1
|
Lu L, Ma Y, Tao Q, Xie J, Liu X, Wu Y, Zhang Y, Xie X, Liu M, Jin Y. Hypoxia-inducible factor-1 alpha (HIF-1α) inhibitor AMSP-30 m attenuates CCl 4-induced liver fibrosis in mice by inhibiting the sonic hedgehog pathway. Chem Biol Interact 2025; 413:111480. [PMID: 40113123 DOI: 10.1016/j.cbi.2025.111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Liver fibrosis is a passive and irreversible wound healing process caused by chronic liver injury. Research has shown that the upregulation of hypoxia inducible factor-1 alpha (HIF-1α) is closely related to the occurrence and development of liver fibrosis and HIF-1 α may be a promising target for the treatment of liver fibrosis. AMSP-30 m is a newly developed novel HIF-1α inhibitor by our group, which has strong anti-tumor and anti-inflammatory effects. In this study, we described the therapeutic effect and specific mechanism of AMSP-30 m on carbon tetrachloride (CCl4) induced liver fibrosis in mice. Liver fibrosis induced by CCl4 in mice and liver fibrosis induced by cobalt dichloride (CoCl2) in LX-2 cells (human hepatic stellate cell (HSC) line) were studied. Hematoxylin & eosin (H&E)and Masson's trichrome staining were used to observe pathological conditions. Western Blot, immunofluorescence and immunohistochemistry were used to detect protein expression and localization in cells, and quantitative real-time PCR analysis (qRT-PCR) was used to detect mRNA expression. Biochemical detection kits were used to detect alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. The results demonstrated that AMSP-30 m significantly alleviated pathological symptoms, reduced ALT and AST levels, and inhibited the expression of alpha-smooth muscle actin (α-SMA) and collagen type I (COL1α1) in CCl4-induced liver fibrosis in mice. AMSP-30 m could significantly reduce the expression of HIF-1α and sonic hedgehog (Shh) pathway related proteins (Smoothened (Smo), Shh, and glioma-associated oncogene-1 (Gli-1)) in CCl4 induced liver fibrosis mice. AMSP-30 m also played a similar role in the CoCl2-induced anoxic liver fibrosis model of LX-2 cells. Further experiments showed that Cyclopamine (a Shh inhibitor) could significantly inhibit the increase of α-SMA and COL1α1 resulting from HIF-1α but not significantly inhibit HIF-1α induced by CoCl2 in LX-2 cells. And the combination of Cyclopamine and AMSP-30 m further reduced the expression of α-SMA and COL1α1 induced by HIF-1α. In summary, this study demonstrates that the HIF-1α inhibitor AMSP-30 m exerts a robust anti-fibrotic effect by inhibiting the Shh pathway, which is identified as a critical underlying mechanism. These findings suggest a promising therapeutic strategy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Lili Lu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yuchen Ma
- Pharmacy Department, Fuyang Cancer Hospital, Fuyang, Anhui, China
| | - Qing Tao
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Jing Xie
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiao Liu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yongkang Wu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yang Zhang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiuli Xie
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Mingming Liu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Yong Jin
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Mustafa M, Rashed M, Winum JY. Novel anticancer drug discovery strategies targeting hypoxia-inducible factors. Expert Opin Drug Discov 2025; 20:103-121. [PMID: 39670847 DOI: 10.1080/17460441.2024.2442739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Hypoxia is a key feature of solid tumors, associated with aggressive behaviors such as radiation and chemotherapy resistance, increased metastasis, and poor prognosis. Hypoxia-inducible factors (HIFs) are essential transcription factors that help tumor cells adapt to hypoxic environments by promoting the expression of pro-oncogenic genes. Reducing HIF activity presents a promising strategy for advancing cancer treatment. AREA COVERED In this paper, the authors present an overview of recent studies on the development of HIF-1/2 inhibitors as potential anticancer drugs. The article offers a comprehensive analysis of the structural characteristics of these inhibitors and explores their relationship with anticancer activity, focusing on research conducted over the past decade, from 2015 to 2024. EXPERT OPINION Because they play a big role in medicinal chemistry and the discovery of anticancer drugs, HIF inhibitors have always gotten a lot of attention and have been used to make a lot of important molecules with different biological effects, especially in the field of cancer research. Several techniques and chemical scaffolds have successfully targeted HIF-1α. However, additional research is required to sustain HIF-1α inhibition while maintaining anticancer activity. The FDA approval of Belzutifan provided researchers with an opportunity to conduct broader HIF-2 studies.
