1
|
Hu W, Zang L, Feng X, Zhuang S, Chang L, Liu Y, Huang J, Zhang Y. Advances in epigenetic therapies for B-cell non-hodgkin lymphoma. Ann Hematol 2024; 103:5085-5101. [PMID: 39652169 DOI: 10.1007/s00277-024-06131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025]
Abstract
B-cell non-Hodgkin lymphomas (B-NHLs) constitute a varied group of cancers originating from B lymphocytes. B-NHLs can occur at any stage of normal B-cell development, with most arising from germinal centres (e.g. diffuse large B-cell lymphoma, DLBCL and follicular lymphoma, FL). The standard initial treatment usually involves the chemoimmunotherapy regimen. Although there is a high initial response rate, 30-40% of high-risk patients often face relapsed or refractory lymphoma due to drug resistance. Recent research has uncovered a significant link between the development of B-NHLs and various epigenetic processes, such as DNA methylation, histone modification, regulation by non-coding RNAs, and chromatin remodeling. Therapies targeting these epigenetic changes have demonstrated considerable potential in clinical studies. This article examines the influence of epigenetic regulation on the onset and progression of B-NHLs. It discusses the current therapeutic targets and agents linked to these epigenetic mechanisms, with the goal of offering new perspectives and approaches for targeted therapies and combination chemotherapy in treating B-NHLs.
Collapse
Affiliation(s)
- Weiwen Hu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Lanlan Zang
- Pharmaceutical laboratory, Department of Pharmacy, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Xiaoxi Feng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Shuhui Zhuang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Liudi Chang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Yongjing Liu
- Biomedical Big Data Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311121, China.
| | - Jinyan Huang
- Biomedical Big Data Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311121, China.
| | - Yuanyuan Zhang
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China.
| |
Collapse
|
2
|
Le M, Lu W, Tan X, Luo B, Yu T, Sun Y, Guo Z, Huang P, Zhu D, Wu Q, Ganesan A, Wen S. Design, Synthesis, and Biological Evaluation of Potent EZH2/LSD1 Dual Inhibitors for Prostate Cancer. J Med Chem 2024; 67:15586-15605. [PMID: 39196854 DOI: 10.1021/acs.jmedchem.4c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
As histone modification enzymes, EZH2 mediates H3K27 trimethylation (H3K27me3), whereas LSD1 removes methyl groups from H3K4me1/2 and H3K9me1/2. Synergistic anticancer effects of combining inhibitors of these two enzymes are observed in leukemia and prostate cancer. Thus, a series of EZH2/LSD1 dual inhibitors are designed and synthesized to evaluate their anticancer activity. After the structure-activity study, one of the best compounds, ML234, displayed excellent antiproliferative capacity against prostate cancer cell lines LNCAP, PC3, and 22RV1. Enzymatic assays ascertained that the anticancer potency of ML234 was mediated through coinhibition of EZH2 and LSD1. Moreover, the accumulation of H3K4me2 and H3K9me2 and the decrease of H3K27me3 induced by ML234 were verified by Western blot analysis. More importantly, the compound remarkably suppressed the tumor growth and enhanced the therapeutic efficacy of clinical drug enzalutamide in the 22RV1 xenograft mouse model, indicating that it may have potential as an anticancer agent in prostate cancer.
