1
|
Choi SH, Kim YM, Son JY, Ahn DK. Microiontophoretic Application of Dynorphin in Dental Pain: Excitatory or Inhibitory Effects. J Pain Res 2025; 18:455-464. [PMID: 39882177 PMCID: PMC11776519 DOI: 10.2147/jpr.s499040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025] Open
Abstract
Background The tooth exhibits increased sensitivity to noxious stimuli due to the dense innervation of thin myelinated Aδ fibers and unmyelinated C fibers within the dental pulp. While prior research has identified dynorphin expression in layers I-II of the dorsal horn across the spinal cord in various pain models, its functional role in trigeminal nociception, including tooth pain, remains underexplored. This study examines the potential role of dynorphin in the nociceptive processing of dental stimuli. Methods Experiments were performed on adult male ferrets weighing 0.9-1.4 kg. The effects of dynorphin on electrically evoked responses of tooth pulp neurons were recorded extracellularly. Results The results demonstrated that the microiontophoretic application of dynorphin A induced excitatory and inhibitory effects on N-methyl-D-aspartate (NMDA)-evoked responses in electrically stimulated tooth pulp neurons. Specifically, dynorphin A attenuated NMDA-evoked responses in 16 out of 32 neurons by 61 ± 6%, facilitated NMDA-evoked responses in 10 out of 32 neurons by 69 ± 17%, and elicited mixed inhibitory and facilitatory responses in six out of 32 neurons. The inhibitory effects of dynorphin were blocked by nor-binaltorphimine, a kappa receptor antagonist, whereas the facilitatory effects were inhibited by D,L-2-amino-5-phosphonovaleric acid, an NMDA receptor antagonist. Conclusion These findings suggest that dynorphin A-induced excitatory responses are mediated by NMDA receptors, whereas its inhibitory responses are mediated through kappa opioid receptors in dental pain. Thus, dynorphin exerts diverse effects, highlighting its role in the perception and modulation of dental pain.
Collapse
Affiliation(s)
- Seung-Ho Choi
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Yu-Mi Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Jo-Young Son
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Dong-Kuk Ahn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| |
Collapse
|
2
|
Xu K, Zhang M, Chen D, Xu B, Hu X, Zhang Q, Zhang R, Zhang N, Li N, Fang Q. Conorphin-66 produces peripherally restricted antinociception via the kappa-opioid receptor with limited side effects. Neuropharmacology 2024; 261:110157. [PMID: 39276862 DOI: 10.1016/j.neuropharm.2024.110157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/15/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
With the current unmet demand for effective pain relief, analgesics without major central adverse effects are highly appealing, such as peripherally restricted kappa-opioid receptor (KOR) agonists. In this study, Conorphin-66, an analog of the selective KOR peptide agonist Conorphin T, was pharmacologically characterized in a series of experiments, with CR845 serving as the reference compound. Firstly, in vitro functional assay indicated that Conorphin-66 selectively activates KOR and exhibits weak β-arrestin2 signaling bias (-1.54 versus -4.35 for CR845). Additionally, subcutaneous Conorphin-66 produced potent antinociception in mouse pain models with ED50 values ranged from 0.02 to 3.28 μmol/kg, including tail-flick test, post-operative pain, formalin pain, and acetic acid-induced visceral pain. Similarly, CR845 exert potent antinociception in mouse pain models ranged from 0.15 to 1.47 μmol/kg. Notably, antagonism studies revealed that the analgesic effects of Conorphin-66 were mainly mediated by the peripheral KOR. Furthermore, Conorphin-66 produced non-tolerance-forming antinociception over 8 days. Unlike CR845, subcutaneous Conorphin-66 did not promote the sedation, anxiogenic effects, depressive-like effects, but did exhibit diuretic activity. Further study showed that Conorphin-66 does not have apparent antipruritic effects in an acute itch model. Overall, Conorphin-66 emerges as a novel peripherally restricted KOR agonist that produced potent antinociception with reduced side effects.
Collapse
Affiliation(s)
- Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xuanran Hu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Nan Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
3
|
El Daibani A, Madasu MK, Al-Hasani R, Che T. Limitations and potential of κOR biased agonists for pain and itch management. Neuropharmacology 2024; 258:110061. [PMID: 38960136 PMCID: PMC11968146 DOI: 10.1016/j.neuropharm.2024.110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
The concept of ligand bias is based on the premise that different agonists can elicit distinct responses by selectively activating the same receptor. These responses often determine whether an agonist has therapeutic or undesirable effects. Therefore, it would be highly advantageous to have agonists that specifically trigger the therapeutic response. The last two decades have seen a growing trend towards the consideration of ligand bias in the development of ligands to target the κ-opioid receptor (κOR). Most of these ligands selectively favor G-protein signaling over β-arrestin signaling to potentially provide effective pain and itch relief without adverse side effects associated with κOR activation. Importantly, the specific role of β-arrestin 2 in mediating κOR agonist-induced side effects remains unknown, and similarly the therapeutic and side-effect profiles of G-protein-biased κOR agonists have not been established. Furthermore, some drugs previously labeled as G-protein-biased may not exhibit true bias but may instead be either low-intrinsic-efficacy or partial agonists. In this review, we discuss the established methods to test ligand bias, their limitations in measuring bias factors for κOR agonists, as well as recommend the consideration of other systematic factors to correlate the degree of bias signaling and pharmacological effects. This article is part of the Special Issue on "Ligand Bias".