Collapse
Affiliation(s)
| | - Mahmoud Rashed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | | |
Collapse
|
3
|
Byun JK, Lee SH, Moon EJ, Park MH, Jang H, Weitzel DH, Kim HH, Basnet N, Kwon DY, Lee CT, Stephenson TN, Jeong JH, Patel BA, Park SJ, Chi JT, Dewhirst MW, Hong J, Lee YM. Manassantin A inhibits tumour growth under hypoxia through the activation of chaperone-mediated autophagy by modulating Hsp90 activity. Br J Cancer 2023; 128:1491-1502. [PMID: 36759727 PMCID: PMC10070431 DOI: 10.1038/s41416-023-02148-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Chaperon-mediated autophagy (CMA) has taken on a new emphasis in cancer biology. However, the roles of CMA in hypoxic tumours are poorly understood. We investigated the anti-tumour effects of the natural product ManA through the activation of CMA in tumour progression under hypoxia. METHODS The effect of ManA on CMA activation was assessed in mouse xenograft models and cells. The gene expressions of HIF-1α, HSP90AA1, and transcription factor EB (TFEB) were analysed using The Cancer Genome Atlas (TCGA) datasets to assess the clinical relevance of CMA. RESULTS ManA activates photoswitchable CMA reporter activity and inhibits Hsp90 chaperone function by disrupting the Hsp90/F1F0-ATP synthase complex. Hsp90 inhibition enhances the interaction between CMA substrates and LAMP-2A and TFEB nuclear localisation, suggesting CMA activation by ManA. ManA-activated CMA retards tumour growth and displays cooperative anti-tumour activity with anti-PD-1 antibody. TCGA datasets show that a combined expression of HSP90AA1High/HIF1AHigh or TFEBLow/HIF1AHigh is strongly correlated with poor prognosis in patients with lung cancer. CONCLUSIONS ManA-induced CMA activation by modulating Hsp90 under hypoxia induces HIF-1α degradation and reduces tumour growth. Thus, inducing CMA activity by targeting Hsp90 may be a promising therapeutic strategy against hypoxic tumours.
Collapse
Affiliation(s)
- Jun-Kyu Byun
- College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, 41566, Daegu, Republic of Korea
| | - Sun Hee Lee
- College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, 41566, Daegu, Republic of Korea
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, 41566, Daegu, Republic of Korea
| | - Eui Jung Moon
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Headington, OX3 7DQ, UK
| | - Myo-Hyeon Park
- College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, 41566, Daegu, Republic of Korea
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, 41566, Daegu, Republic of Korea
| | - Hyeonha Jang
- College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, 41566, Daegu, Republic of Korea
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, 41566, Daegu, Republic of Korea
| | - Douglas H Weitzel
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Hyun-Hwi Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Nikita Basnet
- College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, 41566, Daegu, Republic of Korea
| | - Do-Yeon Kwon
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Chen-Ting Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA
| | | | - Ji-Hak Jeong
- College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, 41566, Daegu, Republic of Korea
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, 41566, Daegu, Republic of Korea
| | - Bhargav A Patel
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN, 46556, USA
| | - Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Jen-Tsan Chi
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computation Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC, 27708, USA.
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - You Mie Lee
- College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, 41566, Daegu, Republic of Korea.
