1
|
Sun YM, Kuang JL, Zhang HH, Xia XX, Wang JY, Zheng D, Zhou KJ, Tang YJ, Zhao AH, Jia W, Xie GX, Zheng XJ. Pig bile powder maintains blood glucose homeostasis by promoting glucagon-like peptide-1 secretion via inhibiting farnesoid X receptor. World J Diabetes 2025; 16:103616. [DOI: 10.4239/wjd.v16.i6.103616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/13/2025] [Accepted: 04/25/2025] [Indexed: 06/13/2025] Open
Abstract
BACKGROUND Traditional Chinese medicine offers many valuable remedies for maintaining blood glucose homeostasis in patients with type 2 diabetes mellitus. Bile powder (BP) is a powdered form of bile derived from pigs. It has been used historically in various medicinal applications. Currently, the therapeutic potential of BP in regulating glucose homeostasis remains unclear. Bile acids (BAs) are increasingly recognized for their role in glucose metabolism particularly through the modulation of glucagon-like peptide-1 (GLP-1).
AIM To investigate BP effects on glucose homeostasis and elucidate its mechanistic role through GLP-1 and farnesoid X receptor (FXR) signaling.
METHODS A diabetic mouse model was established using a high-fat diet and streptozotocin administration. Mice were treated with BP at doses of 25, 50, or 75 mg/kg/day for 45 days. Glucose homeostasis was assessed via the oral glucose tolerance test and insulin tolerance test. Serum GLP-1 levels were measured by enzyme-linked immunosorbent assay. A GLP-1 receptor antagonist and an FXR agonist were used to clarify the underlying mechanisms. In vitro STC-1 murine enteroendocrine cells were treated with a BP-mimicking BA mixture to assess GLP-1 secretion and proglucagon gene expression.
RESULTS BP treatment significantly improved glucose homeostasis in the diabetic mouse model as indicated by lower blood glucose (P < 0.05) and improved insulin sensitivity. BP enhanced GLP-1 secretion (P < 0.05), which was an effect abolished by the GLP-1 receptor antagonist. This observation confirmed its dependence on GLP-1 signaling. In STC-1 cells, BP-derived BA mixtures stimulated GLP-1 secretion and upregulated proglucagon expression (P < 0.05). Mechanistically, BP inhibited FXR signaling as evidenced by the reversal of its effects upon fexaramine administration. In addition, long-term BP treatment suppressed FXR signaling, resulting in elevated GLP-1 levels and preventing glucose dysregulation.
CONCLUSION BP improved glucose homeostasis by promoting GLP-1 secretion via FXR inhibition, highlighting its potential as a therapeutic strategy for metabolic disorders.
Collapse
Affiliation(s)
- Yi-Min Sun
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jun-Liang Kuang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hui-Heng Zhang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xi-Xi Xia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jie-Yi Wang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Dan Zheng
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ke-Jun Zhou
- Human Metabolomics Institute, Inc., Shenzhen 518109, Guangdong Province, China
| | - Ya-Jun Tang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ai-Hua Zhao
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Wei Jia
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hongkong 999077, China
| | - Guo-Xiang Xie
- Human Metabolomics Institute, Inc., Shenzhen 518109, Guangdong Province, China
| | - Xiao-Jiao Zheng
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
2
|
Wang J, Gao J, Zhang Q, Lu J, Yang Y, Cai X, Dong H, Lu L. Ileal FXR Knockdown Ameliorates MASLD Progression in Rats via Modulating Bile Acid Metabolism Mediated by Gut Microbiota. J Gastroenterol Hepatol 2025. [PMID: 40411313 DOI: 10.1111/jgh.17017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/11/2025] [Accepted: 05/11/2025] [Indexed: 05/26/2025]
Abstract
BACKGROUND AND AIM Metabolic dysfunction associated steatotic liver disease (MASLD) is the predominant cause of chronic liver disease, with dysregulation of bile acid (BA) metabolism and intestinal microbiota being intricately associated with MASLD progression. In this study, we investigated the role of ileal FXR in MASLD progression and BA metabolism in portal blood. METHODS Sprague-Dawley rats were fed a typical western diet for 20 weeks, followed by local perfusion of AAV2-shNr1h4 to downregulate Nr1h4 expression in ileum tissue. To investigate the effect of ileal FXR on BA reabsorption and gut microbiota, portal blood and cecal fecal samples were collected from MASLD rats injected with AAV2-Ctrl or AAV2-shNr1h4 for metabolomics targeting BAs and 16S rRNA sequencing analysis. RESULTS Our results showed that hepatic steatosis and inflammation were alleviated, whereas the reabsorption of secondary BAs and unconjugated BAs into the portal blood was enhanced when ileal FXR was knocked down. Furthermore, knockdown of ileal FXR resulted in a significant alteration in composition of the cecal microbiota, characterized by an increasing abundance of microbes involved in secondary BA production, including Escherichia, Adlercreutzia, Eubacterium, and Clostridium. CONCLUSION These findings suggest that downregulation of ileal FXR ameliorates the progression of MASLD in rats by modulating BA metabolism mediated by the gut microbiota, indicating that ileal FXR might be a potential therapeutic target for the treatment of MASLD.