Collapse
Affiliation(s)
- Amal El Daibani
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Manish K Madasu
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ream Al-Hasani
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Tao Che
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
4
|
Castro J, Maddern J, Chow CY, Tran P, Vetter I, King GF, Brierley SM. The voltage-gated sodium channel Na V1.7 underlies endometriosis-associated chronic pelvic pain. J Neurochem 2024; 168:3760-3776. [PMID: 36840383 DOI: 10.1111/jnc.15795] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023]
Abstract
Chronic pelvic pain (CPP) is the primary symptom of endometriosis patients, but adequate treatments are lacking. Modulation of ion channels expressed by sensory nerves innervating the viscera has shown promise for the treatment of irritable bowel syndrome and overactive bladder. However, similar approaches for endometriosis-associated CPP remain underdeveloped. Here, we examined the role of the voltage-gated sodium (NaV) channel NaV1.7 in (i) the sensitivity of vagina-innervating sensory afferents and investigated whether (ii) NaV1.7 inhibition reduces nociceptive signals from the vagina and (iii) ameliorates endometriosis-associated CPP. The mechanical responsiveness of vagina-innervating sensory afferents was assessed with ex vivo single-unit recording preparations. Pain evoked by vaginal distension (VD) was quantified by the visceromotor response (VMR) in vivo. In control mice, pharmacological activation of NaV1.7 with OD1 sensitised vagina-innervating pelvic afferents to mechanical stimuli. Using a syngeneic mouse model of endometriosis, we established that endometriosis sensitised vagina-innervating pelvic afferents to mechanical stimuli. The highly selective NaV1.7 inhibitor Tsp1a revealed that this afferent hypersensitivity occurred in a NaV1.7-dependent manner. Moreover, in vivo intra-vaginal treatment with Tsp1a reduced the exaggerated VMRs to VD which is characteristic of mice with endometriosis. Conversely, Tsp1a did not alter ex vivo afferent mechanosensitivity nor in vivo VMRs to VD in Sham control mice. Collectively, these findings suggest that NaV1.7 plays a crucial role in endometriosis-induced vaginal hyperalgesia. Importantly, NaV1.7 inhibition selectively alleviated endometriosis-associated CPP without the loss of normal sensation, suggesting that selective targeting of NaV1.7 could improve the quality of life of women with endometriosis.
Collapse
Affiliation(s)
- Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Jessica Maddern
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Poanna Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Zhao J, Baiula M, Cuna E, Francescato M, Matalińska J, Lipiński PF, Bedini A, Gentilucci L. Identification of c[D-Trp-Phe-β-Ala-β-Ala], the First κ-Opioid Receptor-Specific Negative Allosteric Modulator. ACS Pharmacol Transl Sci 2024; 7:3192-3204. [PMID: 39416958 PMCID: PMC11475277 DOI: 10.1021/acsptsci.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
Recently, the fungus secondary metabolite cyclotetrapetide c[Trp-Phe-D-Pro-Phe] (CJ-15,208) and its derivatives deserved some attention for their unusual structure and distinctive in vitro and in vivo activity. These tryptophan-containing noncationic opioid peptides can be truly regarded as versatile picklocks capable of activating all opioid receptors. Intriguingly, minimal modification of the potent κ-opioid receptor (KOR) agonist c[D-Trp-Phe-Gly-β-Ala] (3) yielded c[D-Trp-Phe-β-Ala-β-Ala] (11), the first KOR-specific negative allosteric modulator (NAM) reported to-date. KOR exerts control over numerous functions in the central nervous system, including pain, depression, stress, mood, and reward. Hence, this KOR-selective NAM looks promising for modulating the KOR in addiction and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Junwei Zhao
- Dept.
of Chemistry “G. Ciamician”, University of Bologna, Campus Navile - Ue4, via Gobetti 83, Bologna 40129, Italy
| | - Monica Baiula
- Department
of Pharmacy and Biotechnology, University
of Bologna, Bologna 40126, Italy
| | - Elisabetta Cuna
- Department
of Pharmacy and Biotechnology, University
of Bologna, Bologna 40126, Italy
| | - Marco Francescato
- Dept.
of Chemistry “G. Ciamician”, University of Bologna, Campus Navile - Ue4, via Gobetti 83, Bologna 40129, Italy
| | - Joanna Matalińska
- Department
of Neuropeptides, Mossakowski Medical Research
Institute, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw 02-106, Poland
| | - Piotr F.J. Lipiński
- Department
of Neuropeptides, Mossakowski Medical Research
Institute, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw 02-106, Poland
| | - Andrea Bedini
- Department
of Pharmacy and Biotechnology, University
of Bologna, Bologna 40126, Italy
| | - Luca Gentilucci
- Dept.
of Chemistry “G. Ciamician”, University of Bologna, Campus Navile - Ue4, via Gobetti 83, Bologna 40129, Italy
- Health
Sciences & Technologies (HST) CIRI, University of Bologna, Ozzano
Emilia 40064, Italy
| |
Collapse
|
6
|
Eliasof A, Liu-Chen LY, Li Y. Peptide-derived ligands for the discovery of safer opioid analgesics. Drug Discov Today 2024; 29:103950. [PMID: 38514040 PMCID: PMC11127667 DOI: 10.1016/j.drudis.2024.103950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Drugs targeting the μ-opioid receptor (MOR) remain the most efficacious analgesics for the treatment of pain, but activation of MOR with current opioid analgesics also produces harmful side effects, notably physical dependence, addiction, and respiratory depression. Opioid peptides have been accepted as promising candidates for the development of safer and more efficacious analgesics. To develop peptide-based opioid analgesics, strategies such as modification of endogenous opioid peptides, development of multifunctional opioid peptides, G protein-biased opioid peptides, and peripherally restricted opioid peptides have been reported. This review seeks to provide an overview of the opioid peptides that produce potent antinociception with much reduced side effects in animal models and highlight the potential advantages of peptides as safer opioid analgesics.
