1
|
Hafez Ghoran S, Yousuf M, Zafar H, Abdjan MI, Ayatollahi SA, Atia-Tul-Wahab, Aminah NS, Kristanti AN, Aziz-Ur-Rehman, Choudhary MI. In vitro, in silico, and STD-NMR studies of flavonoids from Hypericum helianthemoides (Spach) Boiss. against Leishmania major pteridine reductase 1 ( LmPTR1). J Biomol Struct Dyn 2025:1-15. [PMID: 40025779 DOI: 10.1080/07391102.2024.2435621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/29/2024] [Indexed: 03/04/2025]
Abstract
Apigenin (1) and 3I,8II-biapigenin (2), a dimer of apigenin, were isolated from the aerial parts of Hypericum helianthemoides (Spach) Boiss. (Hypericaceae family). This study aimed to evaluate the in vitro inhibitory effects of flavonoids 1 and 2 against Leishmania major pteridine reductase-1 (LmPTR1), an essential enzyme for the growth of Leishmania parasites and other trypanosomatid protozoa. The second objective was to understand the binding interactions and structural properties of LmPTR1 inhibition at the atomic level through extensive in silico analyses and Saturation-Transfer Difference (STD)-NMR studies. Anti-LmPTR1 results showed that the dimeric form (2) was active (IC50 of 34.65 μM), while the monomeric form (1) was inactive. Computational analyses yielded a grid score of -52.14 kcal/mol and a free energy binding score of -38.23 kcal/mol. A stable ligand-receptor complex at the LmPTR1 binding site was observed for 2. Moreover, several important binding residues in the catalytic triad (Y194 and K198) and the substrate loop (L226, S227, S229, V230, and M233) interacted with 2. The STD-NMR results corroborated the computational simulations, indicating that H-6I and H-6II of the conjugated ring system on the biapigenin structure showed the highest interaction with the LmPTR1 active site. MTT assay results for 2 against human normal fibroblast cells (BJ cells) exhibited no cytotoxicity at concentrations of 50 and 100 μM. Overall, 3I,8II-biapigenin (2) displayed promise as a candidate for in vivo studies and anti-leishmanial drug development. Further evaluation of the anti-leishmanial and anti-LmPTR1 activities of bioflavonoid 2, along with its analogues, is warranted.
Collapse
Affiliation(s)
- Salar Hafez Ghoran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Yousuf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Humaira Zafar
- Dr. Panjwani Center for Molecular and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Ikhlas Abdjan
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | | | - Atia-Tul-Wahab
- Dr. Panjwani Center for Molecular and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Nanik Siti Aminah
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Alfinda Novi Kristanti
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Aziz-Ur-Rehman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - M Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Dr. Panjwani Center for Molecular and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
2
|
Francesconi V, Rizzo M, Pozzi C, Tagliazucchi L, Konchie Simo CU, Saporito G, Landi G, Mangani S, Carbone A, Schenone S, Santarém N, Tavares J, Cordeiro-da-Silva A, Costi MP, Tonelli M. Identification of Innovative Folate Inhibitors Leveraging the Amino Dihydrotriazine Motif from Cycloguanil for Their Potential as Anti- Trypanosoma brucei Agents. ACS Infect Dis 2024; 10:2755-2774. [PMID: 38953453 PMCID: PMC11537224 DOI: 10.1021/acsinfecdis.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/06/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Folate enzymes, namely, dihydrofolate reductase (DHFR) and pteridine reductase (PTR1) are acknowledged targets for the development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. Based on the amino dihydrotriazine motif of the drug Cycloguanil (Cyc), a known inhibitor of both folate enzymes, we have identified two novel series of inhibitors, the 2-amino triazino benzimidazoles (1) and 2-guanidino benzimidazoles (2), as their open ring analogues. Enzymatic screening was carried out against PTR1, DHFR, and thymidylate synthase (TS). The crystal structures of TbDHFR and TbPTR1 in complex with selected compounds experienced in both cases a substrate-like binding mode and allowed the rationalization of the main chemical features supporting the inhibitor ability to target folate enzymes. Biological evaluation of both series was performed against T. brucei and L. infantum and the toxicity against THP-1 human macrophages. Notably, the 5,6-dimethyl-2-guanidinobenzimidazole 2g resulted to be the most potent (Ki = 9 nM) and highly selective TbDHFR inhibitor, 6000-fold over TbPTR1 and 394-fold over hDHFR. The 5,6-dimethyl tricyclic analogue 1g, despite showing a lower potency and selectivity profile than 2g, shared a comparable antiparasitic activity against T. brucei in the low micromolar domain. The dichloro-substituted 2-guanidino benzimidazoles 2c and 2d revealed their potent and broad-spectrum antitrypanosomatid activity affecting the growth of T. brucei and L. infantum parasites. Therefore, both chemotypes could represent promising templates that could be valorized for further drug development.
