1
|
Rebhan L, Fürst R, Schollmeyer D, Serafim RAM, Gehringer M. Go for Gold: Development of a Scalable Synthesis of [1-(Ethoxycarbonyl)cyclopropyl] Triphenylphosphonium Tetrafluoroborate, a Key Reagent to Explore Covalent Monopolar Spindle 1 Inhibitors. ChemistryOpen 2025:e2500106. [PMID: 40237105 DOI: 10.1002/open.202500106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/29/2025] [Indexed: 04/17/2025] Open
Abstract
Covalent approaches have resurged in drug discovery and chemical biology during the last decade. So-called targeted covalent inhibitors typically show a strong and persistent drug-target interaction as well as a high degree of selectivity. In our research group, RMS-07 (8), a First-in-Class covalent inhibitor of the protein kinase threonine tyrosine kinase (TTK)/monopolar spindle 1, which shows promising results in a variety of different solid cancer cell types and will be further optimized in terms of covalent binding kinetics, has recently been developed. However, synthetic accessibility is restricted by a high price and limited availability of [1-(ethoxycarbonyl)cyclopropyl] triphenylphosphonium tetrafluoroborate (10), a key reagent required to assemble the tricyclic core scaffold in a Wittig-type cyclization reaction. This reagent is also described as a valuable synthon for the synthesis of a range of ring systems with interesting applications in medicinal chemistry. However, reliable procedures for its large-scale synthesis are scarce. Only one prior report describes the synthesis of reagent 10, and it contains limited experimental details, making it challenging to reproduce and scale up. Herein, a concise and reproducible decigram-scale synthetic protocol for accessing key reagent 10 is described.
Collapse
Affiliation(s)
- Leon Rebhan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Department of Chemistry, Biochemistry and Pharmacy, University of Bern, 3012, Bern, Switzerland
| | - Rebekka Fürst
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Department for Medicinal Chemistry, Institute for Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, 72076, Tübingen, Germany
| | - Dieter Schollmeyer
- Department Chemie, Zentrale Analytik, Johannes Gutenberg-Universität Mainz, 55128, Mainz, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, 72076, Tübingen, Germany
- Department of Organic and Pharmaceutical Chemistry, School of Engineering, Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Vía Augusta 390, 08017, Barcelona, Spain
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Department for Medicinal Chemistry, Institute for Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
2
|
Lima I, Borges F, Pombinho A, Chavarria D. The spindle assembly checkpoint: Molecular mechanisms and kinase-targeted drug discovery. Drug Discov Today 2025; 30:104355. [PMID: 40216293 DOI: 10.1016/j.drudis.2025.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 04/20/2025]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism required for the fidelity of chromosome segregation, ensuring that anaphase is not initiated until all chromosomes are properly attached to the mitotic spindle. In cancer cells, SAC inactivation leads to aneuploidy beyond the cell's adaptation, culminating in cell death. This review provides a concise overview of the SAC signaling process and properties. Recent drug discovery strategies to selectively target kinases, particularly Aurora B and monopolar spindle kinase (MPS1), aimed at developing innovative anticancer agents able to override SAC are also presented.
