1
|
Hu C, Cui T, Xu Z, Yang K, Wu Y, Cai W, Yu J, Qiu Y. Inhibiting HMGB1/AGER/NF-κB pathway prevents pro-inflammatory microglia polarization and protect photoreceptors in retinitis pigmentosa. Int Immunopharmacol 2025; 149:114192. [PMID: 39904032 DOI: 10.1016/j.intimp.2025.114192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE Retinitis pigmentosa (RP) is an inherited retinal neurodegenerative disease which is a significant contributor to blindness. Microglia-mediated inflammation plays a crucial role in retinitis pigmentosa. However, the activation mechanisms of microglia and the role of polarized microglia in RP remain unclear. High-mobility group box 1 (HMGB1) is a key contributor to aseptic inflammation, and glycyrrhizin exerts anti-inflammatory effects by targeting HMGB1. This study aimed to investigate the role of HMGB1 and microglia in RP and explore the protective effects of glycyrrhizin on photoreceptors. METHODS Male C57BL/6 mice and age-matched rd1 mice were used for in vivo models, while zaprinast-treated 661w cells and HMGB1-treated BV-2 cells were used for in vitro models. In this study, the expression of HMGB1 was analyzed using QPCR and western blot (WB). Immunofluorescence staining and ELISA were performed to assess HMGB1 translocation and secretion. Glycyrrhizin was used to inhibit HMGB1, while FPS-ZM1 served as an inhibitor of the receptor for advanced glycation end products (AGER). Microglial polarization was evaluated by QPCR, and the HMGB1/ AGER/ NF-κB signaling pathway was analyzed through WB. Photoreceptor degeneration and visual function were assessed through H&E staining, electroretinography, and TUNEL staining. RESULTS We observed elevated levels of HMGB1 in the retina of rd1 mice and demonstrated in vitro that photoreceptors may serve as a significant source of HMGB1 in the retina. Additionally, HMGB1 was observed to cause microglial polarization via the HMGB1/AGER/ NF-κB pathway and the polarized microglia secrete inflammatory factors including TNF-α and IL-1β which accelerates the degeneration of photoreceptors. Glycyrrhizin reversed the degeneration of photoreceptors and loss of visual function in rd1 mice through the HMGB1/AGER/ NF-κB pathway. CONCLUSION Our findings showed that HMGB1 secreted by photoreceptors activated the microglia through the HMGB1/AGER/NF-κB pathway and the polarized microglia accelerates the degeneration of photoreceptors. Glycyrrhizin reversed the polarization caused by HMGB1 in vitro and delayed the progression of RP in vivo, presenting a potential novel approach for treating retinitis pigmentosa.
Collapse
Affiliation(s)
- Chengyu Hu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072 China
| | - Tao Cui
- Tianjin Medical Device Evaluation and Inspection Center, Tianjin, China
| | - Zihang Xu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072 China
| | - Kun Yang
- Tianjin Medical Device Evaluation and Inspection Center, Tianjin, China
| | - Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072 China
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072 China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072 China; Department of Ophthalmology, The Third People's Hospital of Bengbu, Bengbu, China.
| | - Yaoyan Qiu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072 China.
| |
Collapse
|
2
|
Shen P, Zhang L, Jiang X, Yu B, Zhang J. Targeting HMGB1 and Its Interaction with Receptors: Challenges and Future Directions. J Med Chem 2024; 67:21671-21694. [PMID: 39648929 DOI: 10.1021/acs.jmedchem.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
High mobility group box 1 (HMGB1) is a nonhistone chromatin protein predominantly located in the nucleus. However, under pathological conditions, HMGB1 can translocate from the nucleus to the cytoplasm and subsequently be released into the extracellular space through both active secretion and passive release mechanisms. The distinct cellular locations of HMGB1 facilitate its interaction with various endogenous and exogenous factors, allowing it to perform diverse functions across a range of diseases. This Perspective provides a comprehensive overview of the structure, release mechanisms, and multifaceted roles of HMGB1 in disease contexts. Furthermore, it introduces the development of both small molecule and macromolecule inhibitors targeting HMGB1 and its interaction with receptors. A detailed analysis of the predicted pockets is also presented, aiming to establish a foundation for the future design and development of HMGB1 inhibitors.
