1
|
Volostnykh MV, Kirakosyan GA, Sinelshchikova AA, Ermakova EV, Gorbunova YG, Tsivadze AY, Borisov SM, Meyer M, Khrouz L, Monnereau C, Parola S, Bessmertnykh-Lemeune A. Water-soluble platinum and palladium porphyrins with peripheral ethyl phosphonic acid substituents: synthesis, aggregation in solution, and photocatalytic properties. Dalton Trans 2025; 54:2340-2356. [PMID: 39775379 DOI: 10.1039/d4dt03068k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Water-soluble porphyrins have garnered significant attention due to their broad range of applications in biomedicine, catalysis, and material chemistry. In this work, water-soluble platinum(II) and palladium(II) complexes with porphyrins bearing ethyl phosphonate substituents, namely, Pt/Pd 10-(ethoxyhydroxyphosphoryl)-5,15-di(p-carboxyphenyl)porphyrins (M3m, M = Pt(II), Pd(II)) and Pt/Pd 5,10-bis(ethoxyhydroxyphosphoryl)-10,20-diarylporphyrins (M1d-M3d; aryl = p-tolyl (1), mesityl (2), p-carboxyphenyl (3)), were synthesized by alkaline hydrolysis of the corresponding diethyl phosphonates M6m and M4d-M6d. NMR, UV-vis, and fluorescence spectroscopy revealed that the mono-phosphonates M3m tend to form aggregates in aqueous media, while the bis-phosphonates M3d exist predominantly as monomeric species across a wide range of concentrations (10-6-10-3 M), ionic strengths (0-0.81 M), and pH values (4-12). Single-crystal X-ray diffraction studies of the diethyl phosphonates Pt6d and Pd6d revealed that π-π stacking of the aromatic macrocycles is sterically hindered in the crystals, providing a rationale for the low degree of solution aggregation observed for ethyl phosphonate M3d. Photophysical studies of M3m and M1d-M3d demonstrated that these compounds are phosphorescent and generate singlet oxygen in aqueous solutions. Pd(II) complex Pd3d is an excellent photocatalyst for the oxidation of sulfides using di-oxygen in a solvent mixture (MeCN/H2O, 4 : 1 v/v). Under these conditions, various alkyl and aryl sulfides were quantitatively converted into the desired sulfoxides. For the oxygenation of mixed alkyl-aryl sulfides, Pd3d outperforms Pd(II) meso-tetrakis(p-carboxyphenyl)porphyrin (PdTCPP). This photocatalyst can be recycled and reused to afford sulfoxides with no loss of product yield.
Collapse
Affiliation(s)
- Marina V Volostnykh
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302 CNRS, Université de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France.
| | - Gayane A Kirakosyan
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow, 119991, Russia
| | - Anna A Sinelshchikova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Elizaveta V Ermakova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
| | - Yulia G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow, 119991, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow, 119991, Russia
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Michel Meyer
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302 CNRS, Université de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France.
| | | | | | - Stephane Parola
- UCBL, ENS de Lyon, CNRS, LCH, UMR 5182, 69342 Lyon Cedex 07, France
| | - Alla Bessmertnykh-Lemeune
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302 CNRS, Université de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France.
- CNRS, ENS de Lyon, LCH, UMR 5182, 69342 Lyon Cedex 07, France
| |
Collapse
|
2
|
Bandyopadhyay S, Forzano JA, Dirak M, Chan J. Activatable Porphyrin-Based Sensors, Photosensitizers and Combination Therapeutics. JACS AU 2025; 5:42-54. [PMID: 39886600 PMCID: PMC11775669 DOI: 10.1021/jacsau.4c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025]
Abstract
Porphyrins, known as the "pigments of life", have evolved from their natural roles into versatile tools for biomedical applications. The development of activatable porphyrins has significantly expanded their utility, enabling precise responses to a carefully selected target analyte. These advances have broadened their use in imaging, diagnosis, and therapy. These capabilities are driven by activity-based sensing (ABS), which enhances the selectivity and sensitivity to various disease biomarkers. However, their design and implementation are intrinsically complex. This perspective provides an easy-to-follow roadmap that details how such molecules can be developed. Furthermore, we highlight recent progress in ABS-modified porphyrins, focusing on how specific modifications achieve these remarkable properties across various biomedical platforms. The ongoing evolution of activatable porphyrins holds great promise for the development of sophisticated, responsive systems, offering more effective diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Suritra Bandyopadhyay
- Department
of Chemistry, Cancer Center at Illinois and Beckman Institute for
Advanced Science and Technology, University
of Illinois at Urbana−Champaign, Urbana, 61801 Illinois United States
| | - Joseph A Forzano
- Department
of Chemistry, Cancer Center at Illinois and Beckman Institute for
Advanced Science and Technology, University
of Illinois at Urbana−Champaign, Urbana, 61801 Illinois United States
| | - Musa Dirak
- Department
of Chemistry, Cancer Center at Illinois and Beckman Institute for
Advanced Science and Technology, University
of Illinois at Urbana−Champaign, Urbana, 61801 Illinois United States
- Department
of Chemistry, Koç University, 34450 Istanbul, Türkiye
| | - Jefferson Chan
- Department
of Chemistry, Cancer Center at Illinois and Beckman Institute for
