1
|
Liu ZB, Zhu RR, Liu JL, Xu QR, Xu H, Liu JC, Zhou XL. NSD2 mediated H3K36me2 promotes pulmonary arterial hypertension by recruiting FOLR1 and metabolism reprogramming. Cell Signal 2025; 127:111594. [PMID: 39798773 DOI: 10.1016/j.cellsig.2025.111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/09/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Pulmonary artery hypertension (PAH) is characterized by a cancer-like metabolic shift towards aerobic glycolysis. Nuclear Receptor Binding SET Domain Protein 2 (NSD2), a histone methyltransferase, has been implicated in PAH, yet its precise role remains unclear. In this study, we induced PAH in C57BL/6 mice using monocrotaline (MCT) and observed increased FOLR1 expression in PAH tissues, which was suppressed by NSD2 knockdown. Silencing NSD2 or FOLR1 inhibited the proliferation and migration of pulmonary artery endothelial cells (PAECs) and alleviated PAH phenotypes, right ventricular dysfunction, and pulmonary artery remodeling. Mechanistically, NSD2 knockdown prevented nuclear translocation of FOLR1 and its interaction with H3K36me2. Metabolic analysis revealed that NSD2 or FOLR1 knockdown reversed the increased oxygen consumption rate, extracellular acidification rate, glucose consumption, lactate production, and G6PD activity in MCT-treated PAECs. Furthermore, NSD2 or FOLR1 silencing decreased the expression of key glycolytic genes (HK2, TIGAR, and G6PD) by suppressing their promoter activity and weakening the interaction between FOLR1/H3K36me2 and these gene promoters. Our findings suggest that NSD2-mediated H3K36me2 recruits FOLR1 to promote PAH, and FOLR1 acts as a transcriptional factor to upregulate glycolytic gene expression in PAECs.
Collapse
Affiliation(s)
- Zhi-Bo Liu
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Rong-Rong Zhu
- Department of Cardiology, Jiangxi Hospital of traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jin-Long Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Qi-Rong Xu
- Department of Thoracic Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hua Xu
- Department of Thoracic Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Xue-Liang Zhou
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Cheng B, Li H, Peng X, Chen J, Shao C, Kong Z. Recent advances in developing targeted protein degraders. Eur J Med Chem 2025; 284:117212. [PMID: 39736199 DOI: 10.1016/j.ejmech.2024.117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
Targeted protein degradation (TPD) represents a promising therapeutic approach, encompassing several innovative strategies, including but not limited to proteolysis targeting chimeras (PROTACs), molecular glues, hydrophobic tag tethering degraders (HyTTD), and lysosome-targeted chimeras (LYTACs). Central to TPD are small molecule ligands, which play a critical role in mediating the degradation of target proteins. This review summarizes the current landscape of small molecule ligands for TPD molecules. These small molecule ligands can utilize the proteasome, lysosome, autophagy, or hydrophobic-tagging system to achieve the degradation of target proteins. The article mainly focuses on introducing their design principles, application advantages, and potential limitations. A brief discussion on the development prospects and future directions of TPD technology was also provided.
Collapse
Affiliation(s)
- Binbin Cheng
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, 435003, China; Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China
| | - Hongqiao Li
- The Central Hospital of Huangshi, Huangshi, 435000, China
| | - Xiaopeng Peng
- College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chuxiao Shao
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China.
| | - Zhihua Kong
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, FoShan, 528200, China.