Collapse
Affiliation(s)
- Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Libang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xuewa Jiang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
3
|
Shen P, Jiang X, Kuang Y, Wang W, Raj R, Wang W, Zhu Y, Zhang X, Yu B, Zhang J. Natural triterpenoid-aided identification of the druggable interface of HMGB1 occupied by TLR4. RSC Chem Biol 2024; 5:751-762. [PMID: 39092445 PMCID: PMC11289874 DOI: 10.1039/d4cb00062e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/04/2024] [Indexed: 08/04/2024] Open
Abstract
HMGB1 interacts with TLR4 to activate the inflammatory cascade response, contributing to the pathogenesis of endogenous tissue damage and infection. The immense importance of HMGB1-TLR4 interaction in the immune system has made its binding interface an area of significant interest. To map the binding interface of HMGB1 occupied by TLR4, triterpenoids that disrupt the HMGB1-TLR4 interaction and interfere with HMGB1-induced inflammation were developed. Using the unique triterpenoid PT-22 as a probe along with photoaffinity labeling and site-directed mutagenesis, we found that the binding interface of HMGB1 was responsible for the recognition of TLR4 located on the "L" shaped B-box with K114 as a crucial hot-spot residue. Amazingly, this highly conserved interaction surface overlapped with the antigen-recognition epitope of an anti-HMGB1 antibody. Our findings propose a novel strategy for better understanding the druggable interface of HMGB1 that interacts with TLR4 and provide insights for the rational design of HMGB1-TLR4 PPI inhibitors to fine tune immune responses.
Collapse
Affiliation(s)
- Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 210009 P. R. China +86-25-86185158 +86-25-86185157
| | - Xuewa Jiang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 210009 P. R. China +86-25-86185158 +86-25-86185157
| | - Yi Kuang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 210009 P. R. China +86-25-86185158 +86-25-86185157
| | - Weiwei Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine Nanjing 210046 P. R. China
| | - Richa Raj
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 210009 P. R. China +86-25-86185158 +86-25-86185157
| | - Wei Wang
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago Chicago IL USA
| | - Yuyuan Zhu
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 P. R. China
| | - Xiaochun Zhang
- School of Pharmaceutical Sciences, Tsinghua University Beijing 100084 P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 210009 P. R. China +86-25-86185158 +86-25-86185157
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University Nanjing 211198 P. R. China
| |
Collapse
|
4
|
Raj R, Shen P, Yu B, Zhang J. A patent review on HMGB1 inhibitors for the treatment of liver diseases. Expert Opin Ther Pat 2024; 34:127-140. [PMID: 38557201 DOI: 10.1080/13543776.2024.2338105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION HMGB1 is a non-histone chromatin protein released or secreted in response to tissue damage or infection. Extracellular HMGB1, as a crucial immunomodulatory factor, binds with several different receptors to innate inflammatory responses that aggravate acute and chronic liver diseases. The increased levels of HMGB1 have been reported in various liver diseases, highlighting that it represents a potential biomarker and druggable target for therapeutic development. AREAS COVERED This review summarizes the current knowledge on the structure, function, and interacting receptors of HMGB1 and its significance in multiple liver diseases. The latest patented and preclinical studies of HMGB1 inhibitors (antibodies, peptides, and small molecules) for liver diseases are summarized by using the keywords 'HMGB1,' 'HMGB1 antagonist, HMGB1-inhibitor,' 'liver disease' in Web of Science, Google Scholar, Google Patents, and PubMed databases in the year from 2017 to 2023. EXPERT OPINIONS In recent years, extensive research on HMGB1-dependent inflammatory signaling has discovered potent inhibitors of HMGB1 to reduce the severity of liver injury. Despite significant progress in the development of HMGB1 antagonists, few of them are approved for clinical treatment of liver-related diseases. Developing safe and effective specific inhibitors for different HMGB1 isoforms and their interaction with receptors is the focus of future research.