Advanced Science and Technology, University
of Illinois at Urbana−Champaign, Urbana, 61801 Illinois United States
| |
Collapse
|
3
|
Zhang L, Zhang Q, Cao Z. Orthogonal Geometry Enhancing the Intersystem Crossing and Photosensitive Efficiency of Spiro Organoboron Compounds. Chemistry 2024; 30:e202402606. [PMID: 39150690 DOI: 10.1002/chem.202402606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 08/17/2024]
Abstract
Based on the reported spiro organoboron compounds (PS1 and PS2 as potent 1O2 sensitizers), several new organoboron molecules (PS4-PS9) were constructed through structural modification, and their low-lying excited states and photophysical properties have been explored by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The predicted effective intersystem crossing (ISC) processes arise from the S1→T2 transition for PS4-PS6 and the S1→T4 transition for PS1, and corresponding KISC rate constants reach the order of magnitude of 109 (s-1). The organoboron compounds with a (N, N) chelate acceptor are predicted to exhibit relatively higher ISC efficiency than those bearing a (N, O) acceptor, and the planar C3NBN ring and the orthogonal configuration between the donor and acceptor moieties are responsible for the ISC rate enhancement. Importantly, the geometric features of the lowest singlet excited state (S1) for these compounds play a decisive role in their photosensitive efficiency. The present results provide a basis for better understanding of the photosensitivity of these spiro organoboron compounds and the structural modification effect.
Collapse
Affiliation(s)
- Lin Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| | - Qing Zhang
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, P. R. China
| | - Zexing Cao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| |
Collapse
|
4
|
Tang M, Duan T, Lu Y, Liu J, Gao C, Wang R. Tyrosinase-Woven Melanin Nets for Melanoma Therapy through Targeted Mitochondrial Tethering and Enhanced Photothermal Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411906. [PMID: 39285827 DOI: 10.1002/adma.202411906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Indexed: 11/02/2024]
Abstract
Manipulating intracellular biological processes and organelles has emerged as a pivotal strategy to influence cellular physiological functions. Mitochondria, recognized as the powerhouse of cells, play a crucial role in tumorigenesis and progression. Inspired by the Nature's tyrosinase-catalyzed melanin formation within melanoma cells, here an approach is developed using a polysaccharide dually-functionalized with tyrosine and triphenylphosphine (TPP) for targeted mitochondria cross-linking in melanoma cells. This technique intricately weaves melanin nets within the cells, serving as a tether for the mitochondria and effectively decelerating tumor metabolism through nanoparticle-net transformation. Tyrosinase acts as the "needle", while the functionalized polysaccharide serves as the "string" successfully constructing nets within the cell. Furthermore, the tyrosinase-catalyzed cross-linking of tyrosine not only facilitates the production of artificial melanin but also enhances the photothermal conversion efficiency of melanoma cells, leading to decrease of the tumor growth. This study unveils a non-drug method for regulating organelle physiological activity and introduces photothermal treatment. This work not only sheds light on the manipulation of cellular functions but also holds promise for advancing cancer therapeutic strategies.
Collapse
Affiliation(s)
- Mian Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Tianshun Duan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Yunfeng Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Jinwei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
5
|
Quadrado RFN, Silvestri S, de Souza JF, Iglesias BA, Fajardo AR. Advances in porphyrins and chlorins associated with polysaccharides and polysaccharides-based materials for biomedical and pharmaceutical applications. Carbohydr Polym 2024; 334:122017. [PMID: 38553216 DOI: 10.1016/j.carbpol.2024.122017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
Over the last decade, the convergence of advanced materials and innovative applications has fostered notable scientific progress within the biomedical and pharmaceutical fields. Porphyrins and their derivatives, distinguished by an extended conjugated π-electron system, have a relevant role in propelling these advancements, especially in drug delivery systems, photodynamic therapy, wound healing, and (bio)sensing. However, despite their promise, the practical clinical application of these macrocycles is hindered by their inherent challenges of low solubility and instability under physiological conditions. To address this limitation, researchers have exploited the synergistic association of porphyrins and chlorins with polysaccharides by engineering conjugated systems and composite/hybrid materials. This review compiles the principal advances in this growing research field, elucidating fundamental principles and critically examining the applications of such materials within biomedical and pharmaceutical contexts. Additionally, the review addresses the eventual challenges and outlines future perspectives for this poignant research field. It is expected that this review will serve as a comprehensive guide for students and researchers dedicated to exploring state-of-the-art materials for contemporary medicine and pharmaceutical applications.