| |
Collapse
|
3
|
Hu L, Xu H, Xu Y, Chen H, Jiang H, Xu D, Zhang H, Luo C, Chen S, Wang M. Discovery of SET domain-binding primary alkylamine-tethered degraders for the simultaneous degradation of NSD2-long and RE-IIBP isoforms. Eur J Med Chem 2025; 283:117179. [PMID: 39705735 DOI: 10.1016/j.ejmech.2024.117179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/22/2024]
Abstract
Nuclear receptor binding SET domain protein 2 (NSD2) is involved in various pathologic processes and is considered as an important target for cancer therapy. Due to alternative splicing, NSD2 has 3 isoforms: long, short and RE-IIBP. Although previous studies reported the degradation of PWWP1 domain-containing NSD2-long and short isoforms through PWWP1-binding molecules, the degradation of RE-IIBP which does not contain PWWP1 has been neglected to date. However, RE-IIBP plays an important role in cancer pathology, the further investigation of RE-IIBP requires novel chemical tools. Therefore, 31 novel SET domain ligand-based compounds bearing different E3 ligase ligands and amine moieties were synthesized and evaluated in this work. For the first time, the simultaneous degradation of NSD2-long and RE-IIBP isoforms was achieved through the primary alkylamine degrader ND-L11B. The degradation induced by ND-L11B led to the reduction of H3K36me2 level. Moreover, compared to the corresponding SET inhibitor, ND-L11B exhibited stronger antiproliferative activity on multiple myeloma cell line and negligible effect on non-malignant normal cell line. Whereas ND-L11B induced selective multiple myeloma cytotoxicity, it could serve as a starting point for the further development of NSD2-targeting therapies. This work provided a convenient chemical knockdown tool to further elucidate the multiple functions of NSD2 isoforms and expanded the applicability of alkyl primary amine analogs for targeted protein degradation.
Collapse
Affiliation(s)
- Linghao Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong, 528400, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hesong Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; The Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ye Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; The Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haowen Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Hanrui Jiang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong, 528400, China
| | - Dounan Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong, 528400, China
| | - Huimin Zhang
- The Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Cheng Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong, 528400, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; The Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shijie Chen
- The Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmacy, East China Normal University, Shanghai, 200241, China.
| | - Mingliang Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong, 528400, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Baiyun District, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
4
|
Mukherjee A, Suzuki T. G9a/GLP Modulators: Inhibitors to Degraders. J Med Chem 2025; 68:953-985. [PMID: 39745197 DOI: 10.1021/acs.jmedchem.4c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Histone methylation, a crucial aspect of epigenetics, intricately involves specialized enzymes such as G9a, a histone methyltransferase (HMT) catalyzing the methylation of histone H3 lysine 9 (H3K9) and H3K27. Apart from histone modification, G9a regulates essential cellular processes such as deoxyribonucleic acid (DNA) replication, damage repair, and gene expression via modulating DNA methylation patterns. The dysregulation and overexpression of G9a are intricately linked to cancer initiation, progression, and metastasis, making it a compelling target for anticancer therapy. Moreover, aberrant levels of H3K9 dimethylation were identified in Alzheimer's disease (AD), broadening the scope of epigenetic implications across various pathologies. The quest for potent therapy has resulted in the identification of numerous G9a inhibitors/degraders, each demonstrating the potential to disrupt aberrant signaling pathways. This perspective provides valuable insights into the evolving potential and advancement of G9a modulators as promising candidates for treating a spectrum of diseases.
Collapse
Affiliation(s)
- Anirban Mukherjee
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| |
Collapse
|
5
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
6
|
Shen Y, Zhang Y, Wu T, Zhang L, Belviso BD. Identification of potential methyltransferase NSD2 enzymatic inhibitors through a multi-step structure-based drug design. Mol Divers 2024:10.1007/s11030-024-11072-8. [PMID: 39644397 DOI: 10.1007/s11030-024-11072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Reversing aberrant protein methylation levels is widely recognized as a key focus in cancer therapy. As an essential lysine methylation regulator, NSD2 (Nuclear receptor-binding SET Domain 2, also known as WHSC1/MMSET) regulates chromatin structural sparsity and DNA repair processes. Abnormal enhancement of NSD2 methylation activity (caused by NSD2 overexpression and point mutations) has been closely related to the initiation and development of various cancers and diseases. However, the lack of selective inhibitors hinders further therapeutic intervention and limits the exploration of its biological mechanism. Therefore, this study developed an integrated approach that includes binding feature pharmacophore modeling, gradient database screening of 120 million compounds, flexible docking, and molecular dynamic simulation. This approach was used to identify hit compounds targeting the substrate/coenzyme binding site of NSD2. Subsequently, 20 lead compounds were retrieved by using molecular docking analysis and ADMET prediction. Finally, MD simulations were performed to validate the binding stability of selected drug candidates. The findings indicated that these newly obtained compounds might be potent NSD2 inhibitors. We hope the integrated virtual screening approach will provide a valuable idea for discovering novel H3K36 methyltransferase inhibitors.