Collapse
Affiliation(s)
- Valeria Francesconi
- Department
of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| | - Marco Rizzo
- Department
of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| | - Cecilia Pozzi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena 53100, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIMMP), Via Luigi Sacconi 6, Sesto Fiorentino (FI) 50019, Italy
| | - Lorenzo Tagliazucchi
- Department
of Life Science, University of Modena and
Reggio Emilia, via Campi 103, Modena 41125, Italy
- Doctorate
School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via Campi 287, Modena 41125, Italy
| | - Claude U. Konchie Simo
- Department
of Life Science, University of Modena and
Reggio Emilia, via Campi 103, Modena 41125, Italy
| | - Giulia Saporito
- Department
of Life Science, University of Modena and
Reggio Emilia, via Campi 103, Modena 41125, Italy
| | - Giacomo Landi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena 53100, Italy
| | - Stefano Mangani
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena 53100, Italy
| | - Anna Carbone
- Department
of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| | - Silvia Schenone
- Department
of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| | - Nuno Santarém
- i3S
- Institute
for Research and Innovation in Health, University
of Porto, Rua Alfredo
Allen, 208, Porto 4200-135, Portugal
| | - Joana Tavares
- i3S
- Institute
for Research and Innovation in Health, University
of Porto, Rua Alfredo
Allen, 208, Porto 4200-135, Portugal
| | - Anabela Cordeiro-da-Silva
- i3S
- Institute
for Research and Innovation in Health, University
of Porto, Rua Alfredo
Allen, 208, Porto 4200-135, Portugal
- Department
of Life Science, Faculty of Pharmacy, University
of Porto, Rua de Jorge
Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | - Maria Paola Costi
- Department
of Life Science, University of Modena and
Reggio Emilia, via Campi 103, Modena 41125, Italy
| | - Michele Tonelli
- Department
of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| |
Collapse
|
3
|
Zimmermann T, Feng J, de Campos LJ, Knight LA, Schlötzer J, Ramirez YA, Schwickert K, Zehe M, Adler TB, Schirmeister T, Kisker C, Sotriffer C, Conda-Sheridan M, Decker M. Structure-Based Design and Synthesis of Covalent Inhibitors for Deubiquitinase and Acetyltransferase ChlaDUB1 of Chlamydia trachomatis. J Med Chem 2024; 67:10710-10742. [PMID: 38897928 DOI: 10.1021/acs.jmedchem.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Upon infection by an intracellular pathogen, host cells activate apoptotic pathways to limit pathogen replication. Consequently, efficient proliferation of the obligate intracellular pathogen Chlamydia trachomatis, a major cause of trachoma and sexually transmitted diseases, depends on the suppression of host cell apoptosis. C. trachomatis secretes deubiquitinase ChlaDUB1 into the host cell, leading among other interactions to the stabilization of antiapoptotic proteins and, thus, suppression of host cell apoptosis. Targeting the bacterial effector protein may, therefore, lead to new therapeutic possibilities. To explore the active site of ChlaDUB1, an iterative cycle of computational docking, synthesis, and enzymatic screening was applied with the aim of lead structure development. Hereby, covalent inhibitors were developed, which show enhanced inhibition with a 22-fold increase in IC50 values compared to previous work. Comprehensive insights into the binding prerequisites to ChlaDUB1 are provided, establishing the foundation for an additional specific antichlamydial therapy by small molecules.