Collapse
Affiliation(s)
- Inês Lima
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - António Pombinho
- i3S, Institute for Research and Innovation in Health, University of Porto 4200-135 Porto, Portugal; IBMC, Institute for Molecular and Cell Biology, University of Porto 4200-135 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
3
|
Liebing A, Rabe P, Krumbholz P, Zieschang C, Bischof F, Schulz A, Billig S, Birkemeyer C, Pillaiyar T, Garcia‐Marcos M, Kraft R, Stäubert C. Succinate receptor 1 signaling mutually depends on subcellular localization and cellular metabolism. FEBS J 2025; 292:2017-2050. [PMID: 39838520 PMCID: PMC12001207 DOI: 10.1111/febs.17407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/08/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Succinate is a pivotal tricarboxylic acid cycle metabolite but also specifically activates the Gi- and Gq-coupled succinate receptor 1 (SUCNR1). Contradictory roles of succinate and succinate-SUCNR1 signaling include reports about its anti- or pro-inflammatory effects. The link between cellular metabolism and localization-dependent SUCNR1 signaling qualifies as a potential cause for the reported conflicts. To systematically address this connection, we used a diverse set of methods, including several bioluminescence resonance energy transfer-based biosensors, dynamic mass redistribution measurements, second messenger and kinase phosphorylation assays, calcium imaging, and metabolic analyses. Different cellular metabolic states were mimicked using glucose (Glc) or glutamine (Gln) as available energy substrates to provoke differential endogenous succinate (SUC) production. We show that SUCNR1 signaling, localization, and metabolism are mutually dependent, with SUCNR1 showing distinct spatial and energy substrate-dependent Gi and Gq protein activation. We found that Gln-consumption associated with a higher rate of oxidative phosphorylation causes increased extracellular SUC concentrations, accompanied by a higher rate of SUCNR1 internalization, reduced miniGq protein recruitment to the plasma membrane, and lower Ca2+ signals. In Glc, under basal conditions, SUCNR1 causes stronger Gq than Gi protein activation, while the opposite is true upon stimulation with an agonist. In addition, SUCNR1 specifically interacts with miniG proteins in endosomal compartments. In THP-1 cells, polarized to M2-like macrophages, endogenous SUCNR1-mediated Gi signaling stimulates glycolysis, while Gq signaling inhibits the glycolytic rate. Our results suggest that the metabolic context determines spatially dependent SUCNR1 signaling, which in turn modulates cellular energy homeostasis and mediates adaptations to changes in SUC concentrations.
Collapse
Affiliation(s)
| | - Philipp Rabe
- Rudolf Schönheimer Institute of Biochemistry, Medical FacultyLeipzig UniversityGermany
| | - Petra Krumbholz
- Rudolf Schönheimer Institute of Biochemistry, Medical FacultyLeipzig UniversityGermany
| | - Christian Zieschang
- Rudolf Schönheimer Institute of Biochemistry, Medical FacultyLeipzig UniversityGermany
| | - Franziska Bischof
- Rudolf Schönheimer Institute of Biochemistry, Medical FacultyLeipzig UniversityGermany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Medical FacultyLeipzig UniversityGermany
| | - Susan Billig
- Research Group of Mass Spectrometry, Institute of Analytical ChemistryLeipzig UniversityGermany
| | - Claudia Birkemeyer
- Research Group of Mass Spectrometry, Institute of Analytical ChemistryLeipzig UniversityGermany
- German Center for Integrative Biodiversity Research (iDiv) Halle‐Leipzig‐JenaGermany
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug DiscoveryEberhard Karls University TübingenGermany
| | - Mikel Garcia‐Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of MedicineBoston UniversityMAUSA
- Department of BiologyBoston University College of Arts & SciencesMAUSA
| | - Robert Kraft
- Carl Ludwig Institute for Physiology, Medical FacultyLeipzig UniversityGermany
| | - Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Medical FacultyLeipzig UniversityGermany
| |
Collapse
|
4
|
Bolanos-Garcia VM. Mps1 kinase functions in mitotic spindle assembly and error correction. Trends Biochem Sci 2025:S0968-0004(25)00032-5. [PMID: 40082122 DOI: 10.1016/j.tibs.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 02/12/2025] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
The protein kinase Mps1 (also known as TTK) is a central component of the mitotic spindle assembly checkpoint (SAC), an essential self-monitoring system of the eukaryotic cell cycle that ensures accurate chromosome segregation by delaying the onset of anaphase until all chromosomes are properly bioriented on the mitotic spindle. Mps1 kinase is an important upstream regulator of the SAC and its recruitment to kinetochores critical for initiating SAC signaling. This review discusses the current understanding of Mps1 essential functions in the SAC, the emerging details of Mps1 role in error correction to safeguard genome stability, and the therapeutic potential of Mps1 inhibition for the treatment of cancer types associated with aberrant SAC signaling and chromosome segregation defects.