Collapse
Affiliation(s)
- Yunpeng Shen
- Department of Biotechnology, School of Biological Engineering, Henan University of Technology, Henan Province, Zhengzhou, 450001, People's Republic of China.
| | - Yingying Zhang
- Department of Biotechnology, School of Biological Engineering, Henan University of Technology, Henan Province, Zhengzhou, 450001, People's Republic of China
| | - Tongyi Wu
- Department of Biotechnology, School of Biological Engineering, Henan University of Technology, Henan Province, Zhengzhou, 450001, People's Republic of China
| | - Lixue Zhang
- Department of Biotechnology, School of International Education, Henan University of Technology, Henan Province, Zhengzhou, 450001, People's Republic of China
| | - Benny Danilo Belviso
- Institute of Crystallography, Consiglio Nazionale Delle Ricerche (CNR), 70126, Bari, Italy
| |
Collapse
|
7
|
Ghiani L, Chiocca S. The oncogenic role of the NSD histone methyltransferases in head and neck and cervical cancers. Tumour Virus Res 2024; 19:200301. [PMID: 39645166 DOI: 10.1016/j.tvr.2024.200301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024] Open
Abstract
Understanding the role of NSD proteins in virus-induced cancers could reveal new therapeutic strategies. Targeting NSD proteins may not only disrupt the epigenetic changes triggered by viruses but also help restore normal cellular function. For instance, developing NSD inhibitors could counteract abnormal histone modifications caused by viral infections and slow cancer progression. Our review on the NSD protein family emphasizes its critical role in epigenetic regulation and cancer progression, also in virus-induced cancers. As research on the molecular mechanisms of NSD proteins advances, these proteins are emerging as promising candidates for targeted cancer therapies, particularly in cancers driven by histone modifications and transcriptional dysregulation.
Collapse
Affiliation(s)
- Lavinia Ghiani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
8
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
9
|
Zhang J, Liu Y, Zuo L, Fan F, Yan H, Zhao F, Li J, Ma C, Li Q, Xu A, Xu J, Zhang B, Hu Y, Sun C. Class II ferroptosis inducers are a novel therapeutic approach for t(4;14)-positive multiple myeloma. Blood Adv 2024; 8:5022-5038. [PMID: 39042883 PMCID: PMC11465055 DOI: 10.1182/bloodadvances.2023010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/17/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
ABSTRACT Multiple myeloma (MM) is a clonal plasma cell malignancy that is characterized by genetic heterogeneity. The cytogenetic abnormality t(4;14) strongly predicts poor outcome in patients with MM, even in the era of novel drugs. Ferroptosis is a new approach to antitumor therapy, but the relationship between ferroptosis and MM cytogenetic abnormalities remains largely unclear. In this study, we show that t(4;14)-positive but not t(4;14)-negative MM cells are susceptible to class II ferroptosis inducers (FINs) in a preclinical setting, which is dependent on the significant upregulation of the MM SET domain-containing protein (MMSET). Mechanistically, MMSET upregulates acyl-coenzyme A synthetase long-chain family member 4 transcription by binding to its promoter region, leading to increased polyunsaturated fatty acid (PUFA) levels and enhanced sensitivity of t(4;14)-positive MM cells to ferroptosis. Supplementation with PUFAs efficiently restores the susceptibility of t(4;14)-negative MM cells to ferroptosis. In addition, combining class II FIN treatment with bortezomib in t(4;14)-positive MM cells attenuates cellular glutathione and induces both apoptosis and ferroptosis levels by inhibiting the increase in solute carrier family 7 member 11, demonstrating synergistic antitumor activity in vitro and in a xenograft model. Taken together, our findings suggest that targeting ferroptosis with class II FINs is a novel and promising therapeutic approach to improve the outcome of t(4;14)-positive patients with MM.