Collapse
Affiliation(s)
- Junjun Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Gao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Zhang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyi Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yufei Yang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaobo Cai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Dong
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Tu J, Cheng W, Ban Z, Ning J, Tan X. Discovery of farnesoid X receptor antagonists from Salvia miltiorrhiza based on virtual screening and activity verification. Bioorg Med Chem Lett 2025; 123:130222. [PMID: 40199406 DOI: 10.1016/j.bmcl.2025.130222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
The farnesoid X receptor (FXR) is a promising therapeutic target for the treatment of non-alcoholic fatty liver disease (NAFLD). Salvia miltiorrhiza, a traditional Chinese medicine, has demonstrated significant efficacy in the prevention and treatment of liver diseases. Consequently, investigating the potential effects of Salvia miltiorrhiza on FXR could provide new insights for NAFLD treatment. This study explores whether active ingredients from Salvia miltiorrhiza can target FXR and serve as therapeutic agents for treating NAFLD. The findings revealed that cynaroside and lithospermic acid displayed strong FXR antagonistic activity, with IC50 values of 5.41 ± 1.08 μM and 16.92 ± 2.68 μM, respectively. Salvianolic acid A also showed moderate activity (IC50 = 56.35 ± 4.54 μM). MTT assays demonstrated that these three compounds were non-toxic to HepG2 and LO2 cells at a concentration of 200 μM. Molecular dynamics simulations were conducted to elucidate the interaction mechanisms of cynaroside and lithospermic acid with FXR. These results suggest that cynaroside and lithospermic acid from Salvia miltiorrhiza may be potential candidates for targeting FXR in treating NAFLD.
Collapse
Affiliation(s)
- Jiaojiao Tu
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Wa Cheng
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Zhenghu Ban
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Jiayi Ning
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xiangduan Tan
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
4
|
Yang Y, Huang Y, Shen H, Wang D, Liu Z, Zhu W, Liu Q. Integrating deep learning and molecular dynamics simulations for FXR antagonist discovery. Mol Divers 2025:10.1007/s11030-025-11145-2. [PMID: 40172823 DOI: 10.1007/s11030-025-11145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/18/2025] [Indexed: 04/04/2025]
Abstract
Farnesoid X receptor (FXR) is a key regulator of bile acid, lipid, and glucose homeostasis, making it a promising target for treating metabolic diseases. FXR antagonists have shown therapeutic potential in cholestasis, metabolic disorders, and certain cancers, while clinically approved FXR antagonists remain unavailable and underrepresented in current treatment strategies. To address this, we developed deep learning models for predicting FXR antagonistic activity (ANTCL) and toxicity (TOXCL). Screening 217,345 compounds from the HMDB database identified eleven human metabolite candidates with significant FXR binding potential. Molecular dynamics simulations and binding free energy calculations revealed five more stable complexes compared to the reference compound Gly-MCA, with HMDB0253354 (Fulvestrant) and HMDB0242367 (ZM 189154) standing out for their binding free energies. Hydrophobic interactions, particularly involving residues MET328, PHE329, and ALA291, contributed to their stability. These results demonstrate the effectiveness of deep learning in FXR antagonist discovery and highlight the potential of HMDB0253354 and HMDB0242367 as promising candidates for metabolic disease treatment.
