefore, polyphenolic/flavonoid components may hold potential for use in combination with chemotherapeutic agents in the clinical treatment of various types of cancers.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 244, HR-10000 Zagreb, Croatia
| |
Collapse
|
2
|
Song J, Zhang S, Zhang B, Ma J. The anti-breast cancer therapeutic potential of 1,2,3-triazole-containing hybrids. Arch Pharm (Weinheim) 2024; 357:e2300641. [PMID: 38110853 DOI: 10.1002/ardp.202300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Breast cancer, as one of the most common invasive malignancies and the leading cause of cancer-related deaths in women globally, poses a significant challenge in the world health system. Substantial advances in diagnosis and treatment have significantly improved the survival rate of breast cancer patients, but the number of incidences and deaths of breast cancer are projected to increase by 40% and 50%, respectively, by 2040. Chemotherapy is one of the principal treatments for breast cancer therapy, but multidrug resistance and severe side effects remain the major obstacles to the success of treatment. Hence, there is a vital need to develop novel chemotherapeutic agents to combat this deadly disease. 1,2,3-Triazole, which can be effectively constructed by click chemistry, not only can serve as a linker to connect different anti-breast cancer pharmacophores but also is a valuable pharmacophore with anti-breast cancer potential and favorable properties such as hydrogen bonding, moderate dipole moment, and enhanced water solubility. Particularly, 1,2,3-triazole-containing hybrids have demonstrated promising in vitro and in vivo anti-breast cancer potential against both drug-sensitive and drug-resistant forms and possessed excellent selectivity by targeting different biological pathways associated with breast cancer, representing privileged scaffolds for the discovery of novel anti-breast cancer candidates. This review concentrates on the latest advancements of 1,2,3-triazole-containing hybrids with anti-breast cancer potential, including work published between 2020 and the present. The structure-activity relationships (SARs) and mechanisms of action are also reviewed to shed light on the development of more effective and multitargeted candidates.
Collapse
Affiliation(s)
- Juntao Song
- Department of Oncology and Hematology, Zibo 148 Hospital, Zibo, China
| | - Shuai Zhang
- Department of General Surgery, People's Hospital of Zhoucun District, Zibo, China
| | - Bo Zhang
- Emergency Department, People's Hospital of Zhoucun District, Zibo, China
| | - Junwei Ma
- Department of General Surgery, Zibo 148 Hospital, Zibo, China
| |
Collapse
|
3
|
Wu T, Zhang Z, Gong G, Du Z, Xu Y, Yu S, Ma F, Zhang X, Wang Y, Chen H, Wu S, Xu X, Qiu Z, Li Z, Wu H, Bian J, Wang J. Discovery of novel flavonoid-based CDK9 degraders for prostate cancer treatment via a PROTAC strategy. Eur J Med Chem 2023; 260:115774. [PMID: 37672930 DOI: 10.1016/j.ejmech.2023.115774] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
CDK9 plays a vital role in regulating RNA transcription and significantly impacts the expression of short-lived proteins such as Mcl-1 and c-Myc. Thus, targeting CDK9 holds great promise for the development of antitumor drugs. Natural flavonoid derivatives have recently gained considerable attention in the field of antitumor drug research due to their broad bioactivity and low toxicity. In this study, the PROTAC strategy was used to perform structural modifications of the flavonoid derivative LWT-111 to design a series of flavonoid-based CDK9 degraders. Notably, compound CP-07 emerged as a potent CDK9 degrader, effectively suppressing the proliferation and colony formation of 22RV1 cells by downregulating Mcl-1 and c-Myc. Moreover, CP-07 exhibited significant tumor growth inhibition with a TGI of 75.1% when administered at a dose of 20 mg/kg in the 22RV1 xenograft tumor model. These findings demonstrated the potential of CP-07 as a powerful flavonoid-based CDK9 degrader for prostate cancer therapy.