Collapse
Affiliation(s)
- Richa Raj
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P. R. China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
5
|
Ratti A, Fassi EMA, Forlani F, Zangrossi M, Mori M, Cappitelli F, Roda G, Villa S, Villa F, Grazioso G. Unlocking the Antibiofilm Potential of Natural Compounds by Targeting the NADH:quinone Oxidoreductase WrbA. Antioxidants (Basel) 2023; 12:1612. [PMID: 37627607 PMCID: PMC10451263 DOI: 10.3390/antiox12081612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilm-dwelling cells endure adverse conditions, including oxidative imbalances. The NADH:quinone oxidoreductase enzyme WrbA has a crucial role in the mechanism of action of antibiofilm molecules such as ellagic and salicylic acids. This study aimed to exploit the potential of the WrbA scaffold as a valuable target for identifying antibiofilm compounds at non-lethal concentrations. A three-dimensional computational model, based on the published WrbA structure, was used to screen natural compounds from a virtual library of 800,000 compounds. Fisetin, morin, purpurogallin, NZ028, and NZ034, along with the reference compound ellagic acid, were selected. The antibiofilm effect of the molecules was tested at non-lethal concentrations evaluating the cell-adhesion of wild-type and WrbA-deprived Escherichia coli strains through fluorochrome-based microplate assays. It was shown that, except for NZ028, all of the selected molecules exhibited notable antibiofilm effects. Purpurogallin and NZ034 showed excellent antibiofilm performances at the lowest concentration of 0.5 μM, in line with ellagic acid. The observed loss of activity and the level of reactive oxygen species in the mutant strain, along with the correlation with terms contributing to the ligand-binding free energy on WrbA, strongly indicates the WrbA-dependency of purpurogallin and NZ034. Overall, the molecular target WrbA was successfully employed to identify active compounds at non-lethal concentrations, thus revealing, for the first time, the antibiofilm efficacy of purpurogallin and NZ034.
Collapse
Affiliation(s)
- Alessandro Ratti
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Enrico M A Fassi
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Fabio Forlani
- Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Maurizio Zangrossi
- Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Matteo Mori
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Francesca Cappitelli
- Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Stefania Villa
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Federica Villa
- Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Giovanni Grazioso
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
6
|
Cecchinato V, Martini V, Pirani E, Ghovehoud E, Uguccioni M. The chemokine landscape: one system multiple shades. Front Immunol 2023; 14:1176619. [PMID: 37251376 PMCID: PMC10213763 DOI: 10.3389/fimmu.2023.1176619] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Leukocyte trafficking is mainly governed by chemokines, chemotactic cytokines, which can be concomitantly produced in tissues during homeostatic conditions or inflammation. After the discovery and characterization of the individual chemokines, we and others have shown that they present additional properties. The first discoveries demonstrated that some chemokines act as natural antagonists on chemokine receptors, and prevent infiltration of leukocyte subsets in tissues. Later on it was shown that they can exert a repulsive effect on selective cell types, or synergize with other chemokines and inflammatory mediators to enhance chemokine receptors activities. The relevance of the fine-tuning modulation has been demonstrated in vivo in a multitude of processes, spanning from chronic inflammation to tissue regeneration, while its role in the tumor microenvironment needs further investigation. Moreover, naturally occurring autoantibodies targeting chemokines were found in tumors and autoimmune diseases. More recently in SARS-CoV-2 infection, the presence of several autoantibodies neutralizing chemokine activities distinguished disease severity, and they were shown to be beneficial, protecting from long-term sequelae. Here, we review the additional properties of chemokines that influence cell recruitment and activities. We believe these features need to be taken into account when designing novel therapeutic strategies targeting immunological disorders.