Collapse
Affiliation(s)
- Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.
| |
Collapse
|
5
|
Wang G, Seidler NJ, Röhm S, Pan Y, Liang XJ, Haarer L, Berger BT, Sivashanmugam SA, Wydra VR, Forster M, Laufer SA, Chaikuad A, Gehringer M, Knapp S. Probing the Protein Kinases' Cysteinome by Covalent Fragments. Angew Chem Int Ed Engl 2025; 64:e202419736. [PMID: 39716901 DOI: 10.1002/anie.202419736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/23/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
Protein kinases are important drug targets, yet specific inhibitors have been developed for only a fraction of the more than 500 human kinases. A major challenge in designing inhibitors for highly related kinases is selectivity. Unlike their non-covalent counterparts, covalent inhibitors offer the advantage of selectively targeting structurally similar kinases by modifying specific protein side chains, particularly non-conserved cysteines. Previously, covalent fragment screens yielded potent and selective inhibitors for individual kinases such as ERK1/2 but have not been applied to the broader kinome. Furthermore, many of the accessible cysteine positions have not been addressed so far. Here, we outline a generalizable approach to sample ATP-site cysteines with fragment-like covalent inhibitors. We present the development of a kinase-focused covalent fragment library and its systematic screening against a curated selection of 47 kinases, with 60 active site-proximal cysteines using LC/MS and differential scanning fluorimetry (DSF) assays, followed by hit validation through various complementary techniques. Our findings expand the repertoire of targetable cysteines within protein kinases, provide insight into unique binding modes identified from crystal structures and deliver isoform-specific hits with promising profiles as starting points for the development of highly potent and selective covalent inhibitors.
Collapse
Affiliation(s)
- Guiqun Wang
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), DKTK Site Frankfurt-Mainz, German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| | - Nico J Seidler
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
| | - Sandra Röhm
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Yufeng Pan
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Xiaojun Julia Liang
- Faculty of Medicine, Institute for Biomedical Engineering, Department for Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Lisa Haarer
- Faculty of Medicine, Institute for Biomedical Engineering, Department for Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Benedict-Tilman Berger
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Saran Aswathaman Sivashanmugam
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Valentin R Wydra
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
| | - Michael Forster
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Stefan A Laufer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Apirat Chaikuad
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Matthias Gehringer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Faculty of Medicine, Institute for Biomedical Engineering, Department for Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), DKTK Site Frankfurt-Mainz, German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| |
Collapse
|
6
|
Singh A, Lakkaniga NR. Exploring the Conformational Space of MPS1 Kinase Using Metadynamics. Proteins 2025. [PMID: 39786318 DOI: 10.1002/prot.26796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/22/2024] [Accepted: 12/22/2024] [Indexed: 01/12/2025]
Abstract
MPS1 kinase is a dual specificity kinase that plays an important role in the spindle assembly checkpoint mechanism during cell division. Overexpression of MPS1 kinase is reported in several cancers. However, drug discovery and development efforts targeting MPS1 kinase did not result in any clinically successful candidates. All the reported crystal structures of MPS1 kinase adopt the DFG "in" conformation. Knowledge of the other conformations of the kinase would be beneficial in the structure-based drug design of novel inhibitors. This work employs well-tempered metadynamics simulations to explore the conformational space of MPS1 kinase by using its experimentally determined DFG "in" conformation as the starting structure. The simulation could successfully predict the DFG "out" conformation and identify the possible transition states. The key interactions that stabilize the kinase in various conformations were identified, and the effect of phosphorylation of the key residues on the conformation of the kinase was determined.