Collapse
Affiliation(s)
- Yueying Yang
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yuxin Huang
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Hanxiao Shen
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Ding Wang
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhen Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Zhu
- SINOPEC-SK (Wuhan) Petrochemical Co., Ltd, Wuhan, 430082, China.
| | - Qing Liu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Li Y, Jiao T, Cheng X, Liu L, Zhang M, Li J, Wang J, Hu S, Li C, Yu T, Liu Y, Li Y, Zhang Y, Sun C, Sun J, Wang J, Xie C, Liu H. Development of cyclopeptide inhibitors specifically disrupting FXR-coactivator interaction in the intestine as a novel therapeutic strategy for MASH. LIFE METABOLISM 2025; 4:loaf004. [PMID: 40225300 PMCID: PMC11992618 DOI: 10.1093/lifemeta/loaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/20/2025] [Accepted: 02/06/2025] [Indexed: 04/15/2025]
Abstract
Intestinal farnesoid X receptor (FXR) antagonists have been proven to be efficacious in ameliorating metabolic diseases, particularly for the treatment of metabolic dysfunction-associated steatohepatitis (MASH). All the reported FXR antagonists target to the ligand-binding pocket (LBP) of the receptor, whereas antagonist acting on the non-LBP site of nuclear receptor (NR) is conceived as a promising strategy to discover novel FXR antagonist. Here, we have postulated the hypothesis of antagonizing FXR by disrupting the interaction between FXR and coactivators, and have successfully developed a series of macrocyclic peptides as FXR antagonists based on this premise. The cyclopeptide DC646 not only exhibits potent inhibitory activity of FXR, but also demonstrates a high degree of selectivity towards other NRs. Moreover, cyclopeptide DC646 has high potential therapeutic benefit for the treatment of MASH in an intestinal FXR-dependent manner, along with a commendable safety profile. Mechanistically, distinct from other known FXR antagonists, cyclopeptide DC646 specifically binds to the coactivator binding site of FXR, which can block the coactivator recruitment, reducing the circulation of intestine-derived ceramides to the liver, and promoting the release of glucagon-like peptide-1 (GLP-1). Overall, we identify a novel cyclopeptide that targets FXR-coactivator interaction, paving the way for a new approach to treating MASH with FXR antagonists.
Collapse
Affiliation(s)
- Yazhou Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tingying Jiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xi Cheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mengjiao Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jian Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jue Wang
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shulei Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cuina Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tao Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yameng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yangtai Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Yu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| | - Chuying Sun
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jina Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hong Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
6
|
Brañes MC, Gillet R, Valenzuela R. Nuclear receptors behind the therapeutic effects of plant sterols on metabolism: A review. Lipids 2024; 59:169-180. [PMID: 39077818 DOI: 10.1002/lipd.12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Plant sterols are known for their hypocholesterolemic action, and the molecular mechanisms behind this within the gut have been extensively discussed and demonstrated to the point that there is a degree of consensus. However, recent studies show that these molecules exert an additional umbrella of therapeutic effects in other tissues, which are related to immune function, lipid metabolism, and glucose metabolism. A strong hypothesis to explain these effects is the structural relationship between plant sterols and the ligands of a group of nuclear receptors. This review delves into the molecular aspects of therapeutic effects related with lipid and energy metabolism that have been observed and demonstrated for plant sterols, and turns the perspective to explore the involvement of nuclear receptors as part of these mechanisms.
Collapse
Affiliation(s)
| | | | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
7
|
Wang D, Wang Y. Identification of protein partners for small molecules reshapes the understanding of nonalcoholic steatohepatitis and drug discovery. Life Sci 2024; 356:123031. [PMID: 39226989 DOI: 10.1016/j.lfs.2024.123031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
AIMS Nonalcoholic steatohepatitis (NASH) is the severe subtype of nonalcoholic fatty diseases (NAFLD) with few options for treatment. Patients with NASH exhibit partial responses to the current therapeutics and adverse effects. Identification of the binding proteins for the drugs is essential to understanding the mechanism and adverse effects of the drugs and fuels the discovery of potent and safe drugs. This paper aims to critically discuss recent advances in covalent and noncovalent approaches for identifying binding proteins that mediate NASH progression, along with an in-depth analysis of the mechanisms by which these targets regulate NASH. MATERIALS AND METHODS A literature search was conducted to identify the relevant studies in the database of PubMed and the American Chemical Society. The search covered articles published from January 1990 to July 2024, using the search terms with keywords such as NASH, benzophenone, diazirine, photo-affinity labeling, thermal protein profiling, CETSA, target identification. KEY FINDINGS The covalent approaches utilize drugs modified with diazirine and benzophenone to covalently crosslink with the target proteins, which facilitates the purification and identification of target proteins. In addition, they map the binding sites in the target proteins. By contrast, noncovalent approaches identify the binding targets of unmodified drugs in the intact cell proteome. The advantages and limitations of both approaches have been compared, along with a comprehensive analysis of recent innovations that further enhance the efficiency and specificity. SIGNIFICANCE The analyses of the applicability of these approaches provide novel tools to delineate NASH pathogenesis and promote drug discovery.