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, 41566, Daegu, Republic of Korea.
| |
Collapse
|
4
|
Cha S, Kim HG, Jang H, Lee J, Chao T, Baek NI, Song IS, Lee YM. Steppogenin suppresses tumor growth and sprouting angiogenesis through inhibition of HIF-1α in tumors and DLL4 activity in the endothelium. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154513. [PMID: 36332389 DOI: 10.1016/j.phymed.2022.154513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Hypoxia is a characteristic feature of many solid tumors. As an adaptive response to hypoxia, tumor cells activate hypoxia-inducible factor-1α (HIF-1α). Under hypoxic conditions, angiogenesis mediated by HIF-1α is involved in the growth and metastasis of tumor cells. During the angiogenic process, differentiated tip endothelial cells (ECs) characterized by high expression of DLL4 promote angiogenic germination through filopodia. Inhibitors of HIF-1α or DLL4 have been widely studied PURPOSE: We tried to find inhibitors targeting both HIF-1α and DLL4 in tumor which have not yet been developed. STUDY DESIGN In this study, we examined a natural compound that inhibits sprouting angiogenesis and tumor growth by targeting both HIF-1α and DLL4 under hypoxic conditions. METHODS After examining cell viability of 70 selected natural compounds, we assessed the effects of compounds on HIF-1α and DLL4 transcriptional activity using a dual-luciferase reporter assay. Western blot analysis, immunofluoresecnt assay and real-time qPCR were performed to identify expression of proteins, such as HIF-1α and DLL4, as well as HIF-1α target genes under hypoxic conditions. In vitro angiogenesis assay and in vivo allograft tumor experiment were performed to investigate inhibition of tumor growth through anti-angiogenic activity. RESULTS Among these compounds, steppogenin, which is extracted from the root bark of Morus alba l, respectively inhibited the transcriptional activity of HIF-1α under hypoxic conditions in HEK293T cells and vascular endothelial growth factor (VEGF)-induced DLL4 expression in vascular ECs in a dose-dependent manner. In tumor cells and retinal pigment epithelial cells, steppogenin significantly suppressed HIF-1α protein levels under hypoxic conditions as well as VEGF-induced DLL4 expression in ECs. Furthermore, steppogenin suppressed hypoxia-induced vascular EC proliferation and migration as well as VEGF-induced sprouting of EC spheroids. CONCLUSION These results suggest that the natural compound steppogenin could potentially be used to treat angiogenic diseases, such as those involving solid tumors, because of its dual inhibition of HIF-1α and DLL4.
Collapse
Affiliation(s)
- Sora Cha
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyoung-Geun Kim
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Hyeonha Jang
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jihoon Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Tang Chao
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nam-In Baek
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Im-Sook Song
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
5
|
Cai J, Qiong G, Li C, Sun L, Luo Y, Yuan S, Gonzalez FJ, Xu J. Manassantin B attenuates obesity by inhibiting adipogenesis and lipogenesis in an AMPK dependent manner. FASEB J 2021; 35:e21496. [PMID: 33904622 PMCID: PMC9813681 DOI: 10.1096/fj.202002126rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 01/07/2023]
Abstract
Saururus chinensis (S chinensis) has been used as an herb to treat edema, jaundice, and gonorrhea. Manassantin B (MNSB), a dineolignan isolated from S chinensis, was identified as a potent adipogenesis/lipogenesis inhibitor (IC50 = 9.3 nM). To explore the underlying mechanism, both adipogenesis and lipogenesis were measured in differentiated 3T3-L1 preadipocytes, murine primary preadipocytes and adipose tissue explants upon MNSB treatment. Key regulators of adipogenesis/lipogenesis were downregulated by MNSB treatment, mainly resulting from increased phosphorylation of AMPK which was identified as a vital regulator of adipogenesis and lipogenesis. Moreover, MNSB did not increase AMPK phosphorylation in 3T3-L1 cells transfected with Prkaa1 (encoding protein kinase AMP-activated catalytic subunit alpha 1) siRNA or adipose tissue explants isolated from adipose-specific Prkaa1-disrupted mice (Prkaa1Δad ). In diet-induced obese C57BL/6N mice, MNSB displayed preventive and therapeutic effects on obesity accompanied by decreased adipocyte size. MNSB was also found to increase AMPK phosphorylation both in subcutaneous white adipose tissue and brown adipose tissue in vivo. These findings suggest that MNSB can be a new therapeutic agent for the prevention and treatment of obesity and other related metabolic disorders.