Collapse
Affiliation(s)
- Thomas Zimmermann
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Jiachen Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Luana Janaína de Campos
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Lindsey A Knight
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jan Schlötzer
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-Universität Würzburg (JMU), 97080 Wurzburg, Germany
| | - Yesid A Ramirez
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Kevin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Markus Zehe
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Thomas B Adler
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-Universität Würzburg (JMU), 97080 Wurzburg, Germany
| | - Christoph Sotriffer
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
4
|
Abbasi Shiran J, Kaboudin B, Panahi N, Razzaghi-Asl N. Privileged small molecules against neglected tropical diseases: A perspective from structure activity relationships. Eur J Med Chem 2024; 271:116396. [PMID: 38643671 DOI: 10.1016/j.ejmech.2024.116396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
Neglected tropical diseases (NTDs) comprise diverse infections with more incidence in tropical/sub-tropical areas. In spite of preventive and therapeutic achievements, NTDs are yet serious threats to the public health. Epidemiological reports of world health organization (WHO) indicate that more than 1.5 billion people are afflicted with at least one NTD type. Among NTDs, leishmaniasis, chagas disease (CD) and human African trypanosomiasis (HAT) result in substantial morbidity and death, particularly within impoverished countries. The statistical facts call for robust efforts to manage the NTDs. Currently, most of the anti-NTD drugs are engaged with drug resistance, lack of efficient vaccines, limited spectrum of pharmacological effect and adverse reactions. To circumvent the issue, numerous scientific efforts have been directed to the synthesis and pharmacological development of chemical compounds as anti-infectious agents. A survey of the anti-NTD agents reveals that the majority of them possess privileged nitrogen, sulfur and oxygen-based heterocyclic structures. In this review, recent achievements in anti-infective small molecules against parasitic NTDs are described, particularly from the SAR (Structure activity relationship) perspective. We also explore current advocating strategies to extend the scope of anti-NTD agents.
Collapse
Affiliation(s)
- J Abbasi Shiran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, PO Code: 5618953141, Iran
| | - B Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - N Panahi
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - N Razzaghi-Asl
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, PO Code: 5618953141, Iran; Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
5
|
Marín M, López M, Gallego-Yerga L, Álvarez R, Peláez R. Experimental structure based drug design (SBDD) applications for anti-leishmanial drugs: A paradigm shift? Med Res Rev 2024; 44:1055-1120. [PMID: 38142308 DOI: 10.1002/med.22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Leishmaniasis is a group of neglected tropical diseases caused by at least 20 species of Leishmania protozoa, which are spread by the bite of infected sandflies. There are three main forms of the disease: cutaneous leishmaniasis (CL, the most common), visceral leishmaniasis (VL, also known as kala-azar, the most serious), and mucocutaneous leishmaniasis. One billion people live in areas endemic to leishmaniasis, with an annual estimation of 30,000 new cases of VL and more than 1 million of CL. New treatments for leishmaniasis are an urgent need, as the existing ones are inefficient, toxic, and/or expensive. We have revised the experimental structure-based drug design (SBDD) efforts applied to the discovery of new drugs against leishmaniasis. We have grouped the explored targets according to the metabolic pathways they belong to, and the key achieved advances are highlighted and evaluated. In most cases, SBDD studies follow high-throughput screening campaigns and are secondary to pharmacokinetic optimization, due to the majoritarian belief that there are few validated targets for SBDD in leishmaniasis. However, some SBDD strategies have significantly contributed to new drug candidates against leishmaniasis and a bigger number holds promise for future development.
Collapse
Affiliation(s)
- Miguel Marín
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Marta López
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
6
|
Gonçalves RCR, Teixeira F, Peñalver P, Costa SPG, Morales JC, Raposo MMM. Designing Antitrypanosomal and Antileishmanial BODIPY Derivatives: A Computational and In Vitro Assessment. Molecules 2024; 29:2072. [PMID: 38731562 PMCID: PMC11085077 DOI: 10.3390/molecules29092072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Leishmaniasis and Human African trypanosomiasis pose significant public health threats in resource-limited regions, accentuated by the drawbacks of the current antiprotozoal treatments and the lack of approved vaccines. Considering the demand for novel therapeutic drugs, a series of BODIPY derivatives with several functionalizations at the meso, 2 and/or 6 positions of the core were synthesized and characterized. The in vitro activity against Trypanosoma brucei and Leishmania major parasites was carried out alongside a human healthy cell line (MRC-5) to establish selectivity indices (SIs). Notably, the meso-substituted BODIPY, with 1-dimethylaminonaphthalene (1b) and anthracene moiety (1c), were the most active against L. major, displaying IC50 = 4.84 and 5.41 μM, with a 16 and 18-fold selectivity over MRC-5 cells, respectively. In contrast, the mono-formylated analogues 2b and 2c exhibited the highest toxicity (IC50 = 2.84 and 6.17 μM, respectively) and selectivity (SI = 24 and 11, respectively) against T. brucei. Further insights on the activity of these compounds were gathered from molecular docking studies. The results suggest that these BODIPYs act as competitive inhibitors targeting the NADPH/NADP+ linkage site of the pteridine reductase (PR) enzyme. Additionally, these findings unveil a range of quasi-degenerate binding complexes formed between the PRs and the investigated BODIPY derivatives. These results suggest a potential correlation between the anti-parasitic activity and the presence of multiple configurations that block the same site of the enzyme.