Collapse
|
7
|
Cambier S, Gouwy M, Proost P. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol Immunol 2023; 20:217-251. [PMID: 36725964 PMCID: PMC9890491 DOI: 10.1038/s41423-023-00974-6] [Citation(s) in RCA: 213] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/12/2022] [Indexed: 02/03/2023] Open
Abstract
Chemokines are an indispensable component of our immune system through the regulation of directional migration and activation of leukocytes. CXCL8 is the most potent human neutrophil-attracting chemokine and plays crucial roles in the response to infection and tissue injury. CXCL8 activity inherently depends on interaction with the human CXC chemokine receptors CXCR1 and CXCR2, the atypical chemokine receptor ACKR1, and glycosaminoglycans. Furthermore, (hetero)dimerization and tight regulation of transcription and translation, as well as post-translational modifications further fine-tune the spatial and temporal activity of CXCL8 in the context of inflammatory diseases and cancer. The CXCL8 interaction with receptors and glycosaminoglycans is therefore a promising target for therapy, as illustrated by multiple ongoing clinical trials. CXCL8-mediated neutrophil mobilization to blood is directly opposed by CXCL12, which retains leukocytes in bone marrow. CXCL12 is primarily a homeostatic chemokine that induces migration and activation of hematopoietic progenitor cells, endothelial cells, and several leukocytes through interaction with CXCR4, ACKR1, and ACKR3. Thereby, it is an essential player in the regulation of embryogenesis, hematopoiesis, and angiogenesis. However, CXCL12 can also exert inflammatory functions, as illustrated by its pivotal role in a growing list of pathologies and its synergy with CXCL8 and other chemokines to induce leukocyte chemotaxis. Here, we review the plethora of information on the CXCL8 structure, interaction with receptors and glycosaminoglycans, different levels of activity regulation, role in homeostasis and disease, and therapeutic prospects. Finally, we discuss recent research on CXCL12 biochemistry and biology and its role in pathology and pharmacology.
Collapse
Affiliation(s)
- Seppe Cambier
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Wang L, Xu L, Wang Z, Hou T, Hao H, Sun H. Cooperation of structural motifs controls drug selectivity in cyclin-dependent kinases: an advanced theoretical analysis. Brief Bioinform 2023; 24:6964518. [PMID: 36578163 DOI: 10.1093/bib/bbac544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/30/2022] Open
Abstract
Understanding drug selectivity mechanism is a long-standing issue for helping design drugs with high specificity. Designing drugs targeting cyclin-dependent kinases (CDKs) with high selectivity is challenging because of their highly conserved binding pockets. To reveal the underlying general selectivity mechanism, we carried out comprehensive analyses from both the thermodynamics and kinetics points of view on a representative CDK12 inhibitor. To fully capture the binding features of the drug-target recognition process, we proposed to use kinetic residue energy analysis (KREA) in conjunction with the community network analysis (CNA) to reveal the underlying cooperation effect between individual residues/protein motifs to the binding/dissociating process of the ligand. The general mechanism of drug selectivity in CDKs can be summarized as that the difference of structural cooperation between the ligand and the protein motifs leads to the difference of the energetic contribution of the key residues to the ligand. The proposed mechanisms may be prevalent in drug selectivity issues, and the insights may help design new strategies to overcome/attenuate the drug selectivity associated problems.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, Jiangsu, P. R. China
| | - Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | | | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 210009 Nanjing, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| |
Collapse
|
9
|
Long COVID and the Neuroendocrinology of Microbial Translocation Outside the GI Tract: Some Treatment Strategies. ENDOCRINES 2022. [DOI: 10.3390/endocrines3040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Similar to previous pandemics, COVID-19 has been succeeded by well-documented post-infectious sequelae, including chronic fatigue, cough, shortness of breath, myalgia, and concentration difficulties, which may last 5 to 12 weeks or longer after the acute phase of illness. Both the psychological stress of SARS-CoV-2 infection and being diagnosed with COVID-19 can upregulate cortisol, a stress hormone that disrupts the efferocytosis effectors, macrophages, and natural killer cells, leading to the excessive accumulation of senescent cells and disruption of biological barriers. This has been well-established in cancer patients who often experience unrelenting fatigue as well as gut and blood–brain barrier dysfunction upon treatment with senescence-inducing radiation or chemotherapy. In our previous research from 2020 and 2021, we linked COVID-19 to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) via angiotensin II upregulation, premature endothelial senescence, intestinal barrier dysfunction, and microbial translocation from the gastrointestinal tract into the systemic circulation. In 2021 and 2022, these hypotheses were validated and SARS-CoV-2-induced cellular senescence as well as microbial translocation were documented in both acute SARS-CoV-2 infection, long COVID, and ME/CFS, connecting intestinal barrier dysfunction to disabling fatigue and specific infectious events. The purpose of this narrative review is to summarize what is currently known about host immune responses to translocated gut microbes and how these responses relate to fatiguing illnesses, including long COVID. To accomplish this goal, we examine the role of intestinal and blood–brain barriers in long COVID and other illnesses typified by chronic fatigue, with a special emphasis on commensal microbes functioning as viral reservoirs. Furthermore, we discuss the role of SARS-CoV-2/Mycoplasma coinfection in dysfunctional efferocytosis, emphasizing some potential novel treatment strategies, including the use of senotherapeutic drugs, HMGB1 inhibitors, Toll-like receptor 4 (TLR4) blockers, and membrane lipid replacement.