Collapse
Affiliation(s)
- Jiasi Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxi Liu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Zuo
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjuan Fan
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Yan
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Zhao
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junying Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Ma
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aoshuang Xu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Xu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Sun
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Wei J, Shi Q, Li B, Yang H, Liu L, Zhou R, Feng Z, Yang Z, Zhan J, Xiong XF, Huang X, Wang Y. Discovery of a Highly Potent and Selective Inhibitor Targeting Protein Lysine Methyltransferase NSD2. J Med Chem 2024; 67:16056-16071. [PMID: 39230932 DOI: 10.1021/acs.jmedchem.4c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The histone lysine methyltransferase NSD2 has been recognized as an attractive target for cancer treatment, due to the functional implication of its dysregulation in the initiation and progression of many cancers. Although considerable efforts have been made to develop NSD2 small-molecule inhibitors, highly potent and selective ones are still rarely available till now. Here, we report the discovery of a series of novel NSD2 inhibitors via an extensive SAR exploration of the privileged quinazoline scaffold within compound 8. The most promising compound 42 showed excellent NSD2 enzymatic inhibitory activity and good antiproliferative activity in cells. In addition, it demonstrated favorable pharmacokinetic properties and significantly inhibited the tumor growth in a RS411 tumor xenograft model with good safety. Taken together, compound 42 could be a promising NSD2 inhibitor and deserves further investigation.
Collapse
Affiliation(s)
- Jianwei Wei
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | | | - Bang Li
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hong Yang
- Lingang Laboratory, Shanghai 200031, China
| | - Li Liu
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ruilin Zhou
- Lingang Laboratory, Shanghai 200031, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Zongbo Feng
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhenjiao Yang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jinhong Zhan
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiao-Feng Xiong
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- State Key Laboratory of Anti-Infective Drug Development, Guangzhou 510006, China
| | - Xun Huang
- Lingang Laboratory, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- State Key Laboratory of Anti-Infective Drug Development, Guangzhou 510006, China
| |
Collapse
|
11
|
Yang C, Li B, Feng Z, Li H, Yang H, Yang Z, Liu L, Shi Q, Wang H, Chen ZZ, Huang X, Wang J, Wang Y. Discovery of a Highly Potent Lysine Methyltransferases G9a/NSD2 Dual Inhibitor to Treat Solid Tumors. J Med Chem 2024; 67:16072-16087. [PMID: 39008565 DOI: 10.1021/acs.jmedchem.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Both G9a and NSD2 have been recognized as promising therapeutic targets for cancer treatment. However, G9a inhibitors only showed moderate inhibitory activity against solid tumors and NSD2 inhibitors were limited to the treatment of hematological malignancies. Inspired by the advantages of dual-target inhibitors that show great potential in enhancing efficiency, we developed a series of highly potent G9a/NSD2 dual inhibitors to treat solid tumors. The candidate 16 demonstrated much enhanced antiproliferative activity compared to the selective G9a inhibitor 3 and NSD2 inhibitor 15. In addition, it exhibited superior potency in inhibiting colony formation, inducing cell apoptosis, and blocking cancer cell metastasis. Furthermore, it effectively inhibited the catalytic functions of both G9a and NSD2 in cells and exhibited significant antitumor efficacy in the PANC-1 xenograft model with good safety. Therefore, compound 16 as a highly potent G9a/NSD2 dual inhibitor presents an attractive anticancer drug candidate for the treatment of solid tumors.
Collapse
Affiliation(s)
- Chunju Yang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bang Li
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zongbo Feng
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huaxuan Li
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hong Yang
- Lingang Laboratory, Shanghai 200031, P. R. China
| | - Zhenjiao Yang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Li Liu
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qiongyu Shi
- Lingang Laboratory, Shanghai 200031, P. R. China
| | - Hong Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- State Key Laboratory of Anti-Infective Drug Development, Guangzhou 510006, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Xun Huang
- Lingang Laboratory, Shanghai 200031, P. R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Junjian Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- State Key Laboratory of Anti-Infective Drug Development, Guangzhou 510006, China
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- State Key Laboratory of Anti-Infective Drug Development, Guangzhou 510006, China
| |
Collapse
|
12
|
Zhang Y, Qiao Y, Li Z, Liu D, Jin Q, Guo J, Li X, Chen L, Liu L, Peng L. Intestinal NSD2 Aggravates Nonalcoholic Steatohepatitis Through Histone Modifications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402551. [PMID: 38923875 PMCID: PMC11434126 DOI: 10.1002/advs.202402551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/09/2024] [Indexed: 06/28/2024]
Abstract
Mounting clinical evidence suggests that a comprised intestinal barrier contributes to the progression of nonalcoholic steatohepatitis (NASH); nevertheless, the precise mechanism remains elusive. This study unveils a significant upregulation of nuclear receptor-binding SET domain protein 2 (NSD2) in the intestines of obese humans and mice subjected to a high-fat cholesterol diet (HFCD). Intestine-specific NSD2 knockout attenuated the progression of intestinal barrier impairment and NASH, whereas NSD2 overexpression exacerbated this progression. Mechanistically, NSD2 directly regulates the transcriptional activation of Ern1 by demethylating histone H3 at lysine 36 (H3K36me2), thus activating the ERN1-JNK axis to intensify intestinal barrier impairment and subsequently foster NASH progression. These findings elucidate the crucial role of NSD2-mediated H3K36me2 in intestinal barrier impairment, suggesting that targeting intestinal NSD2 can represent a novel therapeutic approach for NASH.