Collapse
Affiliation(s)
- Anuradha Singh
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| |
Collapse
|
7
|
Heppner DE, Ogboo BC, Urul DA, May EW, Schaefer EM, Murkin AS, Gehringer M. Demystifying Functional Parameters for Irreversible Enzyme Inhibitors. J Med Chem 2024; 67:14693-14696. [PMID: 39115869 DOI: 10.1021/acs.jmedchem.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Affiliation(s)
- David E Heppner
- Department of Chemistry, The State University of New York at Buffalo. Buffalo, New York 14221, United States
| | - Blessing C Ogboo
- Department of Chemistry, The State University of New York at Buffalo. Buffalo, New York 14221, United States
| | - Daniel A Urul
- AssayQuant Technologies Inc., Marlboro, Massachusetts 01752, United States
| | - Earl W May
- AssayQuant Technologies Inc., Marlboro, Massachusetts 01752, United States
| | - Erik M Schaefer
- AssayQuant Technologies Inc., Marlboro, Massachusetts 01752, United States
| | - Andrew S Murkin
- Department of Chemistry, The State University of New York at Buffalo. Buffalo, New York 14221, United States
| | - Matthias Gehringer
- Division of Medicinal Chemistry, Institute of Biomedical Engineering, University Hospital Tübingen and Institute of Pharmaceutical Sciences, University of Tübingen. 72076 Tübingen, Germany
| |
Collapse
|
8
|
Schwalm MP, Saxena K, Müller S, Knapp S. Luciferase- and HaloTag-based reporter assays to measure small-molecule-induced degradation pathway in living cells. Nat Protoc 2024; 19:2317-2357. [PMID: 38637703 DOI: 10.1038/s41596-024-00979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/31/2024] [Indexed: 04/20/2024]
Abstract
The rational development of small-molecule degraders (e.g., proteolysis targeting chimeras) remains a challenge as the rate-limiting steps that determine degrader efficiency are largely unknown. Standard methods in the field of targeted protein degradation mostly rely on classical, low-throughput endpoint assays such as western blots or quantitative proteomics. Here we applied NanoLuciferase- and HaloTag-based screening technologies to determine the kinetics and stability of small-molecule-induced ternary complex formation between a protein of interest and a selected E3 ligase. A collection of live-cell assays were designed to probe the most critical steps of the degradation process while minimizing the number of required expression constructs, making the proposed assay pipeline flexible and adaptable to the requirements of the users. This approach evaluates the underlying mechanism of selective target degraders and reveals the exact characteristics of the developed degrader molecules in living cells. The protocol allows scientists trained in basic cell culture and molecular biology to carry out small-molecule proximity-inducer screening via tracking of the ternary complex formation within 2 weeks of establishment, while degrader screening using the HiBiT system requires a CRISPR-Cas9 engineered cell line whose generation can take up to 3 months. After cell-line generation, degrader screening and validation can be carried out in high-throughput manner within days.
Collapse
Affiliation(s)
- Martin P Schwalm
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany.
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), DTKT Site Frankfurt-Mainz, Heidelberg, Germany.
| | - Krishna Saxena
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Frankfurt am Main, Germany
| | - Susanne Müller
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany.
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), DTKT Site Frankfurt-Mainz, Heidelberg, Germany.
| |
Collapse
|
9
|
Liang C, Zhou Y, Xin L, Kang K, Tian L, Zhang D, Li H, Zhao Q, Gao H, Shi Z. Hijacking monopolar spindle 1 (MPS1) for various cancer types by small molecular inhibitors: Deep insights from a decade of research and patents. Eur J Med Chem 2024; 273:116504. [PMID: 38795520 DOI: 10.1016/j.ejmech.2024.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Monopolar spindle 1 (MPS1) has garnered significant attention due to its pivotal role in regulating the cell cycle. Anomalous expression and hyperactivation of MPS1 have been associated with the onset and advancement of diverse cancers, positioning it as a promising target for therapeutic interventions. This review focuses on MPS1 small molecule inhibitors from the past decade, exploring design strategies, structure-activity relationships (SAR), safety considerations, and clinical performance. Notably, we propose prospects for MPS1 degraders based on proteolysis targeting chimeras (PROTACs), as well as reversible covalent bonding as innovative MPS1 inhibitor design strategies. The objective is to provide valuable information for future development and novel perspectives on potential MPS1 inhibitors.