Collapse
Affiliation(s)
- Tizhi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhiming Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Guangyue Gong
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zekun Du
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yifan Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Sixian Yu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Feihai Ma
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xuan Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yuxiao Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Haoming Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shiqi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xi Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhixia Qiu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Hongxi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Jubo Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
4
|
Zhu J, Lei S, Lu J, Hao Y, Qian Q, Devanathan AS, Feng Z, Xie XQ, Wipf P, Ma X. Metabolism-guided development of Ko143 analogs as ABCG2 inhibitors. Eur J Med Chem 2023; 259:115666. [PMID: 37482017 PMCID: PMC10529637 DOI: 10.1016/j.ejmech.2023.115666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
ATP-binding cassette subfamily G member 2 (ABCG2), an efflux transporter, is involved in multiple pathological processes. Ko143 is a potent ABCG2 inhibitor; however, it is quickly metabolized through carboxylesterase 1-mediated hydrolysis of its t-butyl ester moiety. The current work aimed to develop more metabolically stable ABCG2 inhibitors. Novel Ko143 analogs were designed and synthesized by replacing the unstable t-butyl ester moiety in Ko143 with an amide group. The synthesized Ko143 analogs were evaluated for their ABCG2 inhibitory activity, binding mode with ABCG2, cytotoxicity, and metabolic stability. We found that the amide modification of Ko143 led to metabolically stable ABCG2 inhibitors. Among these Ko143 analogs, K2 and K34 are promising candidates with favorable oral pharmacokinetic profiles in mice. In summary, we synthesized novel Ko143 analogs with improved metabolic stability, which can potentially be used as lead compounds for the future development of ABCG2 inhibitors.
Collapse
Affiliation(s)
- Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Saifei Lei
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jie Lu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yixuan Hao
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qi Qian
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron S Devanathan
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Wipf
- Department of Chemistry and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Liu Z, Wong ILK, Sang J, Liu F, Yan CSW, Kan JWY, Chan TH, Chow LMC. Identification of Binding Sites in the Nucleotide-Binding Domain of P-Glycoprotein for a Potent and Nontoxic Modulator, the Amine-Containing Monomeric Flavonoid FM04. J Med Chem 2023; 66:6160-6183. [PMID: 37098275 DOI: 10.1021/acs.jmedchem.2c02005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
We have previously discovered an amine-containing flavonoid monomer FM04 as a potent P-glycoprotein (P-gp) inhibitor (EC50 = 83 nM). Here, a series of photoactive FM04 analogues were synthesized and used together with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the FM04-binding sites on P-gp. Point mutations around the photo-crosslinked sites were made for verification. Together with the results from mutational studies, molecular docking, and molecular dynamics simulations, it was found that FM04 can interact with Q1193 and I1115 in the nucleotide-binding domain 2 (NBD2) of human P-gp. It was proposed that FM04 can inhibit P-gp in 2 novel mechanisms. FM04 can either bind to (1) Q1193, followed by interacting with the functionally critical residues H1195 and T1226 or (2) I1115 (a functionally critical residue itself), disrupting the R262-Q1081-Q1118 interaction pocket and uncoupling ICL2-NBD2 interaction and thereby inhibiting P-gp. Q1118 would subsequently be pushed to the ATP-binding site and stimulate ATPase.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Iris L K Wong
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jingcheng Sang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Fufeng Liu
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Clare S W Yan
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jason W Y Kan
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada
| | - Larry M C Chow
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
6
|
Gomaa MAM, Hassan DK. Catalyst-free direct synthesis of indeno[1,2- b]indol-5(4b H)-yl benzimidamides. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2023. [DOI: 10.1515/znb-2022-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Abstract
A new series of indeno[1,2-b]indol-5(4bH)-ylbenzimidamide derivatives 3a–3j has been synthesized as potential casein kinase II (CK2) inhibitors. A convenient and straightforward synthesis protocol was used via a reaction of β-enaminones 1a–1j with ninhydrin 2. This transformation proceeds under mild conditions (boiling ethanol, 0.5 h) in absence of catalyst in good to excellent yields (66–86%). The new compounds have been characterized by NMR, HRMS and IR spectra.
Collapse
Affiliation(s)
- Mohsen A.-M. Gomaa
- Chemistry Department , Faculty of Science, Minia University , Minia 61519 , A. R. Egypt
| | - Doaa K. Hassan
- Chemistry Department , Faculty of Science, Minia University , Minia 61519 , A. R. Egypt
| |
Collapse
|
7
|
Wang R, Fu Y, Ma R, Jin H, Zhao W. Total Synthesis of Lineaflavones A, C, D, and Analogues. Molecules 2023; 28:molecules28052373. [PMID: 36903616 PMCID: PMC10005778 DOI: 10.3390/molecules28052373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The first total synthesis of lineaflavones A, C, D, and their analogues has been accomplished. The key synthetic steps include aldol/oxa-Michael/dehydration sequence reactions to assemble the tricyclic core, Claisen rearrangement and Schenck ene reaction to construct the key intermediate, and selective substitution or elimination of tertiary allylic alcohol to obtain natural compounds. In addition, we also explored five new routes to synthesize fifty-three natural product analogues, which can contribute to a systematic structure-activity relationship during biological evaluation.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yu Fu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Ran Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Hongzhen Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- Correspondence: (H.J.); (W.Z.)