Collapse
Affiliation(s)
- Yijia Zhang
- Beijing Key Laboratory of BioprocessCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Yuan Qiao
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Zecheng Li
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Donghai Liu
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Qi Jin
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Jing Guo
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Xin Li
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Long Chen
- Beijing Key Laboratory of BioprocessCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Lihong Liu
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Liang Peng
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| |
Collapse
|
13
|
Mohamed GA, Abdallah HM, Sindi IA, Ibrahim SRM, Alzain AA. Unveiling the potential of phytochemicals to inhibit nuclear receptor binding SET domain protein 2 for cancer: Pharmacophore screening, molecular docking, ADME properties, and molecular dynamics simulation investigations. PLoS One 2024; 19:e0308913. [PMID: 39163297 PMCID: PMC11335128 DOI: 10.1371/journal.pone.0308913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
Nuclear receptor binding SET domain protein 2 (NSD2) significantly contributes to the development of cancer, making it a promising target for cancer drug discovery. This research explores natural compounds as potential selective inhibitors for NSD2 in cancer treatment. Employing a comprehensive in silico approach, the study utilized pharmacophore modeling, molecular docking, pharmacokinetic profiling, and molecular dynamics simulations. An e-pharmacophore model-based screening using the first selective and potent ligand bound to NSD2 identified 49,248 natural compounds from the SuperNatural 3.0 database (containing 449,008 molecules) with acceptable alignment with the developed pharmacophore hypotheses. Subsequently, molecular docking was executed to assess the standout compounds which led to the selection of ten candidates that surpassed the reference inhibitor in accordance w the binding affinity expressed as a G score. Ligand-residue interaction analyses of the top three hits (SN0450102, SN0410255, and SN0142336) revealed diverse crucial interactions with the NSD2 active site, including hydrogen bonds, pi-pi stacking, and hydrophobic contacts with key amino acid residues in the NSD2-PWWP1 domain. Pharmacokinetic profiling confirmed the drug-likability for the refined hits, indicating good cellular permeability and minimal blood-brain barrier penetration. Molecular dynamics simulations for 200 nanoseconds affirmed the stability of protein-ligand complexes, with minimal fluctuations in root mean square deviation and root mean square fluctuation analyses. Overall, this study identified promising natural compounds as potential pharmaceutical agents in the treatment of NSD2-associated cancers.
Collapse
Affiliation(s)
- Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ikhlas A. Sindi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani, Sudan
| |
Collapse
|
14
|
Carlino L, Astles PC, Ackroyd B, Ahmed A, Chan C, Collie GW, Dale IL, O'Donovan DH, Fawcett C, di Fruscia P, Gohlke A, Guo X, Hao-Ru Hsu J, Kaplan B, Milbradt AG, Northall S, Petrović D, Rivers EL, Underwood E, Webb A. Identification of Novel Potent NSD2-PWWP1 Ligands Using Structure-Based Design and Computational Approaches. J Med Chem 2024; 67:8962-8987. [PMID: 38748070 DOI: 10.1021/acs.jmedchem.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Dysregulation of histone methyl transferase nuclear receptor-binding SET domain 2 (NSD2) has been implicated in several hematological and solid malignancies. NSD2 is a large multidomain protein that carries histone writing and histone reading functions. To date, identifying inhibitors of the enzymatic activity of NSD2 has proven challenging in terms of potency and SET domain selectivity. Inhibition of the NSD2-PWWP1 domain using small molecules has been considered as an alternative approach to reduce NSD2-unregulated activity. In this article, we present novel computational chemistry approaches, encompassing free energy perturbation coupled to machine learning (FEP/ML) models as well as virtual screening (VS) activities, to identify high-affinity NSD2 PWWP1 binders. Through these activities, we have identified the most potent NSD2-PWWP1 binder reported so far in the literature: compound 34 (pIC50 = 8.2). The compounds identified herein represent useful tools for studying the role of PWWP1 domains for inhibition of human NSD2.