Collapse
Affiliation(s)
- Chengyuan Liang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China.
| | - Ying Zhou
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Liang Xin
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Kairui Kang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Lei Tian
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science& Technology, Xi'an, 710021, China
| | - Dezhu Zhang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China; Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, China
| | - Han Li
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710082, China
| | - Qianqian Zhao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Hong Gao
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710082, China
| | - Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, 830002, China
| |
Collapse
|
10
|
Bharti V, Kumar A, Wang Y, Roychowdhury N, de Lima Bellan D, Kassaye BB, Watkins R, Capece M, Chung CG, Hilinski G, Vilgelm AE. TTK inhibitor OSU13 promotes immunotherapy responses by activating tumor STING. JCI Insight 2024; 9:e177523. [PMID: 38900577 PMCID: PMC11383830 DOI: 10.1172/jci.insight.177523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
TTK spindle assembly checkpoint kinase is an emerging cancer target. This preclinical study explored the antitumor mechanism of TTK inhibitor OSU13 to define a strategy for clinical development. We observed prominent antitumor activity of OSU13 in melanoma, colon and breast cancer cells, organoids derived from patients with melanoma, and mice bearing colon tumors associated with G2 cell cycle arrest, senescence, and apoptosis. OSU13-treated cells displayed DNA damage and micronuclei that triggered the cytosolic DNA-sensing cGAS/STING pathway. STING was required for the induction of several proteins involved in T cell recruitment and activity. Tumors from OSU13-treated mice showed an increased proportion of T and NK cells and evidence of PD-1/PD-L1 immune checkpoint activation. Combining a low-toxicity dose of OSU13 with anti-PD-1 checkpoint blockade resulted in prominent STING- and CD8+ T cell-dependent tumor inhibition and improved survival. These findings provide a rationale for utilizing TTK inhibitors in combination with immunotherapy in STING-proficient tumors.
Collapse
Affiliation(s)
- Vijaya Bharti
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Amrendra Kumar
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Yinchong Wang
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Molecular Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Nikhil Roychowdhury
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Daniel de Lima Bellan
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | - Reese Watkins
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Marina Capece
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | - Gerard Hilinski
- Drug Development Institute, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, Ohio, USA
| | - Anna E Vilgelm
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Sun Y, Chen Z, Liu G, Chen X, Shi Z, Feng H, Yu L, Li G, Ding K, Huang H, Zhang Z, Xu S. Discovery of a potent and selective covalent threonine tyrosine kinase (TTK) inhibitor. Bioorg Chem 2024; 143:107053. [PMID: 38159497 DOI: 10.1016/j.bioorg.2023.107053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Threonine tyrosine kinase (TTK) is a critical component of the spindle assembly checkpoint and plays a pivotal role in mitosis. TTK has been identified as a potential therapeutic target for human cancers. Here, we describe our design, synthesis and evaluation of a class of covalent TTK inhibitors, exemplified by 16 (SYL1073). Compound 16 potently inhibits TTK kinase with an IC50 of 0.016 μM and displays improved selectivity in a panel of kinases. Mass spectrometry analysis reveals that 16 covalently binds to the C604 cysteine residue in the hinge region of the TTK kinase domain. Furthermore, 16 achieves strong potency in inhibiting the growth of various human cancer cell lines, outperforming its relative reversible inhibitor, and eliciting robust downstream effects. Taken together, compound 16 provides a valuable lead compound for further optimization toward the development of drug for treatment of human cancers.
Collapse
Affiliation(s)
- Yaoliang Sun
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiwen Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guobin Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoai Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihan Shi
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing 100049, China
| | - Huixu Feng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lei Yu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - He Huang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing 100049, China.
| |
Collapse
|
13
|
Zeng Y, Ren X, Jin P, Zhang Y, Zhuo M, Wang J. Development of MPS1 Inhibitors: Recent Advances and Perspectives. J Med Chem 2023; 66:16484-16514. [PMID: 38095579 DOI: 10.1021/acs.jmedchem.3c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Monopolar spindle kinase 1 (MPS1) plays a pivotal role as a dual-specificity kinase governing spindle assembly checkpoint activation and sister chromatid separation in mitosis. Its overexpression has been observed in various human malignancies. MPS1 reduces spindle assembly checkpoint sensitivity, allowing tumor cells with a high degree of aneuploidy to complete mitosis and survive. Thus, MPS1 has emerged as a promising candidate for cancer therapy. Despite the identification of numerous MPS1 inhibitors, only five have advanced to clinical trials with none securing FDA approval for cancer treatment. In this perspective, we provide a concise overview of the structural and functional characteristics of MPS1 by highlighting its relevance to cancer. Additionally, we explore the structure-activity relationships, selectivity, and pharmacokinetics of MPS1 inhibitors featuring diverse scaffolds. Moreover, we review the reported work on enhancing MPS1 inhibitor selectivity, offering valuable insights into the discovery of novel, highly potent small-molecule MPS1 inhibitors.