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- Correspondence: (H.J.); (W.Z.)
| |
Collapse
|
8
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
9
|
Li H, Zhang SL, Jia YH, Li Q, Feng ZW, Zhang SD, Zheng W, Zhou YL, Li LL, Liu XC, Chen YQ, Peng H, You QD, Xu XL. Imidazo[1,2- a]Pyridine Derivatives as Novel Dual-Target Inhibitors of ABCB1 and ABCG2 for Reversing Multidrug Resistance. J Med Chem 2023; 66:2804-2831. [PMID: 36780419 DOI: 10.1021/acs.jmedchem.2c01862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
ABCB1 and ABCG2 are the important ATP-binding cassette (ABC) transporters associated with multidrug resistance (MDR). Herein, we designed a series of imidazo[1,2-a]pyridine derivatives as dual-target inhibitors of ABCB1 and ABCG2 through the scaffold hopping strategy. Compound Y22 displayed potential efflux function inhibitory toward both ABCB1 and ABCG2 (reversal fold: ABCB1 = 8.35 and ABCG2 = 2.71) without obvious cytotoxicity. Y22 also enhanced the potency of antiproliferative drugs in vitro. Mechanistic studies demonstrated that Y22 slightly suppressed ATPase activity but did not affect the protein expression of ABCB1 or ABCG2. Notably, Y22 exhibited negligible CYP3A4 inhibition and enhanced the antiproliferative activity of adriamycin in vivo by restoring the sensitivity of resistant cells. Thus, Y22 may be effective clinically in combination with common chemotherapy agents. In summary, Y22 is a potential dual-target inhibitor that reverses MDR by blocking the efflux function of ABCB1 and ABCG2.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng-Lie Zhang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yan-Han Jia
- Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Qian Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zi-Wen Feng
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shi-Duo Zhang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Zheng
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ye-Ling Zhou
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lin-Lin Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xue-Chun Liu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ya-Qiong Chen
- Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Hui Peng
- Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
10
|
Chong TC, Wong ILK, Cui J, Law MC, Zhu X, Hu X, Kan JWY, Yan CSW, Chan TH, Chow LMC. Characterization of a Potent, Selective, and Safe Inhibitor, Ac15(Az8) 2, in Reversing Multidrug Resistance Mediated by Breast Cancer Resistance Protein (BCRP/ABCG2). Int J Mol Sci 2022; 23:13261. [PMID: 36362047 PMCID: PMC9653733 DOI: 10.3390/ijms232113261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2023] Open
Abstract
Overexpression of breast cancer resistance transporter (BCRP/ABCG2) in cancers has been explained for the failure of chemotherapy in clinic. Inhibition of the transport activity of BCRP during chemotherapy should reverse multidrug resistance. In this study, a triazole-bridged flavonoid dimer Ac15(Az8)2 was identified as a potent, nontoxic, and selective BCRP inhibitor. Using BCRP-overexpressing cell lines, its EC50 for reversing BCRP-mediated topotecan resistance was 3 nM in MCF7/MX100 and 72 nM in S1M180 in vitro. Mechanistic studies revealed that Ac15(Az8)2 restored intracellular drug accumulation by inhibiting BCRP-ATPase activity and drug efflux. It did not down-regulate the cell surface BCRP level to enhance drug retention. It was not a transport substrate of BCRP and showed a non-competitive relationship with DOX in binding to BCRP. A pharmacokinetic study revealed that I.P. administration of 45 mg/kg of Ac15(Az8)2 resulted in plasma concentration above its EC50 (72 nM) for longer than 24 h. It increased the AUC of topotecan by 2-fold. In an in vivo model of BCRP-overexpressing S1M180 xenograft in Balb/c nude mice, it significantly reversed BCRP-mediated topotecan resistance and inhibited tumor growth by 40% with no serious body weight loss or death incidence. Moreover, it also increased the topotecan level in the S1M180 xenograft by 2-fold. Our results suggest that Ac15(Az8)2 is a promising candidate for further investigation into combination therapy for treating BCRP-overexpressing cancers.
Collapse
Affiliation(s)
- Tsz Cheung Chong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Iris L. K. Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Jiahua Cui
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Man Chun Law
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Xuezhen Zhu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Xuesen Hu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Jason W. Y. Kan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Clare S. W. Yan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
- Department of Chemistry, McGill University, Montreal, QC H3A 2K6, Canada
| | - Larry M. C. Chow
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
11
|
Liu ZQ. What about the progress in the synthesis of flavonoid from 2020? Eur J Med Chem 2022; 243:114671. [DOI: 10.1016/j.ejmech.2022.114671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/06/2022] [Accepted: 08/06/2022] [Indexed: 11/04/2022]
|