Collapse
|
10
|
胡 华, 李 连, 刘 艳, 王 书, 谢 双, 孙 建. [Effect of resveratrol on high mobility group box-1 protein signaling pathway in cartilage endplate degeneration caused by inflammation]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:461-469. [PMID: 35426287 PMCID: PMC9011066 DOI: 10.7507/1002-1892.202110084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/23/2022] [Indexed: 01/24/2023]
Abstract
Objective To investigate the effect of resveratrol (RES) on inflammation-induced cartilage endplate (CEP) degeneration, and its regulatory mechanism on high mobility group box-1 protein (HMGB1) signaling pathway. Methods The intervertebral CEP cells of Sprague Dawley (SD) rats aged 3 weeks were extracted and identified by toluidine blue staining and immunofluorescence staining of rabbit anti-rat collagen type Ⅱ. The cell counting kit 8 (CCK-8) method was used to screen the optimal concentration of RES on intervertebral CEP cells. Gene chip analysis was used to determine the target of RES on intervertebral CEP cells. Interleukin 1β (IL-1β) was used to construct the intervertebral CEP cell degeneration model caused by inflammation and the 7-8-week-old SD rat intervertebral disc degeneration model, and pcDNA3.1-HMGB1 (pcDNA3.1) was used as the control of RES effect. Flow cytometry and TUNEL staining were used to detect the apoptotic rate of intervertebral CEP cells and rat intervertebral disc tissue cells, respectively. ELISA kit was used to detect the content of interleukin 10 (IL-10) and tumor necrosis factor α (TNF-α) in the cell supernatant and rat serum. Western blot was used to detect the expressions of HMGB1, extracellular signal-regulated protein kinase (ERK), phosphorylated ERK (p-ERK), B cell lymphoma/leukemia 2 gene (Bcl-2), and Bcl-2-associated X protein (Bax). Results The extracted cells were identified as rat intervertebral CEP cells. CCK-8 method screened out the highest activity of intervertebral CEP cells treated with 30 μmol/L RES. The gene chip analysis confirmed that the HMGB1-ERK signal was the target of RES. Both cell experiments and animal experiments showed that RES treatment can significantly down-regulate the apoptosis rate of intervertebral CEP cells, inhibit the release of TNF-α, and increase the content of IL-10; and down-regulate the expressions of HMGB1, p-ERK, and Bax, and increase Bcl-2; and pcDNA3.1 could partially reverse these effects of RES, and the differences were all significant (P<0.05). Conclusion RES can significantly inhibit the apoptosis of intervertebral CEP cells induced by inflammation, which is related to inhibiting the expression of HMGB1.
Collapse
Affiliation(s)
- 华 胡
- 承德医学院附属医院骨伤科(河北承德 067000)Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde Hebei, 067000, P. R. China
| | - 连泰 李
- 承德医学院附属医院骨伤科(河北承德 067000)Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde Hebei, 067000, P. R. China
| | - 艳伟 刘
- 承德医学院附属医院骨伤科(河北承德 067000)Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde Hebei, 067000, P. R. China
| | - 书君 王
- 承德医学院附属医院骨伤科(河北承德 067000)Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde Hebei, 067000, P. R. China
| | - 双喜 谢
- 承德医学院附属医院骨伤科(河北承德 067000)Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde Hebei, 067000, P. R. China
| | - 建君 孙
- 承德医学院附属医院骨伤科(河北承德 067000)Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde Hebei, 067000, P. R. China
| |
Collapse
|