Collapse
Affiliation(s)
- Danyi Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| |
Collapse
|
8
|
Mitra S, Halder AK, Koley A, Ghosh N, Panda P, Mandal SC, Cordeiro MNDS. Unveiling structural determinants for FXR antagonism in 1,3,4-trisubstituted-Pyrazol amide derivatives: A multi-scale in silico modelling approach. Comput Biol Med 2024; 180:108991. [PMID: 39126787 DOI: 10.1016/j.compbiomed.2024.108991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing global health concern due to its potential to progress into severe liver diseases. Targeting the bile acid receptor FXR has emerged as a promising strategy for managing NAFLD. Building upon our previous research on FXR partial agonism, the present study investigates a series of 1,3,4-trisubstituted-pyrazol amide derivatives as FXR antagonists, aiming to delineate the structural features for antagonism. By means of 2D-QSAR (quantitative structure-activity relationships) modelling techniques, we elucidated the key structural elements responsible for the antagonistic properties of these derivatives. We then employed QPhAR, an open-access software, to identify key molecular features within the compounds that enhance their antagonistic activity. Additionally, 3D-QSAR modelling allowed us to analyse the steric and electrostatic fields of aligned 3D structures, further refining our understanding of structure-activity relationships. Subsequent molecular dynamics simulations provided insights into the binding mode interactions between the compounds and FXR, with varying potencies, confirming and complementing the findings from 2D-QSAR, pharmacophore, and 3D-QSAR modelling. Particularly, our study highlighted the significance of hydrophobic interactions in conferring potent antagonism by the 1,3,4-trisubstituted-pyrazol amide derivatives against FXR. Overall, this work underscores the potential of 1,3,4-trisubstituted-pyrazol amides as FXR antagonists for NAFLD treatment. Notably, our reliance on open-access software fosters reproducibility and broadens the accessibility of our findings.
Collapse
Affiliation(s)
- Soumya Mitra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India; Dr B C Roy College of Pharmacy and Allied Health Sciences, Durgapur, 713206, India
| | - Amit Kumar Halder
- Dr B C Roy College of Pharmacy and Allied Health Sciences, Durgapur, 713206, India; LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Arup Koley
- Dr B C Roy College of Pharmacy and Allied Health Sciences, Durgapur, 713206, India
| | - Nilanjan Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Parthasarathi Panda
- Dr B C Roy College of Pharmacy and Allied Health Sciences, Durgapur, 713206, India
| | - Subhash C Mandal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Maria Natalia D S Cordeiro
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal.
| |
Collapse
|
9
|
Luo Z, Zhou W, Xie T, Xu W, Shi C, Xiao Z, Si Y, Ma Y, Ren Q, Di L, Shan J. The role of botanical triterpenoids and steroids in bile acid metabolism, transport, and signaling: Pharmacological and toxicological implications. Acta Pharm Sin B 2024; 14:3385-3415. [PMID: 39220868 PMCID: PMC11365449 DOI: 10.1016/j.apsb.2024.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) are synthesized by the host liver from cholesterol and are delivered to the intestine, where they undergo further metabolism by gut microbes and circulate between the liver and intestines through various transporters. They serve to emulsify dietary lipids and act as signaling molecules, regulating the host's metabolism and immune homeostasis through specific receptors. Therefore, disruptions in BA metabolism, transport, and signaling are closely associated with cholestasis, metabolic disorders, autoimmune diseases, and others. Botanical triterpenoids and steroids share structural similarities with BAs, and they have been found to modulate BA metabolism, transport, and signaling, potentially exerting pharmacological or toxicological effects. Here, we have updated the research progress on BA, with a particular emphasis on new-found microbial BAs. Additionally, the latest advancements in targeting BA metabolism and signaling for disease treatment are highlighted. Subsequently, the roles of botanical triterpenoids in BA metabolism, transport, and signaling are examined, analyzing their potential pharmacological, toxicological, or drug interaction effects through these mechanisms. Finally, a research paradigm is proposed that utilizes the gut microbiota as a link to interpret the role of these important natural products in BA signaling.