Collapse
Affiliation(s)
- Jie Cai
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China,Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Gu Qiong
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chanjuan Li
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lulu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Shengheng Yuan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Abstract
Both nitroreductase and the folate receptor are highly expressed in hypoxic tumors. The folate receptor is a potential target for tumors, and nitroreductase can selectively turn on the fluorescence of probes by reducing the nitro group to an amino group. Karan et al. (Karana, S., Cho, M., Lee, H., Lee, H., Park, H., Sundararajan, M., Sessler, J., and Hong, K. Near-infrared fluorescent probe activated by nitroreductase for in vitro and in vivo hypoxic tumor detection. J. Med. Chem. 2021) developed a near-infrared fluorescent probe for hypoxia tumor imaging analysis in vitro and in vivo using folate as the targeting site. This promising strategy may promote advances in precision diagnosis and treatment models of malignant tumors. This Viewpoint looks ahead to new possibilities rendered by their studies.
Collapse
Affiliation(s)
- Yue Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
7
|
Liu Y, Wang X, Li W, Xu Y, Zhuo Y, Li M, He Y, Wang X, Guo Q, Zhao L, Qiang L. Oroxylin A reverses hypoxia-induced cisplatin resistance through inhibiting HIF-1α mediated XPC transcription. Oncogene 2020; 39:6893-6905. [PMID: 32978517 DOI: 10.1038/s41388-020-01474-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
Hypoxia is a key concern during the treatment of non-small cell lung cancer (NSCLC), and hypoxia-inducible factor 1 alpha (HIF-1α) has been associated with increased tumor resistance to therapeutic modalities such as cisplatin. Compensatory activation of nucleotide excision repair (NER) pathway is the major mechanism that accounts for cisplatin resistance. In the present study, we suggest a novel strategy to improve the treatment of NSCLC and overcome the hypoxia-induced cisplatin resistance by cotreatment with Oroxylin A, one of the main bioactive flavonoids of Scutellariae radix. Based on the preliminary screening, we found that xeroderma pigmentosum group C (XPC), an important DNA damage recognition protein involved in NER, dramatically increased in hypoxic condition and contributed to hypoxia-induced cisplatin resistance. Further data suggested that Oroxylin A significantly reversed the hypoxia-induced cisplatin resistance through directly binding to HIF-1α bHLH-PAS domain and blocking its binding to HRE3 transcription factor binding sites on XPC promoter which is important to hypoxia-induced XPC transcription. Taken together, our findings not only demonstrate a crucial role of XPC dependent NER in hypoxia-induced cisplatin resistance, but also suggest a previously unrecognized tumor suppressive mechanism of Oroxylin A in NSCLC which through sensitization of cisplatin-mediated growth inhibition and apoptosis under hypoxia.
Collapse
Affiliation(s)
- Yunyao Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoping Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenshu Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yujiao Xu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yating Zhuo
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengyuan Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Li Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
8
|
Kwak SH, Stephenson TN, Lee HE, Ge Y, Lee H, Min SM, Kim JH, Kwon DY, Lee YM, Hong J. Evaluation of Manassantin A Tetrahydrofuran Core Region Analogues and Cooperative Therapeutic Effects with EGFR Inhibition. J Med Chem 2020; 63:6821-6833. [DOI: 10.1021/acs.jmedchem.0c00151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Seung-Hwa Kwak
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tesia N. Stephenson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Hye-Eun Lee
- College of Pharmacy, BK21 Plus KNU Multi-Omics Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Yun Ge
- College of Pharmacy, BK21 Plus KNU Multi-Omics Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Hyunji Lee