Collapse
Affiliation(s)
- Meiling Le
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiaozhuo Tan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tiantian Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yameng Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhirong Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Daqian Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiang Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa 999078, Macau
| | - A Ganesan
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
3
|
Wu D, Zeng X, Zhao Y, Qin M, Gong P. Discovery of novel pyridone-benzamide derivatives possessing a 1-methyl-2-benzimidazolinone moiety as potent EZH2 inhibitors for the treatment of B-cell lymphomas. Bioorg Med Chem 2024; 105:117725. [PMID: 38640588 DOI: 10.1016/j.bmc.2024.117725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a promising therapeutic target for diffuse large B-cell lymphoma. In this study, based on the binding model of 1 (tazemetostat) with polycomb repressive complex 2 (PRC2), we designed and synthesized a series of tazemetostat analogs bearing a 1-methyl-2-benzimidazolinone moiety to improve the inhibitory activity of EZH2 wild-type (WT) and Y641 mutants and enhance metabolic stability. After the assessment of the structure-activity relationship at enzymatic and cellular levels, compound N40 was identified. Biochemical assays showed that compound N40 (IC50 = 0.32 nM) exhibited superior inhibitory activity against EZH2 WT, compared with 1 (IC50 = 1.20 nM), and high potency against EZH2 Y641 mutants (EZH2 Y641F, IC50 = 0.03 nM; EZH2 Y641N, IC50 = 0.08 nM), which were approximately 10-fold more active than those of 1 (EZH2 Y641F, IC50 = 0.37 nM; EZH2 Y641N, IC50 = 0.85 nM). Furthermore, compound N40 (IC50 = 3.52 ± 1.23 nM) effectively inhibited the proliferation of Karpas-422 cells and was more potent than 1 (IC50 = 35.01 ± 1.28 nM). Further cellular experiments showed that N40 arrested Karpas-422 cells in the G1 phase and induced apoptosis in a dose-dependent manner. Moreover, N40 inhibited the trimethylation of lysine 27 on histone H3 (H3K27Me3) in Karpas-422 cells bearing the EZH2 Y641N mutant. Additionally, N40 (T1/2 = 177.69 min) showed improved metabolic stability in human liver microsomes compared with 1 (T1/2 = 7.97 min). Our findings suggest N40 as a promising EZH2 inhibitor; further investigation remains warranted to confirm our findings and further develop N40.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiaoyi Zeng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yuanhao Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Mingze Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Ping Gong
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
4
|
Li X, Wang C, Li S, Yin F, Luo H, Zhang Y, Luo Z, Chen Y, Wan S, Kong L, Wang X. Dual target PARP1/EZH2 inhibitors inducing excessive autophagy and producing synthetic lethality for triple-negative breast cancer therapy. Eur J Med Chem 2024; 265:116054. [PMID: 38134746 DOI: 10.1016/j.ejmech.2023.116054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Currently available PARP inhibitors are mainly used for the treatment of BRCA-mutated triple-negative breast cancer (TNBC), with a narrow application range of approximately 15% of patients. Recent studies have shown that EZH2 inhibitors have an obvious effect on breast cancer xenograft models and can promote the sensitivity of ovarian cancer cells to PARP inhibitors. Here, a series of new dual-target PARP1/EZH2 inhibitors for wild-BRCA type TNBC were designed and synthesized. SAR studies helped us identify compound 12e, encoded KWLX-12e, with good inhibitory activity against PARP1 (IC50 = 6.89 nM) and EZH2 (IC50 = 27.34 nM). Meanwhile, KWLX-12e showed an optimal cytotoxicity against MDA-MB-231 cells (IC50 = 2.84 μM) and BT-549 cells (IC50 = 0.91 μM), with no toxicity on normal breast cell lines. KWLX-12e also exhibited good antitumor activity with the TGI value of 75.94%, more effective than Niraparib plus GSK126 (TGI = 57.24%). Mechanistic studies showed that KWLX-12e achieved synthetic lethality indirectly by inhibiting EZH2 to increase the sensitivity to PARP1, and induced cell death by regulating excessive autophagy. KWLX-12e is expected to be a potential candidate for the treatment of TNBC.
Collapse
Affiliation(s)
- Xinxin Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Cheng Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Heng Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yonglei Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhongwen Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yifan Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Siyuan Wan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
5
|
Zhang R, Xie X, Ni D, Wang H, Li J, Xiao W. MT-EpiPred: Multitask Learning for Prediction of Small-Molecule Epigenetic Modulators. J Chem Inf Model 2024; 64:110-118. [PMID: 38109786 DOI: 10.1021/acs.jcim.3c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Epigenetic modulators play an increasingly crucial role in the treatment of various diseases. In this case, it is imperative to systematically investigate the activity of these agents and understand their influence on the entire epigenetic regulatory network rather than solely concentrate on individual targets. This work introduces MT-EpiPred, a multitask learning method capable of predicting the activity of compounds against 78 epigenetic targets. MT-EpiPred demonstrated outstanding performance, boasting an average auROC of 0.915 and the ability to handle few-shot targets. In comparison to the existing method, MT-EpiPred not only expands the target pool but also achieves superior predictive performance with the same data set. MT-EpiPred was then applied to predict the epigenetic target of a newly synthesized compound (1), where the molecular target was unknown. The method identified KDM4D as a potential target, which was subsequently validated through an in vitro enzyme inhibition assay, revealing an IC50 of 4.8 μM. The MT-EpiPred method has been implemented in the web server MT-EpiPred (http://epipred.com), providing free accessibility. In summary, this work presents a convenient and accurate tool for discovering novel small-molecule epigenetic modulators, particularly in the development of selective inhibitors and evaluating the impact of these inhibitors over a broad epigenetic network.