Collapse
Affiliation(s)
- Abbe Eliasof
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Lee-Yuan Liu-Chen
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yangmei Li
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
7
|
Santino F, Gentilucci L. Design of κ-Opioid Receptor Agonists for the Development of Potential Treatments of Pain with Reduced Side Effects. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010346. [PMID: 36615540 PMCID: PMC9822356 DOI: 10.3390/molecules28010346] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
The κ-opioid receptor (KOR) has recently emerged as an alternative therapeutic target for the development of pain medications, without deleterious side effects associated with the μ-opioid receptor (MOR). However, modulation of KOR is currently under investigation for the treatment of depression, mood disorders, psychiatric comorbidity, and specific drug addictions. However, KOR agonists also trigger adverse effects including sedation, dysphoria, and hallucinations. In this respect, there is currently much debate on alternative paradigms. Recent effort has been devoted in search of biased ligands capable of selectively activating favorable signaling over signaling associated with unwanted side effects. On the other hand, the use of partial agonists is expected to allow the analgesia to be produced at dosages lower than those required to produce the adverse effects. More empirically, the unwanted central effects can be also avoided by using peripherally restricted agonists. In this review, we discuss the more recent trends in the design of KOR-selective, biased or partial, and finally, peripherally acting agonists. Special emphasis is given on the discussion of the most recent approaches for controlling functional selectivity of KOR-specific ligands.
Collapse
|
8
|
Ruelas-Callejas A, Aguilar MB, Arteaga-Tlecuitl R, Gomora JC, López-Vera E. The T-1 conotoxin μ-SrVA from the worm hunting marine snail Conus spurius preferentially blocks the human Na V1.5 channel. Peptides 2022; 156:170859. [PMID: 35940316 DOI: 10.1016/j.peptides.2022.170859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022]
Abstract
Conotoxin sr5a had previously been identified in the vermivorous cone snail Conus spurius. This conotoxin is a highly hydrophobic peptide, with the sequence IINWCCLIFYQCC, which has a cysteine pattern "CC-CC" belonging to the T-1 superfamily. It is well known that this superfamily binds to molecular targets such as calcium channels, G protein-coupled receptors (GPCR), and neuronal nicotinic acetylcholine receptors (nAChR) and exerts an effect mainly in the central nervous system. However, its effects on other molecular targets are not yet defined, suggesting the potential of newly relevant molecular interactions. To find and demonstrate a potential molecular target for conotoxin sr5a electrophysiological assays were performed on three subtypes of voltage-activated sodium channels (NaV1.5, NaV1.6, and NaV1.7) expressed in HEK-293 cells with three different concentrations of sr5a(200, 400, and 600 nM). 200 nM sr5a blocked currents mediated by NaV1.5 by 33%, NaV1.6 by 14%, and NaV1.7 by 7%. The current-voltage (I-V) relationships revealed that conotoxin sr5a exhibits a preferential activity on the NaV1.5 subtype; the activation of NaV1.5 conductance was not modified by the blocking effect of sr5a, but sr5a affected the voltage-dependence of inactivation of channels. Since peptide sr5a showed a specific activity for a sodium channel subtype, we can assign a pharmacological family and rename it as conotoxin µ-SrVA.
Collapse
Affiliation(s)
- Angélica Ruelas-Callejas
- Laboratorio de Toxinología Marina, Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Manuel B Aguilar
- Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico
| | - Rogelio Arteaga-Tlecuitl
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 0410, Mexico
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 0410, Mexico
| | - Estuardo López-Vera
- Laboratorio de Toxinología Marina, Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
9
|
von Reumont BM, Anderluh G, Antunes A, Ayvazyan N, Beis D, Caliskan F, Crnković A, Damm M, Dutertre S, Ellgaard L, Gajski G, German H, Halassy B, Hempel BF, Hucho T, Igci N, Ikonomopoulou MP, Karbat I, Klapa MI, Koludarov I, Kool J, Lüddecke T, Ben Mansour R, Vittoria Modica M, Moran Y, Nalbantsoy A, Ibáñez MEP, Panagiotopoulos A, Reuveny E, Céspedes JS, Sombke A, Surm JM, Undheim EAB, Verdes A, Zancolli G. Modern venomics-Current insights, novel methods, and future perspectives in biological and applied animal venom research. Gigascience 2022; 11:giac048. [PMID: 35640874 PMCID: PMC9155608 DOI: 10.1093/gigascience/giac048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.