Collapse
Affiliation(s)
- Zichen Luo
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tong Xie
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weichen Xu
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Shi
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihan Xiao
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Si
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qingling Ren
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Liuqing Di
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
10
|
O'Guinn ML, Handler DA, Hsieh JJ, Mallicote MU, Feliciano K, Gayer CP. FXR deletion attenuates intestinal barrier dysfunction in murine acute intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2024; 327:G175-G187. [PMID: 38860296 PMCID: PMC11427094 DOI: 10.1152/ajpgi.00063.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Accumulating literature suggests that the farnesoid-X receptor (FXR), a nuclear bile acid receptor best known for its role in bile acid homeostasis, is also a potent context-dependent regulator of inflammation. FXR may thus be relevant to several intestinal disease states including inflammatory bowel disease, necrotizing enterocolitis, and sepsis. In this study, we tested the effects of FXR deletion on acute murine intestinal inflammation. We found that FXR knockout (KO) mice were protected from intestinal injury and barrier dysfunction induced by lipopolysaccharide (LPS) injection, dithizone (DI)/Klebsiella, and cecal ligation/puncture models. In the LPS model, RNA sequencing and qPCR analysis showed that this protection correlated with substantial reduction in LPS-induced proinflammatory gene expression, including lower tissue levels of Il1a, Il1b, and Tnf. Examining functional effects on the epithelium, we found that LPS-induced tight junctional disruption as assessed by internalization of ZO-1 and occludin was ameliorated in FXR KO animals. Taken together, these data suggest a role for FXR in the intestinal barrier during inflammatory injury.NEW & NOTEWORTHY Intestinal barrier failure is a hallmark in gut-origin sepsis. We demonstrate that the intestinal barriers of farnesoid-X receptor (FXR) knockout (KO) animals are protected from inflammatory insult using multiple models of acute intestinal inflammation. This protection is due to decreased inflammatory cytokine production and maintenance of tight junctional architecture seen within the KO animals. This is the first report of FXR deletion being protective to the intestinal barrier.
Collapse
Affiliation(s)
- MaKayla L O'Guinn
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
- Division of Pediatric Surgery, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, United States
| | - David A Handler
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
- Division of Pediatric Surgery, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, United States
| | - Jonathan J Hsieh
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California, United States
- Department of Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States
| | - Michael U Mallicote
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
- Division of Pediatric Surgery, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, United States
- Department of Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States
| | - Karina Feliciano
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
- Division of Pediatric Surgery, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, United States
| | - Christopher P Gayer
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
- Division of Pediatric Surgery, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, United States
- Department of Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States
| |
Collapse
|
11
|
Tang Y, Fan Y, Wang Y, Wang D, Huang Q, Chen T, Cao X, Wen C, Shen X, Li J, You Y. A Current Understanding of FXR in NAFLD: The multifaceted regulatory role of FXR and novel lead discovery for drug development. Biomed Pharmacother 2024; 175:116658. [PMID: 38701562 DOI: 10.1016/j.biopha.2024.116658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) has reached 30 %, with an annual increase. The incidence of NAFLD-induced cirrhosis is rapidly rising and has become the leading indicator for liver transplantation in the US. However, there are currently no US Food and Drug Administration-approved drugs for NAFLD. Increasing evidence underscores the close association between NAFLD and bile acid metabolism disorder, highlighting the feasibility of targeting the bile acid signaling pathway for NAFLD treatment. The farnesoid X receptor (FXR) is an endogenous receptor for bile acids that exhibits favorable effects in ameliorating the metabolic imbalance of bile acids, lipid disorders, and disruption of intestinal homeostasis, all of which are key characteristics of NAFLD, making FXR a promising therapeutic target for NAFLD. The present review provides a comprehensive overview of the diverse mechanisms through which FXR improves NAFLD, with particular emphasis on its involvement in regulating bile acid homeostasis and the recent advancements in drug development targeting FXR for NAFLD treatment.
Collapse
Affiliation(s)
- Yuhong Tang
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Yujuan Fan
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Yiming Wang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Dong Wang
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Qingyu Huang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tongqing Chen
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Xinyue Cao
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Cailing Wen
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Shen
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China.
| | - Jian Li
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yan You
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Morrison A, Elgendy B. Tailoring FXR Modulators for Intestinal Specificity: Recent Progress and Insights. Molecules 2024; 29:2022. [PMID: 38731514 PMCID: PMC11085346 DOI: 10.3390/molecules29092022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
While FXR has shown promise in regulating bile acid synthesis and maintaining glucose and lipid homeostasis, undesired side effects have been observed in clinical trials. To address this issue, the development of intestinally restricted FXR modulators has gained attention as a new avenue for drug design with the potential for safer systematic effects. Our review examines all currently known intestinally restricted FXR ligands and provides insights into the steps taken to enhance intestinal selectivity.