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sophia M. Min
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jea Hyun Kim
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Do-Yeon Kwon
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - You Mie Lee
- College of Pharmacy, BK21 Plus KNU Multi-Omics Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
9
|
Kurmi BD, Patel P, Paliwal R, Paliwal SR. Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Structural basis of the UDP-diacylglucosamine pyrophosphohydrolase LpxH inhibition by sulfonyl piperazine antibiotics. Proc Natl Acad Sci U S A 2020; 117:4109-4116. [PMID: 32041866 PMCID: PMC7049123 DOI: 10.1073/pnas.1912876117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The UDP-2,3-diacylglucosamine pyrophosphate hydrolase LpxH is an essential lipid A biosynthetic enzyme that is conserved in the majority of gram-negative bacteria. It has emerged as an attractive novel antibiotic target due to the recent discovery of an LpxH-targeting sulfonyl piperazine compound (referred to as AZ1) by AstraZeneca. However, the molecular details of AZ1 inhibition have remained unresolved, stymieing further development of this class of antibiotics. Here we report the crystal structure of Klebsiella pneumoniae LpxH in complex with AZ1. We show that AZ1 fits snugly into the L-shaped acyl chain-binding chamber of LpxH with its indoline ring situating adjacent to the active site, its sulfonyl group adopting a sharp kink, and its N-CF3-phenyl substituted piperazine group reaching out to the far side of the LpxH acyl chain-binding chamber. Intriguingly, despite the observation of a single AZ1 conformation in the crystal structure, our solution NMR investigation has revealed the presence of a second ligand conformation invisible in the crystalline state. Together, these distinct ligand conformations delineate a cryptic inhibitor envelope that expands the observed footprint of AZ1 in the LpxH-bound crystal structure and enables the design of AZ1 analogs with enhanced potency in enzymatic assays. These designed compounds display striking improvement in antibiotic activity over AZ1 against wild-type K. pneumoniae, and coadministration with outer membrane permeability enhancers profoundly sensitizes Escherichia coli to designed LpxH inhibitors. Remarkably, none of the sulfonyl piperazine compounds occupies the active site of LpxH, foretelling a straightforward path for rapid optimization of this class of antibiotics.
Collapse
|
11
|
Liu G, Zhao Z, Shen M, Zhao X, Xie J, He X, Li C. A Review of Traditional Uses, Phytochemistry, and Pharmacological Properties of the Genus Saururus. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:47-76. [PMID: 31964158 DOI: 10.1142/s0192415x20500032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The genus Saururus, belonging to Saururaceae, contains two species, S. cernuus L. and S. chinensis (Lour) Baill. with common utilization in traditional medicine from Asia to North America for the treatment of edema, beriberi, jaundice, leucorrhea, urinary tract infections, hypertension, hepatitis diseases, and tumors. An extensive review of literature was made on traditional uses, phytochemistry, and ethnopharmacology of Saururus using ethno-botanical books, published articles, and electronic databases. The 147 of chemical constituents have been isolated and identified from S. cernuus and S. chinensis, and lignans, flavonoids, alkaloids, anthraquinones, saponins, and phenols are the major constituents. Various pharmacological investigations in many in vitro and in vivo models have revealed the potential of the genus Saururus with anti-inflammatory, antitumor, anti-oxidant, hepatoprotective, antimelanogenic, lipid-lowering, and bone protective activities, supporting the rationale behind numerous of its traditional uses. Due to the noteworthy pharmacological properties, Saururus can be a better option for new drug discovery. Data regarding many aspects of this plant such as toxicology, pharmacokinetics, quality-control measures, and the clinical value of the active compounds is still limited which call for additional studies.