Collapse
Affiliation(s)
- Rafael F N Quadrado
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - Siara Silvestri
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil; Laboratório de Engenharia de Meio Ambiente (LEMA), Universidade Federal de Santa Maria (UFSM), Campus Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Jaqueline F de Souza
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Universidade Federal de Santa Maria (UFSM), Campus Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Bernardo A Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Universidade Federal de Santa Maria (UFSM), Campus Camobi, 97105-900, Santa Maria, RS, Brazil.
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
6
|
Chen M, Zhu Q, Zhang Z, Chen Q, Yang H. Recent Advances in Photosensitizer Materials for Light-Mediated Tumor Therapy. Chem Asian J 2024; 19:e202400268. [PMID: 38578217 DOI: 10.1002/asia.202400268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
Photodynamic therapy (PDT) as an emerging therapeutic method has drawn much attention in the treatment field for cancer. Photosensitizer, which can convert photon energy into cytotoxic species under light irradiation, is the core component in PDT. The design of photosensitizers still faces problems of light absorption, targeting, penetration and oxygen dependence. With the rapid progress of material science, various photosensitizers have been developed to produce cytotoxic species for treatment of tumor with high selectivity, safety, and noninvasiveness. Besides, the applications of photosensitizers have been expanded to diverse cancer treatments such as drug release, optogenetics and immune checkpoint blockade. In this review, we summarize the recent advances of photosensitizers in various therapeutic methods for cancer. Prevailing challenges and further prospects associated with photosensitizers are also discussed.
Collapse
Affiliation(s)
- Minle Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350002, People's Republic of China
| | - Qianru Zhu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350002, People's Republic of China
| | - Zhenzhen Zhang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350002, People's Republic of China
| | - Qiushui Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350002, People's Republic of China
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350002, People's Republic of China
| |
Collapse
|
7
|
Han J, Liu Y, Peng D, Liu J, Wu D. Biomedical Application of Porphyrin-Based Amphiphiles and Their Self-Assembled Nanomaterials. Bioconjug Chem 2023; 34:2155-2180. [PMID: 37955349 DOI: 10.1021/acs.bioconjchem.3c00432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Porphyrins have been vastly explored and applied in many cutting-edge fields with plenty of encouraging achievements because of their excellent properties. As important derivatives of porphyrins, porphyrin-based amphiphiles (PBAs) not only maintain the advanced properties of porphyrins (catalysis, imaging, and energy transfer) but also possess self-assembly and encapsulation capability in aqueous solution. Accordingly, PBAs and their self-assembles have had important roles in diagnosing and treating tumors and inflammation lesions in vivo, but not limited to these. In this article, we introduce the research progress of PBAs, including their constitution, structure design strategies, and performances in tumor and inflammation lesion diagnosis and treatments. On that basis, the defects of synthesized PBAs during their application and the possible effective strategies to overcome the limitations are also proposed. Finally, perspectives on PBAs exploration are updated based on our knowledge. We hope this review will bring researchers from various domains insights about PBAs.
Collapse
Affiliation(s)
- Jialei Han
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Danfeng Peng
- Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong 518119, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| |
Collapse
|
8
|
Rad ME, Soylukan C, Kulabhusan PK, Günaydın BN, Yüce M. Material and Design Toolkit for Drug Delivery: State of the Art, Trends, and Challenges. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55201-55231. [PMID: 37994836 DOI: 10.1021/acsami.3c10065] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The nanomaterial and related toolkit have promising applications for improving human health and well-being. Nanobased drug delivery systems use nanoscale materials as carriers to deliver therapeutic agents in a targeted and controlled manner, and they have shown potential to address issues associated with conventional drug delivery systems. They offer benefits for treating various illnesses by encapsulating or conjugating biological agents, chemotherapeutic drugs, and immunotherapeutic agents. The potential applications of this technology are vast; however, significant challenges exist to overcome such as safety issues, toxicity, efficacy, and insufficient capacity. This article discusses the latest developments in drug delivery systems, including drug release mechanisms, material toolkits, related design molecules, and parameters. The concluding section examines the limitations and provides insights into future possibilities.