Collapse
Affiliation(s)
- Yangjie Zeng
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Pengyao Jin
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yali Zhang
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ming Zhuo
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
14
|
Mons E, Kim RQ, Mulder MPC. Technologies for Direct Detection of Covalent Protein-Drug Adducts. Pharmaceuticals (Basel) 2023; 16:547. [PMID: 37111304 PMCID: PMC10146396 DOI: 10.3390/ph16040547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
In the past two decades, drug candidates with a covalent binding mode have gained the interest of medicinal chemists, as several covalent anticancer drugs have successfully reached the clinic. As a covalent binding mode changes the relevant parameters to rank inhibitor potency and investigate structure-activity relationship (SAR), it is important to gather experimental evidence on the existence of a covalent protein-drug adduct. In this work, we review established methods and technologies for the direct detection of a covalent protein-drug adduct, illustrated with examples from (recent) drug development endeavors. These technologies include subjecting covalent drug candidates to mass spectrometric (MS) analysis, protein crystallography, or monitoring intrinsic spectroscopic properties of the ligand upon covalent adduct formation. Alternatively, chemical modification of the covalent ligand is required to detect covalent adducts by NMR analysis or activity-based protein profiling (ABPP). Some techniques are more informative than others and can also elucidate the modified amino acid residue or bond layout. We will discuss the compatibility of these techniques with reversible covalent binding modes and the possibilities to evaluate reversibility or obtain kinetic parameters. Finally, we expand upon current challenges and future applications. Overall, these analytical techniques present an integral part of covalent drug development in this exciting new era of drug discovery.
Collapse
Affiliation(s)
- Elma Mons
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Robbert Q. Kim
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
| | - Monique P. C. Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
| |
Collapse
|
15
|
O’Boyle NM, Helesbeux JJ, Meegan MJ, Sasse A, O’Shaughnessy E, Qaisar A, Clancy A, McCarthy F, Marchand P. 30th Annual GP 2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2023; 16:432. [PMID: 36986531 PMCID: PMC10056312 DOI: 10.3390/ph16030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023] Open
Abstract
The Group for the Promotion of Pharmaceutical Chemistry in Academia (GP2A) held their 30th annual conference in August 2022 in Trinity College Dublin, Ireland. There were 9 keynote presentations, 10 early career researcher presentations and 41 poster presentations.
Collapse
Affiliation(s)
- Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | | | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Elizabeth O’Shaughnessy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Alina Qaisar
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Aoife Clancy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Florence McCarthy
- School of Chemistry and ABCRF, University College Cork, T12 K8AF Cork, Ireland
| | - Pascal Marchand
- Cibles et Médicaments des Infections et de l’Immunité, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
| |
Collapse
|
16
|
Javed A, Yarmohammadi M, Korkmaz KS, Rubio-Tomás T. The Regulation of Cyclins and Cyclin-Dependent Kinases in the Development of Gastric Cancer. Int J Mol Sci 2023; 24:2848. [PMID: 36769170 PMCID: PMC9917736 DOI: 10.3390/ijms24032848] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer predominantly occurs in adenocarcinoma form and is characterized by uncontrolled growth and metastases of gastric epithelial cells. The growth of gastric cells is regulated by the action of several major cell cycle regulators including Cyclins and Cyclin-dependent kinases (CDKs), which act sequentially to modulate the life cycle of a living cell. It has been reported that inadequate or over-activity of these molecules leads to disturbances in cell cycle dynamics, which consequently results in gastric cancer development. Manny studies have reported the key roles of Cyclins and CDKs in the development and progression of the disease in either in vitro cell culture studies or in vivo models. We aimed to compile the evidence of molecules acting as regulators of both Cyclins and CDKs, i.e., upstream regulators either activating or inhibiting Cyclins and CDKs. The review entails an introduction to gastric cancer, along with an overview of the involvement of cell cycle regulation and focused on the regulation of various Cyclins and CDKs in gastric cancer. It can act as an extensive resource for developing new hypotheses for future studies.