Collapse
Affiliation(s)
- Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; The Cloud Computing Engineering Research Center of Yunnan Province; Key Laboratory of Software Engineering of Yunnan Province; School of Software; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Xingran Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; The Cloud Computing Engineering Research Center of Yunnan Province; Key Laboratory of Software Engineering of Yunnan Province; School of Software; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Dongxuan Ni
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; The Cloud Computing Engineering Research Center of Yunnan Province; Key Laboratory of Software Engineering of Yunnan Province; School of Software; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Hairong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; The Cloud Computing Engineering Research Center of Yunnan Province; Key Laboratory of Software Engineering of Yunnan Province; School of Software; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Jin Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; The Cloud Computing Engineering Research Center of Yunnan Province; Key Laboratory of Software Engineering of Yunnan Province; School of Software; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; The Cloud Computing Engineering Research Center of Yunnan Province; Key Laboratory of Software Engineering of Yunnan Province; School of Software; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
6
|
Xu X, Chen J, Wang G, Zhang X, Li Q, Zhou X, Guo F, Li M. Conformationally constrained potent inhibitors for enhancer of zeste homolog 2 (EZH2). Bioorg Med Chem Lett 2024; 97:129558. [PMID: 37956762 DOI: 10.1016/j.bmcl.2023.129558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
The enhancer of zeste homolog 2 (EZH2) plays the role of the main catalytic subunit of polycomb repressive complex 2 (PRC2) that catalyzes the methylation of histone H3 lysine 27 (H3K27). Overexpression or mutation of EZH2 has been observed in many types of hematologic malignancies and solid tumors, such as myeloma, lymphoma, prostate, breast, kidney, and lung cancers. EZH2 has been demonstrated as a promising therapeutic target for the treatment of tumors. Based on the structure of 1 (EPZ-6438), a series of novel conformationally constrained derivatives were designed and synthesized aiming to improve the EZH2 inhibition activity, especially for mutated EZH2. Structure and activity relationship (SAR) exploration and optimization at both enzymatic and cellular levels led to the discovery of 28. In vitro, 28 displayed potent EZH2 inhibition activity with an IC50 value of 0.95 nM, which is comparable to EPZ-6438 (1). 28 exhibited high anti-proliferation activity against different lymphoma cell lines including WSU-DLCL2, Pfeiffer and Karpas-422 (IC50 = 2.36, 1.73, and 1.82 nM, respectively). In vivo, 28 showed acceptable pharmacokinetic characteristics (oral bioavailability F = 36.9%) and better efficacy than 1 in both Pfeiffer and Karpas-422 xenograft mouse models, suggesting that it can be further developed as a potential therapeutic candidate for EZH2-associated cancers.
Collapse
Affiliation(s)
- Xin Xu
- Shanghai Synergy Pharmaceutical Sciences Co., Ltd., Shanghai, China.