Collapse
Affiliation(s)
- Bjoern M von Reumont
- Goethe University Frankfurt, Institute for Cell Biology and Neuroscience, Department for Applied Bioinformatics, 60438 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Naira Ayvazyan
- Orbeli Institute of Physiology of NAS RA, Orbeli ave. 22, 0028 Yerevan, Armenia
| | - Dimitris Beis
- Developmental Biology, Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Figen Caliskan
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Ana Crnković
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Maik Damm
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Lars Ellgaard
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Hannah German
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Trg Republike Hrvatske 14, 10000 Zagreb, Croatia
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies BCRT, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nasit Igci
- Nevsehir Haci Bektas Veli University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, 50300 Nevsehir, Turkey
| | - Maria P Ikonomopoulou
- Madrid Institute for Advanced Studies in Food, Madrid,E28049, Spain
- The University of Queensland, St Lucia, QLD 4072, Australia
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
| | - Ivan Koludarov
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Gießen, Germany
| | - Riadh Ben Mansour
- Department of Life Sciences, Faculty of Sciences, Gafsa University, Campus Universitaire Siidi Ahmed Zarrouk, 2112 Gafsa, Tunisia
| | - Maria Vittoria Modica
- Dept. of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Via Po 25c, I-00198 Roma, Italy
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - María Eugenia Pachón Ibáñez
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexios Panagiotopoulos
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
- Animal Biology Division, Department of Biology, University of Patras, Patras, GR-26500, Greece
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Javier Sánchez Céspedes
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Andy Sombke
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eivind A B Undheim
- University of Oslo, Centre for Ecological and Evolutionary Synthesis, Postboks 1066 Blindern 0316 Oslo, Norway
| | - Aida Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Van Baelen AC, Robin P, Kessler P, Maïga A, Gilles N, Servent D. Structural and Functional Diversity of Animal Toxins Interacting With GPCRs. Front Mol Biosci 2022; 9:811365. [PMID: 35198603 PMCID: PMC8859281 DOI: 10.3389/fmolb.2022.811365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Peptide toxins from venoms have undergone a long evolutionary process allowing host defense or prey capture and making them highly selective and potent for their target. This has resulted in the emergence of a large panel of toxins from a wide diversity of species, with varied structures and multiple associated biological functions. In this way, animal toxins constitute an inexhaustible reservoir of druggable molecules due to their interesting pharmacological properties. One of the most interesting classes of therapeutic targets is the G-protein coupled receptors (GPCRs). GPCRs represent the largest family of membrane receptors in mammals with approximately 800 different members. They are involved in almost all biological functions and are the target of almost 30% of drugs currently on the market. Given the interest of GPCRs in the therapeutic field, the study of toxins that can interact with and modulate their activity with the purpose of drug development is of particular importance. The present review focuses on toxins targeting GPCRs, including peptide-interacting receptors or aminergic receptors, with a particular focus on structural aspects and, when relevant, on potential medical applications. The toxins described here exhibit a great diversity in size, from 10 to 80 amino acids long, in disulfide bridges, from none to five, and belong to a large panel of structural scaffolds. Particular toxin structures developed here include inhibitory cystine knot (ICK), three-finger fold, and Kunitz-type toxins. We summarize current knowledge on the structural and functional diversity of toxins interacting with GPCRs, concerning first the agonist-mimicking toxins that act as endogenous agonists targeting the corresponding receptor, and second the toxins that differ structurally from natural agonists and which display agonist, antagonist, or allosteric properties.
Collapse
Affiliation(s)
- Anne-Cécile Van Baelen
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Robin
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pascal Kessler
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Arhamatoulaye Maïga
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
- CHU Sainte Justine, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Gilles
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Denis Servent
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
- *Correspondence: Denis Servent,
| |
Collapse
|
11
|
Castro J, Garcia-Caraballo S, Maddern J, Schober G, Lumsden A, Harrington A, Schmiel S, Lindstrom B, Adams J, Brierley SM. Olorinab (APD371), a peripherally acting, highly selective, full agonist of the cannabinoid receptor 2, reduces colitis-induced acute and chronic visceral hypersensitivity in rodents. Pain 2022; 163:e72-e86. [PMID: 33863856 PMCID: PMC8675055 DOI: 10.1097/j.pain.0000000000002314] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/12/2021] [Accepted: 04/02/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Abdominal pain is a key symptom of inflammatory bowel disease and irritable bowel syndrome, for which there are inadequate therapeutic options. We tested whether olorinab-a highly selective, full agonist of the cannabinoid receptor 2 (CB2)-reduced visceral hypersensitivity in models of colitis and chronic visceral hypersensitivity (CVH). In rodents, colitis was induced by intrarectal administration of nitrobenzene sulfonic acid derivatives. Control or colitis animals were administered vehicle or olorinab (3 or 30 mg/kg) twice daily by oral gavage for 5 days, starting 1 day before colitis induction. Chronic visceral hypersensitivity mice were administered olorinab (1, 3, 10, or 30 mg/kg) twice daily by oral gavage for 5 days, starting 24 days after colitis induction. Visceral mechanosensitivity was assessed in vivo by quantifying visceromotor responses (VMRs) to colorectal distension. Ex vivo afferent recordings determined colonic nociceptor firing evoked by mechanical stimuli. Colitis and CVH animals displayed significantly elevated VMRs to colorectal distension and colonic nociceptor hypersensitivity. Olorinab treatment significantly reduced VMRs to control levels in colitis and CVH animals. In addition, olorinab reduced nociceptor hypersensitivity in colitis and CVH states in a concentration- and CB2-dependent manner. By contrast, olorinab did not alter VMRs nor nociceptor responsiveness in control animals. Cannabinoid receptor 2 mRNA was detected in colonic tissue, particularly within epithelial cells, and dorsal root ganglia, with no significant differences between healthy, colitis, and CVH states. These results demonstrate that olorinab reduces visceral hypersensitivity through CB2 agonism in animal models, suggesting that olorinab may provide a novel therapy for inflammatory bowel disease- and irritable bowel syndrome-associated abdominal pain.