Collapse
Affiliation(s)
- Amanda Morrison
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA;
| | - Bahaa Elgendy
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA;
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
13
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
14
|
Chen C, Zhang B, Tu J, Peng Y, Zhou Y, Yang X, Yu Q, Tan X. Discovery of 4-aminophenylacetamide derivatives as intestine-specific farnesoid X receptor antagonists for the potential treatment of nonalcoholic steatohepatitis. Eur J Med Chem 2024; 264:115992. [PMID: 38043493 DOI: 10.1016/j.ejmech.2023.115992] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Farnesoid X receptor (FXR) plays a key role in bile acid homeostasis, inflammation, fibrosis, lipid and glucose metabolism and is emerging as a promising therapeutic target for nonalcoholic steatohepatitis (NASH). Emerging evidence suggested that intestine-specific FXR antagonists exhibited remarkable metabolic improvements and slowed NASH progression. In this study, we discovered several potent FXR antagonists using a multistage ligand- and structure-based virtual screening approach. Notably, compound V023-9340, which possesses a 4-aminophenylacetamide scaffold, emerged as the most potent FXR antagonist with an IC50 value of 4.27 μM. In vivo, V023-9340 demonstrated selective accumulation in the intestine, substantially ameliorating high-fat diet (HFD)-induced NASH in mice by mitigating hepatic steatosis and inflammation. Mechanistic studies revealed that V023-9340 strongly inhibited intestinal FXR while concurrently feedback-activated hepatic FXR. Further structure-activity relationship optimization employing V023-9340 has resulted in the synthesis of a more efficacious compound V02-8 with an IC50 value of 0.89 μM, which exhibited a 4.8-fold increase in FXR antagonistic activity compared to V023-9340. In summary, 4-aminophenylacetamide derivative V023-9340 represented a novel intestine-specific FXR antagonist and showed improved effects against HFD-induced NASH in mice, which may serve as a promising lead in discovering potential therapeutic drugs for NASH treatment.
Collapse
Affiliation(s)
- Cong Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Bing Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Jiaojiao Tu
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yanfen Peng
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yihuan Zhou
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xinping Yang
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Qiming Yu
- Guangxi Key Laboratory of Environmental Exposure Omics and Life Cycle Health, College of Public Health, Guilin Medical University, Guilin 541199, China.
| | - Xiangduan Tan
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
15
|
Iguchi Y, Yamashita Y, Gohda K, Oda K, Fujimori K, Sera Y, Imanaka T, Yamaguchi M, Une M, Teno N. FXR Antagonist FLG249 Lowers Hepatic Triacylglycerol and Serum Cholesterol Level in High-Fat Diet-Induced Obese Mice. Biol Pharm Bull 2024; 47:1429-1436. [PMID: 39135238 DOI: 10.1248/bpb.b24-00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor that regulates the synthesis and enterohepatic circulation of bile acids (BAs). It also regulates lipid and carbohydrate metabolism, making FXR ligands potential therapeutic agents for systemic and/or hepatic metabolic disorders. We previously synthesized a series of FXR antagonists and showed that oral administration of FLG249 reduced the expression of several FXR target genes in the mouse ileum. Here, we investigated the effects of FLG249 on lipid metabolism in mice fed a high-fat diet (HFD). When FLG249 was administered for 4 weeks to HFD-induced obese mice, it altered the expression of genes related to BA metabolism, ceramide synthesis and fatty acid β-oxidation, improving lipid metabolism in the liver and ileum without decreasing body weight. These findings suggest that FLG249 has the potential to be a low toxicity pharmaceutical compound and likely acts as a nonsteroidal FXR antagonist to improve lipid metabolism disorders.
Collapse
Affiliation(s)
- Yusuke Iguchi
- Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Yukiko Yamashita
- Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Keigo Gohda
- Computer-Aided Molecular Modeling Research Center, Kansai (CAMM-Kansai)
| | - Keisuke Oda
- Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Yukihiro Sera
- Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Tsuneo Imanaka
- Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Masafumi Yamaguchi
- Faculty of Pharmaceutical Sciences, Hiroshima International University
- Graduate School of Pharmaceutical Sciences, Hiroshima International University
| | - Mizuho Une
- Faculty of Pharmaceutical Sciences, Hiroshima International University
- Graduate School of Pharmaceutical Sciences, Hiroshima International University
| | - Naoki Teno
- Graduate School of Pharmaceutical Sciences, Hiroshima International University
- Faculty of Clinical Nutrition, Hiroshima International University
| |
Collapse
|
16
|
Zhu Y, Zhou X, Ling N, Yu Q, Wang H, Du Q. The Effect of Guisangyou Tea on Abnormal Lipid Metabolism in Mice Induced by High-Fat Diet. Foods 2023; 12:foods12112171. [PMID: 37297416 DOI: 10.3390/foods12112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
This study was aimed to investigate the effect of Guisangyou tea (GSY tea) in improving abnormal lipid metabolism in mice with obesity induced by a high-fat diet (HFD). The results showed that intervention of the water extract of GSY tea (WE) decreased serum levels of lipids, and positively regulated the related antioxidant enzyme activities and the inflammatory factors in the serum and liver. In the liver, the mRNA and protein expression levels of sterol regulatory element-binding proteins-1 (SREBP-1), stearoyl-CoA desaturase-1 (SCD-1), fatty acid synthase (FASN), and acetyl CoA carboxylase (ACC) related to lipid synthesis were downregulated, and the mRNA and protein expression levels of the farnesoid X receptor (FXR) and small heterodimer partner (SHP) related to bile acid production were upregulated. The results demonstrate that GSY tea can improve abnormal lipid metabolism in obese mice by improving the body's antioxidant capacity, regulating the inflammatory state, and reducing the synthesis of lipids and increasing the production of bile acids. GSY tea can be processed and utilized as a safe and effective resource for improving abnormal lipid metabolism.