| | - Jia Chen
- Shanghai Synergy Pharmaceutical Sciences Co., Ltd., Shanghai, China
| | - Guan Wang
- Shanghai Synergy Pharmaceutical Sciences Co., Ltd., Shanghai, China
| | - Xiaojuan Zhang
- Shanghai Synergy Pharmaceutical Sciences Co., Ltd., Shanghai, China
| | - Qiang Li
- Shanghai Synergy Pharmaceutical Sciences Co., Ltd., Shanghai, China
| | - Xiaobo Zhou
- Shanghai Synergy Pharmaceutical Sciences Co., Ltd., Shanghai, China
| | - Fengying Guo
- Shanghai Synergy Pharmaceutical Sciences Co., Ltd., Shanghai, China
| | - Min Li
- Shanghai Synergy Pharmaceutical Sciences Co., Ltd., Shanghai, China
| |
Collapse
|
7
|
Zhou B, Wang B, Zou F, Mei H, Liu Q, Qi S, Wang W, Jin R, Wang A, Chen Y, Liu F, Wang W, Liu J, Liu Q. Discovery of dihydropyridinone derivative as a covalent EZH2 degrader. Eur J Med Chem 2023; 261:115825. [PMID: 37826933 DOI: 10.1016/j.ejmech.2023.115825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 10/14/2023]
Abstract
EZH2 is overexpressed in multiple types of cancer and high expression level of EZH2 correlates with poor prognosis. Besides the regulation of H3K27 trimethylation, EZH2 itself regulates its downstream proteins in a PRC2- and methylation-independent way. Starting from an approved EZH2 inhibitor EPZ-6438, we used covalent drug design and medicinal chemistry approaches to discover a novel covalent EZH2 degrader 38, which forms a covalent bond with EZH2 Cys663 and showed strong biochemical activities against EZH2 WT and mutants. Compound 38 exhibited potent antiproliferation effects against both B-cell lymphoma and TNBC cell lines by reducing the levels of H3K27me3 and EZH2. The mass spectrometry, washout and competition experiments confirmed the covalent binding of 38 to EZH2. This study demonstrates that covalent EZH2 degraders could provide an opportunity for the development of promising new drug candidates.
Collapse
Affiliation(s)
- Bin Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Qingwang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Shuang Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China; Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Wenliang Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Rui Jin
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Yongfei Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Feiyang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China; Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China; Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China; Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China.
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China; Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China.
| |
Collapse
|
8
|
Pinheiro PDSM, Franco LS, Fraga CAM. The Magic Methyl and Its Tricks in Drug Discovery and Development. Pharmaceuticals (Basel) 2023; 16:1157. [PMID: 37631072 PMCID: PMC10457765 DOI: 10.3390/ph16081157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/06/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
One of the key scientific aspects of small-molecule drug discovery and development is the analysis of the relationship between its chemical structure and biological activity. Understanding the effects that lead to significant changes in biological activity is of paramount importance for the rational design and optimization of bioactive molecules. The "methylation effect", or the "magic methyl" effect, is a factor that stands out due to the number of examples that demonstrate profound changes in either pharmacodynamic or pharmacokinetic properties. In many cases, this has been carried out rationally, but in others it has been the product of serendipitous observations. This paper summarizes recent examples that provide an overview of the current state of the art and contribute to a better understanding of the methylation effect in bioactive small-molecule drug candidates.
Collapse
Affiliation(s)
- Pedro de Sena Murteira Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (P.d.S.M.P.); (L.S.F.)
| | - Lucas Silva Franco
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (P.d.S.M.P.); (L.S.F.)
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (P.d.S.M.P.); (L.S.F.)
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
9
|
Jiang YY, Gao Y, Liu JY, Xu Y, Wei MY, Wang CY, Gu YC, Shao CL. Design and Characterization of a Natural Arf-GEFs Inhibitor Prodrug CHNQD-01255 with Potent Anti-Hepatocellular Carcinoma Efficacy In Vivo. J Med Chem 2022; 65:11970-11984. [DOI: 10.1021/acs.jmedchem.2c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yao-Yao Jiang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
| | - Yang Gao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jian-Yu Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ying Xu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
| |
Collapse
|
10
|
Xia J, Li J, Tian L, Ren X, Liu C, Liang C. Targeting Enhancer of Zeste Homolog 2 for the Treatment of Hematological Malignancies and Solid Tumors: Candidate Structure–Activity Relationships Insights and Evolution Prospects. J Med Chem 2022; 65:7016-7043. [DOI: 10.1021/acs.jmedchem.2c00047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Juan Xia
- Laboratory of Hematologic Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, P. R. China
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, P. R. China
| | - Chang Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Zhuhai 519030, P. R. China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| |
Collapse
|
11
|
Zeng J, Zhang J, Sun Y, Wang J, Ren C, Banerjee S, Ouyang L, Wang Y. Targeting EZH2 for cancer therapy: From current progress to novel strategies. Eur J Med Chem 2022; 238:114419. [DOI: 10.1016/j.ejmech.2022.114419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022]
|
12
|
Zhang Q, Yang H, Feng Q, Cao J, Zhang Y, Li L, Yu L. Focus on the classical and non-classical functions of EZH2: Guide the development of inhibitors and degraders. Pharmacol Res 2022; 178:106159. [DOI: 10.1016/j.phrs.2022.106159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/16/2022]
|