Collapse
Affiliation(s)
- Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | - Jessica Maddern
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | - Gudrun Schober
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | - Amanda Lumsden
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Andrea Harrington
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | - Shirdi Schmiel
- Arena Pharmaceuticals, Inc, San Diego, CA, United States
| | | | - John Adams
- Arena Pharmaceuticals, Inc, San Diego, CA, United States
| | - Stuart M. Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| |
Collapse
|
12
|
Muratspahić E, Retzl B, Duerrauer L, Freissmuth M, Becker CFW, Gruber CW. Genome Mining-Based Discovery of Blenny Fish-Derived Peptides Targeting the Mouse κ-Opioid Receptor. Front Pharmacol 2021; 12:773029. [PMID: 34744752 PMCID: PMC8569185 DOI: 10.3389/fphar.2021.773029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Over the past years, peptides have attracted increasing interest for G protein-coupled receptor (GPCR) drug discovery and development. Peptides occupy a unique chemical space that is not easily accessible for small molecules and antibodies and provide advantages over these ligand classes such as lower toxicity and higher selectivity. The κ-opioid receptor (KOR) is a prototypic GPCR and an appealing therapeutic target for the development of safer and more effective analgesics. Recently, peptides have emerged as analgesic drug candidates with improved side effect profiles. We have previously identified plant-derived peptides, which activate KOR. Based on this precedent, here we relied on publicly available databases to discover novel KOR peptide ligands by genome mining. Using human preprodynorphin as a query, we identified blenny fish-derived peptides, referred to as blenniorphins, capable of binding to and activating KOR with nanomolar affinity and potency, respectively. Additionally, the blenniorphins altered β-arrestin-2 recruitment at the KOR. Our study demonstrates the utility of genome mining to identify peptide GPCR ligands with intriguing pharmacological properties and unveils the potential of blenny fishes as a source for novel KOR ligands.
Collapse
Affiliation(s)
- Edin Muratspahić
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Retzl
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Leopold Duerrauer
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christian F. W. Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christian W. Gruber
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Muratspahić E, Tomašević N, Koehbach J, Duerrauer L, Hadžić S, Castro J, Schober G, Sideromenos S, Clark RJ, Brierley SM, Craik DJ, Gruber CW. Design of a Stable Cyclic Peptide Analgesic Derived from Sunflower Seeds that Targets the κ-Opioid Receptor for the Treatment of Chronic Abdominal Pain. J Med Chem 2021; 64:9042-9055. [PMID: 34162205 PMCID: PMC8273886 DOI: 10.1021/acs.jmedchem.1c00158] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 02/01/2023]
Abstract
The rising opioid crisis has become a worldwide societal and public health burden, resulting from the abuse of prescription opioids. Targeting the κ-opioid receptor (KOR) in the periphery has emerged as a powerful approach to develop novel pain medications without central side effects. Inspired by the traditional use of sunflower (Helianthus annuus) preparations for analgesic purposes, we developed novel stabilized KOR ligands (termed as helianorphins) by incorporating different dynorphin A sequence fragments into a cyclic sunflower peptide scaffold. As a result, helianorphin-19 selectively bound to and fully activated the KOR with nanomolar potency. Importantly, helianorphin-19 exhibited strong KOR-specific peripheral analgesic activity in a mouse model of chronic visceral pain, without inducing unwanted central effects on motor coordination/sedation. Our study provides a proof of principle that cyclic peptides from plants may be used as templates to develop potent and stable peptide analgesics applicable via enteric administration by targeting the peripheral KOR for the treatment of chronic abdominal pain.
Collapse
MESH Headings
- Abdominal Pain/drug therapy
- Analgesics/chemical synthesis
- Analgesics/chemistry
- Analgesics/pharmacology
- Animals
- Cells, Cultured
- Chronic Disease
- Dose-Response Relationship, Drug
- Drug Design
- HEK293 Cells
- Helianthus/chemistry
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Structure
- Peptides, Cyclic/chemical synthesis
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/pharmacology
- Plant Extracts/chemical synthesis
- Plant Extracts/chemistry
- Plant Extracts/pharmacology
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Seeds/chemistry
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Edin Muratspahić
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Nataša Tomašević
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Koehbach
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Leopold Duerrauer
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- School
of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Seid Hadžić
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Joel Castro
- Visceral
Pain Research Group, College of Medicine and Public Health, Flinders
Health and Medical Research Institute (FHMRI), Flinders University, Bedford
Park, South Australia 5042, Australia
- Hopwood
Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Gudrun Schober
- Visceral
Pain Research Group, College of Medicine and Public Health, Flinders
Health and Medical Research Institute (FHMRI), Flinders University, Bedford
Park, South Australia 5042, Australia
- Hopwood
Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Spyridon Sideromenos
- Center for
Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard J. Clark
- School
of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stuart M. Brierley
- Visceral
Pain Research Group, College of Medicine and Public Health, Flinders
Health and Medical Research Institute (FHMRI), Flinders University, Bedford
Park, South Australia 5042, Australia
- Hopwood
Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
- Discipline
of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - David J. Craik
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christian W. Gruber
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
14
|
Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N. Marine Pharmacology in 2016-2017: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2021; 19:49. [PMID: 33494402 PMCID: PMC7910995 DOI: 10.3390/md19020049] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The review of the 2016-2017 marine pharmacology literature was prepared in a manner similar as the 10 prior reviews of this series. Preclinical marine pharmacology research during 2016-2017 assessed 313 marine compounds with novel pharmacology reported by a growing number of investigators from 54 countries. The peer-reviewed literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral activities for 123 marine natural products, 111 marine compounds with antidiabetic and anti-inflammatory activities as well as affecting the immune and nervous system, while in contrast 79 marine compounds displayed miscellaneous mechanisms of action which upon further investigation may contribute to several pharmacological classes. Therefore, in 2016-2017, the preclinical marine natural product pharmacology pipeline generated both novel pharmacology as well as potentially new lead compounds for the growing clinical marine pharmaceutical pipeline, and thus sustained with its contributions the global research for novel and effective therapeutic strategies for multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Aimee J. Guerrero
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | | | - Fumiaki Nakamura
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
| | | |
Collapse
|
15
|
Turner A, Kaas Q, Craik DJ. Hormone-like conopeptides - new tools for pharmaceutical design. RSC Med Chem 2020; 11:1235-1251. [PMID: 34095838 PMCID: PMC8126879 DOI: 10.1039/d0md00173b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
Conopeptides are a diverse family of peptides found in the venoms of marine cone snails and are used in prey capture and host defence. Because of their potent activity on a range of mammalian targets they have attracted interest as leads in drug design. Until recently most focus had been on studying conopeptides having activity at ion channels and related neurological targets but, with recent discoveries that some conopeptides might play hormonal roles, a new area of conopeptide research has opened. In this article we first summarize the canonical pharmaceutical families of Conus venom peptides and then focus on new research relating to hormone-like conopeptides and their potential applications. Finally, we briefly examine methods of chemically stabilizing conopeptides to improve their pharmacological properties. A summary is presented of conopeptides in clinical trials and a call for future work on hormone-like conopeptides.