Collapse
Affiliation(s)
- Raquel C R Gonçalves
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Advanced (Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Filipe Teixeira
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Susana P G Costa
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Juan C Morales
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - M Manuela M Raposo
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
7
|
Ullah W, Wu WF, Malak N, Nasreen N, Swelum AA, Marcelino LA, Niaz S, Khan A, Ben Said M, Chen CC. Computational investigation of turmeric phytochemicals targeting PTR1 enzyme of Leishmania species. Heliyon 2024; 10:e27907. [PMID: 38533011 PMCID: PMC10963314 DOI: 10.1016/j.heliyon.2024.e27907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
In this study, we used in silico techniques to identify available parasite treatments, representing a promising therapeutic avenue. Building upon our computational initiatives aimed at discovering natural inhibitors for various target enzymes from parasites causing neglected tropical diseases (NTDs), we present novel findings on three turmeric-derived phytochemicals as inhibitors of Leishmania pteridine reductase I (PTR1) through in silico methodologies. PTR1, a crucial enzyme in the unique folate metabolism of trypanosomatid parasites, holds established therapeutic significance. Employing MOE software, a molecular docking analysis assesses the efficacy of turmeric phytochemicals against Leishmania PTR1. Validation of the docking protocol is confirmed with an RMSD value of 2. Post-docking, compounds displaying notable interactions with critical residues and binding affinities ranging between -6 and -8 kcal/mol are selected for interaction pattern exploration. Testing twelve turmeric phytochemicals, including curcumin, zingiberene, curcumol, curcumenol, eugenol, bisdemethoxycurcumin, tetrahydrocurcumin, tryethylcurcumin, turmerones, turmerin, demethoxycurcumin, and turmeronols, revealed binding affinities ranging from -5.5 to -8 kcal/mol. Notably, curcumin, demethoxycurcumin, and bisdemethoxycurcumin exhibit binding affinities within -6.5 to -8 kcal/mol and establish substantial interactions with catalytic residues. These phytochemicals hold promise as lead structures for rational drug design targeting Leishmania spp. PTR in future applications. This work underscores the potential of these identified phytochemicals in the development of more effective inhibitors, demonstrating their relevance in addressing neglected tropical diseases caused by parasites.
Collapse
Affiliation(s)
- Wasia Ullah
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Wen-Feng Wu
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan
| | - Nosheen Malak
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Nasreen Nasreen
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 1451, Saudi Arabia
| | - Liliana Aguilar Marcelino
- National Center for Disciplinary Research in Animal Health and Safety (INIFAP), Km 11 Federal Road Cuernavaca-Cuautla, 62550, Jiutepec, Morelos, Mexico
| | - Sadaf Niaz
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Adil Khan
- Department of Zoology, Bacha Khan University Charsadda, Charsadda, 24420, Pakistan
- Department of Biology, Mount Allison University, Sackville, E4L 1G7, New Brunswick, Canada
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia
| | - Chien-Chin Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
8
|
Suckling CJ. The allure of targets for novel drugs. RSC Med Chem 2024; 15:472-484. [PMID: 38389887 PMCID: PMC10880906 DOI: 10.1039/d3md00621b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/12/2023] [Indexed: 02/24/2024] Open
Abstract
The challenges of bringing new medicines to patients have been extensively discussed and debated, including consideration of the contribution that academic laboratories can make. At the University of Strathclyde, drug discovery has been a continuing focal activity since the 1960s, and in the past 30 years, the author has led or contributed to many projects of different character and for diverse diseases. A feature common to these projects is the extension of concepts of molecular and biological targets in drug discovery research. In mechanistic terms, these have included compounds that are activators and not inhibitors, and in particular multitargeted compounds. With respect to relevance to disease, schizophrenia, pulmonary disfunction, autoimmune, and infectious disease are most relevant. These projects are discussed in the context of classical medicinal chemistry and more recent concepts in and approaches to drug discovery.