Collapse
Affiliation(s)
- Monireh Esmaeili Rad
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Caner Soylukan
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | | | - Beyza Nur Günaydın
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
9
|
Liu Z, Lin W, Liu Y. Macrocyclic Supramolecular Assemblies Based on Hyaluronic Acid and Their Biological Applications. Acc Chem Res 2022; 55:3417-3429. [PMID: 36380600 DOI: 10.1021/acs.accounts.2c00462] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hyaluronic acid (HA), which contains multiple carboxyl, hydroxyl, and acetylamino groups and is an agent that targets tumors, has drawn great attention in supramolecular diagnosis and treatment research. It can not only assemble directly with macrocyclic host-guest complexes through hydrogen bonding and electrostatic interactions but also can be modified with macrocyclic compounds or functional guest molecules by an amidation reaction and used for further assembly. Macrocycles play a main role in the construction of supramolecular drug carriers, targeted imaging agents, and hydrogels, such as cyclodextrins and cucurbit[n]urils, which can encapsulate photosensitizers, drugs, or other functional guest molecules via host-guest interactions. Therefore, the formed supramolecular assemblies can respond to various stimuli, such as enzymes, light, electricity, and magnetism for controlled drug delivery, enhance the luminescence intensity of the assembly, and improve drug loading capacity. In addition, the nanosupramolecular assembly formed with HA can also improve the biocompatibility of drugs, reduce drug toxicity and side effects, and enhance cell permeability; thus, the assembly has extensive application value in biomedical research. This Account mainly focuses on macrocyclic supramolecular assemblies based on HA, especially their biological applications and progress in the field, and these assemblies include (i) guest-modified HA, such as pyridinium-, adamantane-, peptide-, and other functional-group-modified HA, along with their cyclodextrin and cucurbit[n]uril assemblies; (ii) macrocycle-modified HA, such as HA modified with cyclodextrins and cucurbit[n]uril derivatives and their assembly with various guests; (iii) direct assembly between unmodified HA and cyclodextrin- or cucurbit[n]uril-based host-guest complexes. Particularly, we discussed the important role of macrocyclic host-guest complexes in HA-based supramolecular assembly, and the roles included improving the water solubility and efficacy of hydrophobic drugs, enhancing the luminescent intensity of assemblies, inducing room temperature phosphorescence and providing energy transfer systems, constructing multi-stimulus-responsive supramolecular assemblies, and in situ formation of hydrogels. Additionally, we believe that obtaining in-depth knowledge of these HA-based macrocyclic supramolecular assemblies and their biological applications encompasses many challenges regarding drug carriers, targeted imaging agents, wound healing, and biomedical soft materials and would certainly contribute to the rapid development of supramolecular diagnosis and treatment.
Collapse
Affiliation(s)
- Zhixue Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wenjing Lin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300000, China
| |
Collapse
|
10
|
Teng J, Yue L, Li B, Yang J, Yang C, Yang T, Zhi X, Liu X, Zhao Y, Zhang J. Synthesis of Cyclodextrin‐based temperature/enzyme‐responsive nanoparticles and application in antitumor drug delivery. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Liu YH, Liu Y. Highly efficient discrimination of cancer cells based on in situ-activated phosphorescence energy transfer for targeted cell imaging. J Mater Chem B 2022; 10:8058-8063. [PMID: 36111529 DOI: 10.1039/d2tb01494g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly efficient discrimination between cancer cells and normal cells is full of challenges for precise diagnosis. Herein, we report an effective in situ-activated phosphorescence energy transfer supramolecular assembly constructed by a bromophenyl pyridine derivative (BPPY), cucurbit[8]uril (CB[8]), and rhodamine B-grafted hyaluronic acid (HAR) through noncovalent interaction. As compared with BPPY, CB[8] encapsulated two BPPY molecules, resulting in a biaxial pseudorotaxane supramolecular assembly showing purely organic room-temperature phosphorescence induced by macrocyclic confinement, which when further co-assembled with HAR, formed a multivalent supramolecular assembly with phosphorescence energy transfer. Benefitting from the targeting of hyaluronic acid and the cyclolactam ring ON-OFF reaction of HAR, such supramolecular assembly with an open ring presents red delayed fluorescence through phosphorescence energy transfer in cancer cells, while the assembly showed only green phosphorescence in normal cells, realizing highly efficient discrimination between cancer and normal cells. This supramolecular assembly is responsive to the physiological environment and provides a supramolecular platform for precise diagnosis.
Collapse
Affiliation(s)
- Yao-Hua Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
12
|
Tang M, Liu YH, Liu H, Mao Q, Yu Q, Kitagishi H, Zhang YM, Xiao L, Liu Y. Supramolecular Dual Polypeptides Induced Tubulin Aggregation for Synergistic Cancer Theranostics. J Med Chem 2022; 65:13473-13481. [DOI: 10.1021/acs.jmedchem.2c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mian Tang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yao-Hua Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hua Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qiyue Mao
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyoto 610-0321, Japan
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyoto 610-0321, Japan
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| |
Collapse
|