Collapse
Affiliation(s)
- Luca Carlino
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Peter C Astles
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Bryony Ackroyd
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Afshan Ahmed
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Christina Chan
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Gavin W Collie
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Ian L Dale
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Daniel H O'Donovan
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Caroline Fawcett
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Paolo di Fruscia
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Andrea Gohlke
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Xiaoxiao Guo
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Jessie Hao-Ru Hsu
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Bethany Kaplan
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Alexander G Milbradt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Sarah Northall
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Dušan Petrović
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Emma L Rivers
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Elizabeth Underwood
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Alice Webb
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| |
Collapse
|
15
|
Wirth M, Schneider G. A Hypoxia-Epigenetics Axis Drives EMT in Pancreatic Cancer. Cancer Res 2024; 84:1739-1741. [PMID: 38831749 DOI: 10.1158/0008-5472.can-23-3578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 06/05/2024]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a classical cellular plasticity process induced by various cell-intrinsic and -extrinsic triggers. Although prominent factors, such as TGFβ, mediate EMT via well-characterized pathways, alternative avenues are less well understood. Transcriptomic subtyping of pancreatic ductal adenocarcinoma (PDAC) has demonstrated that basal-like PDACs enrich a mesenchymal-like expression program, emphasizing the relevance of EMT in the disease. In this issue of Cancer Research, Brown and colleagues demonstrate the tight connection of EMT to hypoxia. Through a detailed mechanistic analysis, the authors deciphered that hypoxia-induced signals are integrated by the histone H3 lysine 36 di-methylation (H3K36me2) mark. On the one hand, hypoxia decreased activity of the H3K36me2 eraser KDM2A, while on the other hand promoting stabilization of the H3K36me2 writer NSD2. Hypoxia diminished the expression of a set of serine-threonine phosphatases, subsequently resulting in SRC kinase family-dependent activation of canonical MEK, ERK, and JNK signaling to impinge on NSD2 expression. In addition, reduced expression of the protein phosphatase PP2Cδ was linked to increased NSD2 protein expression. These discoveries illuminate the close relationship of hypoxia signaling to the epigenetic machinery and cellular plasticity processes. See related article by Brown et al., p. 1764.
Collapse
Affiliation(s)
- Matthias Wirth
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Max Delbrück Center, Berlin, Germany
| | - Günter Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany
- Clinical Research Unit KFO5002, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
Liu L, Parolia A, Liu Y, Hou C, He T, Qiao Y, Eyunni S, Luo J, Li C, Wang Y, Zhou F, Huang W, Ren X, Wang Z, Chinnaiyan AM, Ding K. Discovery of LLC0424 as a Potent and Selective in Vivo NSD2 PROTAC Degrader. J Med Chem 2024; 67:6938-6951. [PMID: 38687638 PMCID: PMC11094793 DOI: 10.1021/acs.jmedchem.3c01765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Nuclear receptor-binding SET domain-containing 2 (NSD2), a methyltransferase that primarily installs the dimethyl mark on lysine 36 of histone 3 (H3K36me2), has been recognized as a promising therapeutic target against cancer. However, existing NSD2 inhibitors suffer from low activity or inferior selectivity, and none of them can simultaneously remove the methyltransferase activity and chromatin binding function of NSD2. Herein we report the discovery of a novel NSD2 degrader LLC0424 by leveraging the proteolysis-targeting chimera technology. LLC0424 potently degraded NSD2 protein with a DC50 value of 20 nM and a Dmax value of 96% in acute lymphoblastic leukemia (ALL) RPMI-8402 cells. Mechanistic studies revealed LLC0424 to selectively induce NSD2 degradation in a cereblon- and proteasome-dependent fashion. LLC0424 also caused continuous downregulation of H3K36me2 and growth inhibition of ALL cell lines with NSD2 mutation. Importantly, intravenous or intraperitoneal injection of LLC0424 showed potent NSD2 degradation in vivo.