Collapse
Affiliation(s)
- Colin J Suckling
- Department of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1Xl Scotland UK
| |
Collapse
|
9
|
Francesconi V, Rizzo M, Schenone S, Carbone A, Tonelli M. State-of-the-art Review on the Antiparasitic Activity of Benzimidazolebased Derivatives: Facing Malaria, Leishmaniasis, and Trypanosomiasis. Curr Med Chem 2024; 31:1955-1982. [PMID: 37718524 PMCID: PMC11071657 DOI: 10.2174/0929867331666230915093928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/19/2023] [Accepted: 08/27/2023] [Indexed: 09/19/2023]
Abstract
Protozoan parasites represent a significant risk for public health worldwide, afflicting particularly people in more vulnerable categories and cause large morbidity and heavy economic impact. Traditional drugs are limited by their toxicity, low efficacy, route of administration, and cost, reflecting their low priority in global health management. Moreover, the drug resistance phenomenon threatens the positive therapy outcome. This scenario claims the need of addressing more adequate therapies. Among the diverse strategies implemented, the medicinal chemistry efforts have also focused their attention on the benzimidazole nucleus as a promising pharmacophore for the generation of new drug candidates. Hence, the present review provides a global insight into recent progress in benzimidazole-based derivatives drug discovery against important protozoan diseases, such as malaria, leishmaniasis and trypanosomiasis. The more relevant chemical features and structure-activity relationship studies of these molecules are discussed for the purpose of paving the way towards the development of more viable drugs for the treatment of these parasitic infections.
Collapse
Affiliation(s)
- Valeria Francesconi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| | - Marco Rizzo
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| | - Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| |
Collapse
|
10
|
Panecka-Hofman J, Poehner I. Structure and dynamics of pteridine reductase 1: the key phenomena relevant to enzyme function and drug design. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:521-532. [PMID: 37608196 PMCID: PMC10618315 DOI: 10.1007/s00249-023-01677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Pteridine reductase 1 (PTR1) is a folate and pterin pathway enzyme unique for pathogenic trypanosomatids. As a validated drug target, PTR1 has been the focus of recent research efforts aimed at finding more effective treatments against human parasitic diseases such as leishmaniasis or sleeping sickness. Previous PTR1-centered structural studies highlighted the enzyme characteristics, such as flexible regions around the active site, highly conserved structural waters, and species-specific differences in pocket properties and dynamics, which likely impacts the binding of natural substrates and inhibitors. Furthermore, several aspects of the PTR1 function, such as the substrate inhibition phenomenon and the level of ligand binding cooperativity in the enzyme homotetramer, likely related to the global enzyme dynamics, are poorly known at the molecular level. We postulate that future drug design efforts could greatly benefit from a better understanding of these phenomena through studying both the local and global PTR1 dynamics. This review highlights the key aspects of the PTR1 structure and dynamics relevant to structure-based drug design that could be effectively investigated by modeling approaches. Particular emphasis is given to the perspective of molecular dynamics, what has been accomplished in this area to date, and how modeling could impact the PTR1-targeted drug design in the future.
Collapse
Affiliation(s)
- Joanna Panecka-Hofman
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
| | - Ina Poehner
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211, Kuopio, Finland
| |
Collapse
|
11
|
Hassan NW, Sabt A, El-Attar MA, Ora M, Bekhit AEDA, Amagase K, Bekhit AA, Belal A, Elzahhar PA. Modulating leishmanial pteridine metabolism machinery via some new coumarin-1,2,3-triazoles: Design, synthesis and computational studies. Eur J Med Chem 2023; 253:115333. [PMID: 37031526 DOI: 10.1016/j.ejmech.2023.115333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/11/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
In accordance with WHO statistics, leishmaniasis is one of the top neglected tropical diseases, affecting around 700 000 to one million people per year. To that end, a new series of coumarin-1,2,3-triazole hybrid compounds was designed and synthesized. All new compounds exerted higher activity than miltefosine against L. major promastigotes and amastigotes. Seven compounds showed single digit micromolar IC50 values whereas three compounds (13c, 14b and 14c) displayed submicromolar potencies. A mechanistic study to elucidate the antifolate-dependent activity of these compounds revealed that folic and folinic acids abrogated their antileishmanial effects. These compounds exhibited high safety margins in normal VERO cells, expressed as high selectivity indices. Docking simulation studies on the folate pathway enzymes pteridine reductase and DHFR-TS imparted strong theoretical support to the observed biological activities. Besides, docking experiments on human DHFR revealed minimal binding interactions thereby highlighting the selectivity of these compounds. Predicted in silico physicochemical and pharmacokinetic parameters were adequate. In view of this, the structural characteristics of these compounds demonstrated their suitability as antileishmanial lead compounds.