Collapse
Affiliation(s)
- Yan Zhu
- College of Food and Health Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Xianghui Zhou
- College of Public Health, Guilin Medical University, Guilin 541100, China
| | - Nan Ling
- College of Public Health, Guilin Medical University, Guilin 541100, China
| | - Qiming Yu
- College of Public Health, Guilin Medical University, Guilin 541100, China
| | - Huijuan Wang
- College of Food and Health Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Qizhen Du
- College of Food and Health Sciences, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
17
|
Odama M, Maegawa E, Suzuki K, Fujii Y, Maeda R, Murakami S, Ito T. Effects of Betulinic Acid on the Proliferation, Cellular Senescence, and Type 1 Interferon-Related Signaling Pathways in Human Dermal Fibroblasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6935-6943. [PMID: 37116884 PMCID: PMC10177962 DOI: 10.1021/acs.jafc.2c08563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023]
Abstract
Pentacyclic triterpenoids, including betulinic acid (BA), and their glycosides are abundant in fruits such as Zizyphus sp., Dillenia sp., and Azanza sp. These compounds exhibit various pharmacological activities in human cells. Here, we investigated the effects of BA on the cellular proliferation and senescence of cultured normal human dermal fibroblasts (NHDFs). BA treatment for 24-48 h increased the proliferation of low-passage young fibroblasts. Furthermore, BA reduced the proportion of senescent cells, as determined via the β-galactosidase assay of high-passage NHDFs. DNA microarray analysis and subsequent validations via quantitative real-time polymerase chain reaction revealed that BA downregulates interferon (IFN)-inducible genes, including IFIT1, IFITM1, IFI6, MX1, and OAS2, which are upregulated in replicative senescent cells compared with the low-passage young cells (control). Enrichment analysis based on the microarray data predicted BA-induced suppression of the type I IFN signaling pathway. BA downregulated the expression of the IRF9 transcriptional factor downstream of the type 1 IFN signaling pathway. IFN-inducible genes were downregulated via IRF9 silencing using siRNA compared with the negative control treated with siRNA. Consistently, BA treatment reduced the proportion of senescent cells and IFN-inducible genes in etoposide-treated fibroblasts. Hence, BA alleviates cellular senescence via the inhibition of the type 1 IFN signaling pathway in dermal fibroblasts.
Collapse
Affiliation(s)
- Mao Odama
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| | - Eiji Maegawa
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| | - Kohsuke Suzuki
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| | - Yujiro Fujii
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| | - Reika Maeda
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| | - Shigeru Murakami
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| | - Takashi Ito
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| |
Collapse
|
18
|
Ren Q, Chen Y, Zhou Z, Cai Z, Jiao S, Huang W, Wang B, Chen S, Wang W, Cao Z, Yang Z, Deng L, Hu L, Zhang L, Li Z. Discovery of the First-in-Class Intestinal Restricted FXR and FABP1 Dual Modulator ZLY28 for the Treatment of Nonalcoholic Fatty Liver Disease. J Med Chem 2023; 66:6082-6104. [PMID: 37079895 DOI: 10.1021/acs.jmedchem.2c01918] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The prevalence of nonalcoholic steatohepatitis (NASH) is increasing rapidly worldwide, and NASH has become a serious problem for human health. Recently, the selective activation of the intestinal farnesoid X receptor (FXR) was considered as a more promising strategy for the treatment of NASH with lesser side effects due to reduced systemic exposure. Moreover, the inhibition of intestinal fatty acid binding protein 1 (FABP1) alleviated obesity and NASH by reducing dietary fatty acid uptake. In this study, the first-in-class intestinal restricted FXR and FABP1 dual-target modulator ZLY28 was discovered by comprehensive multiparameter optimization studies. The reduced systemic exposure of ZLY28 might provide better safety by decreasing the on- and off-target side effects in vivo. In NASH mice, ZLY28 exerted robust anti-NASH effects by inhibiting FABP1 and activating the FXR-FGF15 signaling pathway in the ileum. With the above attractive efficacy and preliminary safety profiles, ZLY28 is worthy of further evaluation as a novel anti-NASH agent.