Collapse
Affiliation(s)
- Lianchao Liu
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Abhijit Parolia
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Urology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yihan Liu
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Cancer
Biology
Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Caiyun Hou
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
| | - Tongchen He
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuanyuan Qiao
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sanjana Eyunni
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Molecular
and Cellular Pathology Program, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jie Luo
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chungen Li
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Yongxing Wang
- Livzon
Research Institute, Livzon Pharmaceutical
Group Inc., no. 38 Chuangye North Road, Jinwan District, Zhuhai 519000, China
| | - Fengtao Zhou
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
| | - Weixue Huang
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Xiaomei Ren
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Zhen Wang
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Arul M. Chinnaiyan
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Urology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Howard
Hughes Medical Institute, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Ke Ding
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
- Hangzhou Institute
of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
17
|
Liu C, Xu M, Li W, Cao X, Wang Y, Chen H, Zhang T, Lu M, Xie H, Chen Y. Quantitative Pattern of hPTMs by Mass Spectrometry-Based Proteomics with Implications for Triple-Negative Breast Cancer. J Proteome Res 2024; 23:1495-1505. [PMID: 38576392 DOI: 10.1021/acs.jproteome.4c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Triple-negative breast cancer (TNBC) is known for its aggressive nature, and TNBC management is currently challenging due to the lack of effective targets. Despite the importance of histone post-translational modifications (hPTMs) in breast cancer, their associations with molecular subtypes of breast cancer, especially TNBC, are poorly understood. In this study, a combination of untargeted and targeted proteomics approaches, supplemented by a derivatization method, was applied to breast cancer cells and tissue samples. Untargeted proteomics of eight breast cancer cell lines belonging to different molecular subtypes revealed 36 modified peptides with 12 lysine modification sites in histone H3, and the most frequently reported top 5 histone H3 methylation and acetylation sites were covered. Then, targeted proteomics was carried out to quantify the total 20 target hPTMs at the covered modification sites (i.e., mono-, di-, trimethylation, and acetylation for each site), indicating the difficulty in distinguishing TNBC cells from normal cells. Subsequently, the analysis in TNBC patients revealed significant expression differences in 4 specific hPTMs (H3K14ac, H3K27me1, H3K36me2, and H3K36me3) between TNBC and adjacent normal tissue samples. These unique hPTM patterns allowed for the differentiation of TNBC from normal cases. This finding provides promising implications for advancing targeted treatment strategies for TNBC in the future.
Collapse
Affiliation(s)
- Chunyan Liu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Mengying Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wan Li
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Cao
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yan Wang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Haoran Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Tianqi Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Meiyan Lu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hui Xie
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing 211166, China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Nanjing 211166, China
| |
Collapse
|
18
|
He L, Cao Y, Sun L. NSD family proteins: Rising stars as therapeutic targets. CELL INSIGHT 2024; 3:100151. [PMID: 38371593 PMCID: PMC10869250 DOI: 10.1016/j.cellin.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Epigenetic modifications, including DNA methylation and histone post-translational modifications, intricately regulate gene expression patterns by influencing DNA accessibility and chromatin structure in higher organisms. These modifications are heritable, are independent of primary DNA sequences, undergo dynamic changes during development and differentiation, and are frequently disrupted in human diseases. The reversibility of epigenetic modifications makes them promising targets for therapeutic intervention and drugs targeting epigenetic regulators (e.g., tazemetostat, targeting the H3K27 methyltransferase EZH2) have been applied in clinical therapy for multiple cancers. The NSD family of H3K36 methyltransferase enzymes-including NSD1 (KMT3B), NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1)-are now receiving drug development attention, with the exciting advent of an NSD2 inhibitor (KTX-1001) advancing to Phase I clinical trials for relapsed or refractory multiple myeloma. NSD proteins recognize and catalyze methylation of histone lysine marks, thereby regulating chromatin integrity and gene expression. Multiple studies have implicated NSD proteins in human disease, noting impacts from translocations, aberrant expression, and various dysfunctional somatic mutations. Here, we review the biological functions of NSD proteins, epigenetic cooperation related to NSD proteins, and the accumulating evidence linking these proteins to developmental disorders and tumorigenesis, while additionally considering prospects for the development of innovative epigenetic therapies.
Collapse
Affiliation(s)
- Lin He
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing 100191, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China
| | - Yiping Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing 100191, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|