1
|
Shirpour A, Hadadi A, Zolghadri S, Vosoughi S, Rajabifar S. Preclinical evaluation of [ 13xLa]La-FAP-2286 as a novel theranostic agent for tumors expressing fibroblast activation protein. Sci Rep 2025; 15:7475. [PMID: 40032959 DOI: 10.1038/s41598-025-91716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
In this study, a novel theranostic radiopharmaceutical, [13xLa]La-FAP-2286, for targeting Fibroblast Activation Protein (FAP)-positive tumors. The theranostic pair of 132La (half-life: 4.59 h, 42.1% β⁺) and 135La (half-life: 18.91 h, 100% EC) was produced via proton bombardment of natural barium in a 30 MeV cyclotron, achieving high radionuclidic purity (99.9%) and radiochemical purity (RCP > 99%). Stability tests revealed the RCP greater than 91% over 24 h in human serum and PBS buffer. Cellular studies confirmed high binding affinity (KD = 0.51 ± 0.12 nM) and effective internalization of [13xLa]La-FAP-2286 in FAP + tumor cells. Distribution coefficient (log D) measurements demonstrated high hydrophilicity of the complex with a value of - 3.21 ± 0.14. Imaging and biodistribution studies in tumor-bearing mice further confirmed tumor targeting, with significant uptake observed up to 48 h post-injection. These results suggest [13xLa]La-FAP-2286 can be considered a candidate for theranostic applications, offering both practical PET imaging and targeted Auger-electron therapy for cancer treatment.
Collapse
Affiliation(s)
- Ali Shirpour
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Asghar Hadadi
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samaneh Zolghadri
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, 14155-1339, Iran.
| | - Sara Vosoughi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, 14155-1339, Iran
| | - Saeed Rajabifar
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, 14155-1339, Iran
| |
Collapse
|
2
|
Xu W, Langhans SA, Johnson DK, Stauff E, Kandula VVR, Kecskemethy HH, Averill LW, Yue X. Radiotracers for Molecular Imaging of Angiotensin-Converting Enzyme 2. Int J Mol Sci 2024; 25:9419. [PMID: 39273366 PMCID: PMC11395405 DOI: 10.3390/ijms25179419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzymes (ACE) are well-known for their roles in both blood pressure regulation via the renin-angiotensin system as well as functions in fertility, immunity, hematopoiesis, and many others. The two main isoforms of ACE include ACE and ACE-2 (ACE2). Both isoforms have similar structures and mediate numerous effects on the cardiovascular system. Most remarkably, ACE2 serves as an entry receptor for SARS-CoV-2. Understanding the interaction between the virus and ACE2 is vital to combating the disease and preventing a similar pandemic in the future. Noninvasive imaging techniques such as positron emission tomography and single photon emission computed tomography could noninvasively and quantitatively assess in vivo ACE2 expression levels. ACE2-targeted imaging can be used as a valuable tool to better understand the mechanism of the infection process and the potential roles of ACE2 in homeostasis and related diseases. Together, this information can aid in the identification of potential therapeutic drugs for infectious diseases, cancer, and many ACE2-related diseases. The present review summarized the state-of-the-art radiotracers for ACE2 imaging, including their chemical design, pharmacological properties, radiochemistry, as well as preclinical and human molecular imaging findings. We also discussed the advantages and limitations of the currently developed ACE2-specific radiotracers.
Collapse
Affiliation(s)
- Wenqi Xu
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Sigrid A. Langhans
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
- Division of Neurology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA
| | - David K. Johnson
- Computational Chemical Biology Core, Molecular Graphics and Modeling Laboratory, University of Kansas, Lawrence, KS 66047, USA;
| | - Erik Stauff
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Vinay V. R. Kandula
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
| | - Heidi H. Kecskemethy
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Lauren W. Averill
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Xuyi Yue
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| |
Collapse
|
3
|
Wang Y, Yang F, Li H. Development of a Novel, Easy-to-Prepare, and Potentially Valuable Peptide Coupling Technology Utilizing Amide Acid as a Linker. Pharmaceuticals (Basel) 2024; 17:981. [PMID: 39204086 PMCID: PMC11356999 DOI: 10.3390/ph17080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/16/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
The process of synthesizing radionuclide-coupled drugs, especially shutdown technology that links bipotent chelators with biomolecules, utilizes traditional coupling reactions, including emerging click chemistry; these reactions involve different drawbacks, such as complex and cumbersome reaction steps, long reaction times, and the use of catalysts at various pH values, which can negatively impact the effects of the chelating agent. To address the above problems in this study, This research designed a novel bipotent chelator coupled with peptides. In the present study, dichloromethane was used as a solvent, and the reaction was conducted at room temperature for 12 h. A one-step ring-opening method was employed to introduce the coupling functional group of tridentate amide acid. The coupling materials consisted of the amino active site of the peptide and diethylene glycol anhydride. In this paper, this study explored the reactions between different equivalents of acid anhydride coupled to the peptide (peptide sequence: HLRKLRKR) and determined that the maximum conversion of the peptide feedstock was 87%. To determine the selectivity of the reaction sites in this polypeptide, This study identified the peptide sequence at the reaction site using nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC-MS). For the selected peptide, the first reactive site was on the terminal amino group, followed by the amino group on the tetra- and hepta-lysine side chains. The tridentate amic acid framework functions as a chelating agent, capable of binding a range of lanthanide ions. This significantly reduces and optimizes the time and cost associated with synthesizing radionuclide-coupled drugs.
Collapse
Affiliation(s)
- Yaling Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China;
- Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Fan Yang
- Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key-Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen 361021, China
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, China Rare Earth Group Research Institute, Ganzhou 341000, China
- Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hongyan Li
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
4
|
Aprile C, Geatti O, Canziani L, Lodola L. Editorial for the Special Issue "Molecular Biology in Targeted Radionuclide Therapy Radiopharmaceutical Design". Curr Issues Mol Biol 2024; 46:2398-2401. [PMID: 38534768 DOI: 10.3390/cimb46030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Targeted radionuclide therapy (TRT) is gaining wide and rapid acceptance in clinical practice as it can deliver alpha or beta irradiation to a tumor-associated target which may be present in the tumor cell itself or in the microenvironment [...].
Collapse
Affiliation(s)
- Carlo Aprile
- Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Onelio Geatti
- Studio di Radiologia Bazzocchi, 34135 Trieste, Italy
| | | | - Lorenzo Lodola
- Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|