Collapse
Affiliation(s)
- Qiang Ren
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ya Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shixuan Jiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wanqiu Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Bin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Siliang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhijun Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Liming Deng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lijun Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
19
|
Zhao Q, Dai MY, Huang RY, Duan JY, Zhang T, Bao WM, Zhang JY, Gui SQ, Xia SM, Dai CT, Tang YM, Gonzalez FJ, Li F. Parabacteroides distasonis ameliorates hepatic fibrosis potentially via modulating intestinal bile acid metabolism and hepatocyte pyroptosis in male mice. Nat Commun 2023; 14:1829. [PMID: 37005411 PMCID: PMC10067939 DOI: 10.1038/s41467-023-37459-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
Parabacteroides distasonis (P. distasonis) plays an important role in human health, including diabetes, colorectal cancer and inflammatory bowel disease. Here, we show that P. distasonis is decreased in patients with hepatic fibrosis, and that administration of P. distasonis to male mice improves thioacetamide (TAA)- and methionine and choline-deficient (MCD) diet-induced hepatic fibrosis. Administration of P. distasonis also leads to increased bile salt hydrolase (BSH) activity, inhibition of intestinal farnesoid X receptor (FXR) signaling and decreased taurochenodeoxycholic acid (TCDCA) levels in liver. TCDCA produces toxicity in mouse primary hepatic cells (HSCs) and induces mitochondrial permeability transition (MPT) and Caspase-11 pyroptosis in mice. The decrease of TCDCA by P. distasonis improves activation of HSCs through decreasing MPT-Caspase-11 pyroptosis in hepatocytes. Celastrol, a compound reported to increase P. distasonis abundance in mice, promotes the growth of P. distasonis with concomitant enhancement of bile acid excretion and improvement of hepatic fibrosis in male mice. These data suggest that supplementation of P. distasonis may be a promising means to ameliorate hepatic fibrosis.
Collapse
Affiliation(s)
- Qi Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Man-Yun Dai
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruo-Yue Huang
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing-Yi Duan
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Zhang
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Min Bao
- Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming, 650101, China
| | - Jing-Yi Zhang
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Shao-Qiang Gui
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Shu-Min Xia
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Cong-Ting Dai
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Ying-Mei Tang
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fei Li
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
20
|
Liu Y, Li J, Kang W, Liu S, Liu J, Shi M, Wang Y, Liu X, Chen X, Huang K. Aflatoxin B1 induces liver injury by disturbing gut microbiota-bile acid-FXR axis in mice. Food Chem Toxicol 2023; 176:113751. [PMID: 37030333 DOI: 10.1016/j.fct.2023.113751] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/04/2023] [Accepted: 03/26/2023] [Indexed: 04/08/2023]
Abstract
Aflatoxin B1 (AFB1) is one of major pollutant in food and feed worldwide. The purpose of this study is to investigate the mechanism of AFB1-induced liver injury. Our results showed that AFB1 caused hepatic bile duct proliferation, oxidative stress, inflammation and liver injury in mice. AFB1 exposure induced gut microbiota dysbiosis and reduced fecal bile salt hydrolase (BSH) activity. AFB1 exposure promoted hepatic bile acid (BA) synthesis and changed intestinal BA metabolism, especially increased intestinal conjugated bile acids levels. AFB1 exposure inhibited intestinal farnesoid X receptor (FXR)/fibroblast growth factor 15 (FGF-15) signaling. Furthermore, the mice received fecal microbiota transplantation from AFB1-treated mice induced liver injury, reduced intestinal FXR signaling and increased hepatic BA synthesis. Finally, the intestine-restricted FXR agonist treatment decreased hepatic BA synthesis, ROS level, inflammation and liver injury in AFB1-treated mice. This study suggests that modifying the gut microbiota, altering intestinal BA metabolism and/or activating intestinal FXR/FGF-15 signaling may be of value for the treatment of AFB1-induced liver disease.
Collapse
|