Collapse
|
12
|
Panecka-Hofman J, Poehner I, Wade R. Anti-trypanosomatid structure-based drug design - lessons learned from targeting the folate pathway. Expert Opin Drug Discov 2022; 17:1029-1045. [PMID: 36073204 DOI: 10.1080/17460441.2022.2113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Trypanosomatidic parasitic infections of humans and animals caused by Trypanosoma brucei, Trypanosoma cruzi, and Leishmania species pose a significant health and economic burden in developing countries. There are few effective and accessible treatments for these diseases, and the existing therapies suffer from problems such as parasite resistance and side effects. Structure-based drug design (SBDD) is one of the strategies that has been applied to discover new compounds targeting trypanosomatid-borne diseases. AREAS COVERED We review the current literature (mostly over the last 5 years, searched in PubMed database on Nov 11th 2021) on the application of structure-based drug design approaches to identify new anti-trypanosomatidic compounds that interfere with a validated target biochemical pathway, the trypanosomatid folate pathway. EXPERT OPINION The application of structure-based drug design approaches to perturb the trypanosomatid folate pathway has successfully provided many new inhibitors with good selectivity profiles, most of which are natural products or their derivatives or have scaffolds of known drugs. However, the inhibitory effect against the target protein(s) often does not translate to anti-parasitic activity. Further progress is hampered by our incomplete understanding of parasite biology and biochemistry, which is necessary to complement SBDD in a multiparameter optimization approach to discovering selective anti-parasitic drugs.
Collapse
Affiliation(s)
- Joanna Panecka-Hofman
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5a, 02-097 Warsaw, Poland
| | - Ina Poehner
- School of Pharmacy, University of Eastern Finland, Kuopio, Yliopistonranta 1C, PO Box 1627, FI-70211 Kuopio, Finland
| | - Rebecca Wade
- Center for Molecular Biology (ZMBH), Heidelberg University, Im Neuenheimer Feld 282, Heidelberg 69120, Germany.,Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany.,DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, Heidelberg 69120, Germany
| |
Collapse
|
13
|
Venturelli A, Tagliazucchi L, Lima C, Venuti F, Malpezzi G, Magoulas GE, Santarem N, Calogeropoulou T, Cordeiro-da-Silva A, Costi MP. Current Treatments to Control African Trypanosomiasis and One Health Perspective. Microorganisms 2022; 10:microorganisms10071298. [PMID: 35889018 PMCID: PMC9321528 DOI: 10.3390/microorganisms10071298] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Human African Trypanosomiasis (HAT, sleeping sickness) and Animal African Trypanosomiasis (AAT) are neglected tropical diseases generally caused by the same etiological agent, Trypanosoma brucei. Despite important advances in the reduction or disappearance of HAT cases, AAT represents a risky reservoir of the infections. There is a strong need to control AAT, as is claimed by the European Commission in a recent document on the reservation of antimicrobials for human use. Control of AAT is considered part of the One Health approach established by the FAO program against African Trypanosomiasis. Under the umbrella of the One Health concepts, in this work, by analyzing the pharmacological properties of the therapeutic options against Trypanosoma brucei spp., we underline the need for clearer and more defined guidelines in the employment of drugs designed for HAT and AAT. Essential requirements are addressed to meet the challenge of drug use and drug resistance development. This approach shall avoid inter-species cross-resistance phenomena and retain drugs therapeutic activity.
Collapse
Affiliation(s)
- Alberto Venturelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.); (L.T.); (F.V.); (G.M.)
| | - Lorenzo Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.); (L.T.); (F.V.); (G.M.)
- Doctorate School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Clara Lima
- Host-Parasite Interactions Group, Institute of Research and Innovation in Health, University of Porto, 4099-002 Porto, Portugal; (C.L.); (N.S.); (A.C.-d.-S.)
- Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Federica Venuti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.); (L.T.); (F.V.); (G.M.)
| | - Giulia Malpezzi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.); (L.T.); (F.V.); (G.M.)
| | - George E. Magoulas
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (G.E.M.); (T.C.)
| | - Nuno Santarem
- Host-Parasite Interactions Group, Institute of Research and Innovation in Health, University of Porto, 4099-002 Porto, Portugal; (C.L.); (N.S.); (A.C.-d.-S.)
- Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Theodora Calogeropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (G.E.M.); (T.C.)
| | - Anabela Cordeiro-da-Silva
- Host-Parasite Interactions Group, Institute of Research and Innovation in Health, University of Porto, 4099-002 Porto, Portugal; (C.L.); (N.S.); (A.C.-d.-S.)
- Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.); (L.T.); (F.V.); (G.M.)
- Correspondence:
| |
Collapse
|