Collapse
Affiliation(s)
- Aadil Javed
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Izmir 35040, Turkey
| | - Mahdieh Yarmohammadi
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran 33817-74895, Iran
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Izmir 35040, Turkey
| | - Teresa Rubio-Tomás
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
| |
Collapse
|
17
|
Pugh L, Pancholi A, Purat PC, Agudo-Alvarez S, Benito-Arenas R, Bastida A, Bolanos-Garcia VM. Computational Biology Dynamics of Mps1 Kinase Molecular Interactions with Isoflavones Reveals a Chemical Scaffold with Potential to Develop New Therapeutics for the Treatment of Cancer. Int J Mol Sci 2022; 23:ijms232214228. [PMID: 36430712 PMCID: PMC9692432 DOI: 10.3390/ijms232214228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
The protein kinase Mps1 (monopolar spindle 1) is an important regulator of the Spindle Assembly Checkpoint (SAC), the evolutionary conserved checkpoint system of higher organisms that monitors the proper bipolar attachment of all chromosomes to the mitotic spindle during cell division. Defects in the catalytic activity and the transcription regulation of Mps1 are associated with genome instability, aneuploidy, and cancer. Moreover, multiple Mps1 missense and frameshift mutations have been reported in a wide range of types of cancer of different tissue origin. Due to these features, Mps1 arises as one promising drug target for cancer therapy. In this contribution, we developed a computational biology approach to study the dynamics of human Mps1 kinase interaction with isoflavones, a class of natural flavonoids, and compared their predicted mode of binding with that observed in the crystal structure of Mps1 in complex with reversine, a small-sized inhibitor of Mps1 and Aurora B kinases. We concluded that isoflavones define a chemical scaffold that can be used to develop new Mps1 inhibitors for the treatment of cancer associated with Mps1 amplification and aberrant chromosome segregation. In a broader context, the present report illustrates how modern chemoinformatics approaches can accelerate drug development in oncology.
Collapse
Affiliation(s)
- Lauren Pugh
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Alisha Pancholi
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Priscila Celeste Purat
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Sandra Agudo-Alvarez
- Departamento de Química Bio-Orgánica, IQOG, c/Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Raúl Benito-Arenas
- Departamento de Química Bio-Orgánica, IQOG, c/Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Agatha Bastida
- Departamento de Química Bio-Orgánica, IQOG, c/Juan de la Cierva 3, E-28006 Madrid, Spain
- Correspondence: (A.B.); (V.M.B.-G.); Tel.: +44-01865-484146 (V.M.B.-G.)
| | - Victor M. Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
- Correspondence: (A.B.); (V.M.B.-G.); Tel.: +44-01865-484146 (V.M.B.-G.)
| |
Collapse
|
18
|
Systematic Exploration of Privileged Warheads for Covalent Kinase Drug Discovery. Pharmaceuticals (Basel) 2022; 15:ph15111322. [PMID: 36355497 PMCID: PMC9695834 DOI: 10.3390/ph15111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022] Open
Abstract
Kinase-targeted drug discovery for cancer therapy has advanced significantly in the last three decades. Currently, diverse kinase inhibitors or degraders have been reported, such as allosteric inhibitors, covalent inhibitors, macrocyclic inhibitors, and PROTAC degraders. Out of these, covalent kinase inhibitors (CKIs) have been attracting attention due to their enhanced selectivity and exceptionally strong affinity. Eight covalent kinase drugs have been FDA-approved thus far. Here, we review current developments in CKIs. We explore the characteristics of the CKIs: the features of nucleophilic amino acids and the preferences of electrophilic warheads. We provide systematic insights into privileged warheads for repurposing to other kinase targets. Finally, we discuss trends in CKI development across the whole proteome.
Collapse
|