Collapse
Affiliation(s)
- Ashlin Turner
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
16
|
Mendel HC, Kaas Q, Muttenthaler M. Neuropeptide signalling systems - An underexplored target for venom drug discovery. Biochem Pharmacol 2020; 181:114129. [PMID: 32619425 PMCID: PMC7116218 DOI: 10.1016/j.bcp.2020.114129] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
Neuropeptides are signalling molecules mainly secreted from neurons that act as neurotransmitters or peptide hormones to affect physiological processes and modulate behaviours. In humans, neuropeptides are implicated in numerous diseases and understanding their role in physiological processes and pathologies is important for therapeutic development. Teasing apart the (patho)physiology of neuropeptides remains difficult due to ligand and receptor promiscuity and the complexity of the signalling pathways. The current approach relies on a pharmacological toolbox of agonists and antagonists displaying high selectivity for independent receptor subtypes, with the caveat that only few selective ligands have been discovered or developed. Animal venoms represent an underexplored source for novel receptor subtype-selective ligands that could aid in dissecting human neuropeptide signalling systems. Multiple endogenous-like neuropeptides as well as peptides acting on neuropeptide receptors are present in venoms. In this review, we summarise current knowledge on neuropeptides and discuss venoms as a source for ligands targeting neuropeptide signalling systems.
Collapse
Affiliation(s)
- Helen C Mendel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria.
| |
Collapse
|
17
|
Shao S, Xia H, Hu M, Chen C, Fu J, Shi G, Guo Q, Zhou Y, Wang W, Shi J, Zhang T. Isotalatizidine, a C 19-diterpenoid alkaloid, attenuates chronic neuropathic pain through stimulating ERK/CREB signaling pathway-mediated microglial dynorphin A expression. J Neuroinflammation 2020; 17:13. [PMID: 31924228 PMCID: PMC6953278 DOI: 10.1186/s12974-019-1696-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023] Open
Abstract
Background Isotalatizidine is a representative C19-diterpenoid alkaloid extracted from the lateral roots of Aconitum carmichaelii, which has been widely used to treat various diseases on account of its analgesic, anti-inflammatory, anti-rheumatic, and immunosuppressive properties. The aim of this study was to evaluate the analgesic effect of isotalatizidine and its underlying mechanisms against neuropathic pain. Methods A chronic constrictive injury (CCI)-induced model of neuropathic pain was established in mice, and the limb withdrawal was evaluated by the Von Frey filament test following isotalatizidine or placebo administration. The signaling pathways in primary or immortalized microglia cells treated with isotalatizidine were analyzed by Western blotting and immunofluorescence. Results Intrathecal injection of isotalatizidine attenuated the CCI-induced mechanical allodynia in a dose-dependent manner. At the molecular level, isotalatizidine selectively increased the phosphorylation of p38 and ERK1/2, in addition to activating the transcription factor CREB and increasing dynorphin A production in cultured primary microglia. However, the downstream effects of isotalatizidine were abrogated by the selective ERK1/2 inhibitor U0126-EtOH or CREB inhibitor of KG-501, but not by the p38 inhibitor SB203580. The results also were confirmed in in vivo experiments. Conclusion Taken together, isotalatizidine specifically activates the ERK1/2 pathway and subsequently CREB, which triggers dynorphin A release in the microglia, eventually leading to its anti-nociceptive action.
Collapse
Affiliation(s)
- Shuai Shao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Min Hu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Junmin Fu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Gaona Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qinglan Guo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenjie Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
Muratspahić E, Freissmuth M, Gruber CW. Nature-Derived Peptides: A Growing Niche for GPCR Ligand Discovery. Trends Pharmacol Sci 2019; 40:309-326. [PMID: 30955896 DOI: 10.1016/j.tips.2019.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) represent important drug targets, as they regulate pivotal physiological processes and they have proved to be readily druggable. Natural products have been and continue to be amongst the most valuable sources for drug discovery and development. Here, we surveyed small molecules and (poly-)peptides derived from plants, animals, fungi, and bacteria, which modulate GPCR signaling. Among naturally occurring compounds, peptides from plants, cone-snails, snakes, spiders, scorpions, fungi, and bacteria are of particular interest as lead compounds for the development of GPCR ligands, since they cover a chemical space, which differs from that of synthetic small molecules. Peptides, however, face challenges, some of which can be overcome by studying plant-derived compounds. We argue here that the opportunities outweigh the challenges.
Collapse
Affiliation(s)
- Edin Muratspahić
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Christian W Gruber
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria.
| |
Collapse
|
19
|
Abstract
Most of us live blissfully unaware of the orchestrated function that our internal organs conduct. When this peace is interrupted, it is often by routine sensations of hunger and urge. However, for >20% of the global population, chronic visceral pain is an unpleasant and often excruciating reminder of the existence of our internal organs. In many cases, there is no obvious underlying pathological cause of the pain. Accordingly, chronic visceral pain is debilitating, reduces the quality of life of sufferers, and has large concomitant socioeconomic costs. In this review, we highlight key mechanisms underlying chronic abdominal and pelvic pain associated with functional and inflammatory disorders of the gastrointestinal and urinary tracts. This includes how the colon and bladder are innervated by specialized subclasses of spinal afferents, how these afferents become sensitized in highly dynamic signaling environments, and the subsequent development of neuroplasticity within visceral pain pathways. We also highlight key contributing factors, including alterations in commensal bacteria, altered mucosal permeability, epithelial interactions with afferent nerves, alterations in immune or stress responses, and cross talk between these two adjacent organs.
Collapse
Affiliation(s)
- Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia; .,Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| | - Andelain Erickson
- Visceral Pain Research Group, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia; .,Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia; .,Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| |
Collapse
|
20
|
De Marco R, Bedini A, Spampinato S, Comellini L, Zhao J, Artali R, Gentilucci L. Constraining Endomorphin-1 by β,α-Hybrid Dipeptide/Heterocycle Scaffolds: Identification of a Novel κ-Opioid Receptor Selective Partial Agonist. J Med Chem 2018; 61:5751-5757. [PMID: 29901392 DOI: 10.1021/acs.jmedchem.8b00296] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Herein we present the expedient synthesis of endomorphin-1 analogues containing stereoisomeric β2-homo-Freidinger lactam-like scaffolds ([Amo2]EM), and we discuss opioid receptor (OR) affinity, enzymatic stability, functional activity, in vivo antinociceptive effects, and conformational and molecular docking analysis. Hence, H-Tyr-Amo-Trp-PheNH2 resulted to be a new chemotype of highly stable, selective, partial KOR agonist inducing analgesia, therefore displaying great potential interest as a painkiller possibly with reduced harmful side effects.
Collapse
Affiliation(s)
- Rossella De Marco
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi 2 , 40126 Bologna , Italy
| | - Andrea Bedini
- Department of Pharmacy and Biotechnology , University of Bologna , Via Irnerio 48 , 40126 Bologna , Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology , University of Bologna , Via Irnerio 48 , 40126 Bologna , Italy
| | - Lorenzo Comellini
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi 2 , 40126 Bologna , Italy
| | - Junwei Zhao
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi 2 , 40126 Bologna , Italy
| | - Roberto Artali
- Scientia Advice , 20832 Desio , Monza and Brianza , Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi 2 , 40126 Bologna , Italy
| |
Collapse
|
21
|
|
22
|
Contribution of membrane receptor signalling to chronic visceral pain. Int J Biochem Cell Biol 2018; 98:10-23. [DOI: 10.1016/j.biocel.2018.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
|
23
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
24
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
25
|
G-Protein Coupled Receptors Targeted by Analgesic Venom Peptides. Toxins (Basel) 2017; 9:toxins9110372. [PMID: 29144441 PMCID: PMC5705987 DOI: 10.3390/toxins9110372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic pain is a complex and debilitating condition associated with a large personal and socioeconomic burden. Current pharmacological approaches to treating chronic pain such as opioids, antidepressants and anticonvulsants exhibit limited efficacy in many patients and are associated with dose-limiting side effects that hinder their clinical use. Therefore, improved strategies for the pharmacological treatment of pathological pain are urgently needed. G-protein coupled receptors (GPCRs) are ubiquitously expressed on the surface of cells and act to transduce extracellular signals and regulate physiological processes. In the context of pain, numerous and diverse families of GPCRs expressed in pain pathways regulate most aspects of physiological and pathological pain and are thus implicated as potential targets for therapy of chronic pain. In the search for novel compounds that produce analgesia via GPCR modulation, animal venoms offer an enormous and virtually untapped source of potent and selective peptide molecules. While many venom peptides target voltage-gated and ligand-gated ion channels to inhibit neuronal excitability and blunt synaptic transmission of pain signals, only a small proportion are known to interact with GPCRs. Of these, only a few have shown analgesic potential in vivo. Here we review the current state of knowledge regarding venom peptides that target GPCRs to produce analgesia, and their development as therapeutic compounds.
Collapse
|
26
|
da Silva Junior ED, Sato M, Merlin J, Broxton N, Hutchinson DS, Ventura S, Evans BA, Summers RJ. Factors influencing biased agonism in recombinant cells expressing the human α 1A -adrenoceptor. Br J Pharmacol 2017; 174:2318-2333. [PMID: 28444738 DOI: 10.1111/bph.13837] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Agonists acting at GPCRs promote biased signalling via Gα or Gβγ subunits, GPCR kinases and β-arrestins. Since the demonstration of biased agonism has implications for drug discovery, it is essential to consider confounding factors contributing to bias. We have examined bias at human α1A -adrenoceptors stably expressed at low levels in CHO-K1 cells, identifying off-target effects at endogenous receptors that contribute to ERK1/2 phosphorylation in response to the agonist oxymetazoline. EXPERIMENTAL APPROACH Intracellular Ca2+ mobilization was monitored in a Flexstation® using Fluo 4-AM. The accumulation of cAMP and ERK1/2 phosphorylation were measured using AlphaScreen® proximity assays, and mRNA expression was measured by RT-qPCR. Ligand bias was determined using the operational model of agonism. KEY RESULTS Noradrenaline, phenylephrine, methoxamine and A61603 increased Ca2+ mobilization, cAMP accumulation and ERK1/2 phosphorylation. However, oxymetazoline showed low efficacy for Ca+2 mobilization, no effect on cAMP generation and high efficacy for ERK1/2 phosphorylation. The apparent functional selectivity of oxymetazoline towards ERK1/2 was related to off-target effects at 5-HT1B receptors endogenously expressed in CHO-K1 cells. Phenylephrine and methoxamine showed genuine bias towards ERK1/2 phosphorylation compared to Ca2+ and cAMP pathways, whereas A61603 displayed bias towards cAMP accumulation compared to ERK1/2 phosphorylation. CONCLUSION AND IMPLICATIONS We have shown that while adrenergic agonists display bias at human α1A -adrenoceptors, the marked bias of oxymetazoline for ERK1/2 phosphorylation originates from off-target effects. Commonly used cell lines express a repertoire of endogenous GPCRs that may confound studies on biased agonism at recombinant receptors.
Collapse
Affiliation(s)
| | - Masaaki Sato
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jon Merlin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Natalie Broxton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Sabatino Ventura
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Bronwyn A Evans
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
27
|
Vishwanatha TM, Bergamaschi E, Dömling A. Sulfur-Switch Ugi Reaction for Macrocyclic Disulfide-Bridged Peptidomimetics. Org Lett 2017; 19:3195-3198. [PMID: 28581763 PMCID: PMC5477004 DOI: 10.1021/acs.orglett.7b01324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
A general
strategy is introduced for the efficient synthetic access
of disulfide linked artificial macrocycles via a Ugi four-component
reaction (U4CR) followed by oxidative cyclization. The double-mercapto
input is proposed for use in the Ugi reaction, thereby yielding all
six topologically possible combinations. The protocol is convergent
and short and enables the production of novel disulfide peptidomimetics
in a highly general fashion.
Collapse
Affiliation(s)
- Thimmalapura M Vishwanatha
- Department of Drug Design, University of Groningen , A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Enrico Bergamaschi
- Department of Drug Design, University of Groningen , A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Alexander Dömling
- Department of Drug Design, University of Groningen , A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
28
|
Sadeghi M, McArthur JR, Finol-Urdaneta RK, Adams DJ. Analgesic conopeptides targeting G protein-coupled receptors reduce excitability of sensory neurons. Neuropharmacology 2017; 127:116-123. [PMID: 28533165 DOI: 10.1016/j.neuropharm.2017.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 01/28/2023]
Abstract
Conotoxins (conopeptides) are a diverse group of peptides isolated from the venom of marine cone snails. Conus peptides modulate pain by interacting with voltage-gated ion channels and G protein-coupled receptors (GPCRs). Opiate drugs targeting GPCRs have long been used, nonetheless, many undesirable side effects associated with opiates have been observed including addiction. Consequently, alternative avenues to pain management are a largely unmet need. It has been shown that various voltage-gated calcium channels (VGCCs) respond to GPCR modulation. Thus, regulation of VGCCs by GPCRs has become a valuable alternative in the management of pain. In this review, we focus on analgesic conotoxins that exert their effects via GPCR-mediated inhibition of ion channels involved in nociception and pain transmission. Specifically, α-conotoxin Vc1.1 activation of GABAB receptors and inhibition of voltage-gated calcium channels as a novel mechanism for reducing the excitability of dorsal root ganglion neurons is described. Vc1.1 and other α-conotoxins have been shown to be analgesic in different animal models of chronic pain. This review will outline the functional effects of conopeptide modulation of GPCRs and how their signalling is translated to downstream components of the pain pathways. Where available we present the proposed signalling mechanisms that couples metabotropic receptor activation to their downstream effectors to produce analgesia. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Mahsa Sadeghi
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
29
|
Prashanth JR, Hasaballah N, Vetter I. Pharmacological screening technologies for venom peptide discovery. Neuropharmacology 2017; 127:4-19. [PMID: 28377116 DOI: 10.1016/j.neuropharm.2017.03.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/11/2017] [Accepted: 03/31/2017] [Indexed: 01/13/2023]
Abstract
Venomous animals occupy one of the most successful evolutionary niches and occur on nearly every continent. They deliver venoms via biting and stinging apparatuses with the aim to rapidly incapacitate prey and deter predators. This has led to the evolution of venom components that act at a number of biological targets - including ion channels, G-protein coupled receptors, transporters and enzymes - with exquisite selectivity and potency, making venom-derived components attractive pharmacological tool compounds and drug leads. In recent years, plate-based pharmacological screening approaches have been introduced to accelerate venom-derived drug discovery. A range of assays are amenable to this purpose, including high-throughput electrophysiology, fluorescence-based functional and binding assays. However, despite these technological advances, the traditional activity-guided fractionation approach is time-consuming and resource-intensive. The combination of screening techniques suitable for miniaturization with sequence-based discovery approaches - supported by advanced proteomics, mass spectrometry, chromatography as well as synthesis and expression techniques - promises to further improve venom peptide discovery. Here, we discuss practical aspects of establishing a pipeline for venom peptide drug discovery with a particular emphasis on pharmacology and pharmacological screening approaches. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Jutty Rajan Prashanth
- Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Nojod Hasaballah
- Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd, The University of Queensland, St Lucia, Qld 4072, Australia; School of Pharmacy, 20 Cornwall St, Woolloongabba, Qld 4102, Australia.
| |
Collapse
|