Collapse
Affiliation(s)
- Guangxin Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource, Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Zefeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, Shaanxi 710069, P. R. China
| | - Meilun Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource, Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Xue Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, Shaanxi 710069, P. R. China
| | - Jing Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, Shaanxi 710069, P. R. China
| | - Xirui He
- Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Road, Xi'an, Shaanxi 710054, P. R. China
| | - Cuiqin Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource, Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| |
Collapse
|
12
|
Liu M, Liang Y, Zhu Z, Wang J, Cheng X, Cheng J, Xu B, Li R, Liu X, Wang Y. Discovery of Novel Aryl Carboxamide Derivatives as Hypoxia-Inducible Factor 1α Signaling Inhibitors with Potent Activities of Anticancer Metastasis. J Med Chem 2019; 62:9299-9314. [DOI: 10.1021/acs.jmedchem.9b01313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mingming Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
- Anhui Chem-Bright Bioengineering Company Limited, Huaibei 235025, China
| | - Yuru Liang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhongzhen Zhu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jin Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xingxing Cheng
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jiayi Cheng
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Binpeng Xu
- Anhui Chem-Bright Bioengineering Company Limited, Huaibei 235025, China
| | - Rong Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xinhua Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
13
|
Li G, Dong H, Ma Y, Shao K, Li Y, Wu X, Wang S, Shao Y, Zhao W. Structure-activity relationships study of neolamellarin A and its analogues as hypoxia inducible factor-1 (HIF-1) inhibitors. Bioorg Med Chem Lett 2019; 29:2327-2331. [PMID: 31281016 DOI: 10.1016/j.bmcl.2019.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/23/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023]
Abstract
The novel marine pyrrole alkaloid neolamellarin A derived from sponge has been shown to inhibit hypoxia-induced HIF-1 activity. In this work, we designed and synthesized neolamellarin A and its series of derivatives by a convergent synthetic strategy. The HIF-1 inhibitory activity and cytotoxicity of these compounds were evaluated in Hela cells by dual-luciferase reporter gene assay and MTT assay, respectively. The results showed that neolamellarin A 1 (IC50 = 10.8 ± 1.0 μM) and derivative 2b (IC50 = 11.9 ± 3.6 μM) had the best HIF-1 inhibitory activity and low cytotoxicity. Our SAR research focused on the effects of key regions aliphatic carbon chain length, aromatic ring substituents and C-7 substituent on biological activity, providing a basis for the subsequent research on the development of novel pyrrole alkaloids as HIF-1 inhibitors and design of small molecule probes for target protein identification.
Collapse
Affiliation(s)
- Guangzhe Li
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Huijuan Dong
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| | - Yao Ma
- Dalian Hospital of Obstetrics and Gynaecology, Dalian 116083, China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Yueqing Li
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Xiaodan Wu
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| | - Shisheng Wang
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
| | - Yujie Shao
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| | - Weijie Zhao
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
14
|
Wu J, Zhang ZH, Zhang LH, Jin XJ, Ma J, Piao HR. Design, synthesis, and screening of novel ursolic acid derivatives as potential anti-cancer agents that target the HIF-1α pathway. Bioorg Med Chem Lett 2019; 29:853-858. [DOI: 10.1016/j.bmcl.2018.12.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022]
|
15
|
Tang SQ, Wang AP, Schmitt M, Bihel F. Dioxygenation of styrenes with molecular oxygen in water. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Bhattarai D, Xu X, Lee K. Hypoxia-inducible factor-1 (HIF-1) inhibitors from the last decade (2007 to 2016): A "structure-activity relationship" perspective. Med Res Rev 2017; 38:1404-1442. [PMID: 29278273 DOI: 10.1002/med.21477] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 12/19/2022]
Abstract
Tumor hypoxia is a common feature in most solid tumors and is associated with overexpression of the hypoxia response pathway. Overexpression of the hypoxia-inducible factor (HIF-1) protein leads to angiogenesis, metastasis, apoptosis resistance, and many other pro-tumorigenic responses in cancer development. HIF-1 is a promising target in cancer drug development to increase the patient's response to chemotherapy and radiotherapy as well as the survival rate of cancer patients. Since up to 1% of genes are hypoxia-sensitive, a target-specific HIF-1 inhibitor may be a better clinical candidate in cancer drug discovery. Though no HIF-1 inhibitor is clinically available to date, a lot of effort has been applied during the last decade in search of potent HIF-1 inhibitors. In this review, we will summarize the structure-activity relationship of ten different chemotypes reported to be HIF-1 inhibitors in the last decade (2007-2016), their mechanisms of action for HIF-1 inhibition, progress in the way of target-specific inhibitors, and problems associated with current inhibitors. It is anticipated that the results of these research on the medicinal chemistry of HIF-1 inhibitors will provide decent information in the design and development of future inhibitors.
Collapse
Affiliation(s)
- Deepak Bhattarai
- College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Xuezhen Xu
- College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
17
|
Ma Y, Min HK, Oh U, Hawkridge AM, Wang W, Mohsin AA, Chen Q, Sanyal A, Lesnefsky EJ, Fang X. The lignan manassantin is a potent and specific inhibitor of mitochondrial complex I and bioenergetic activity in mammals. J Biol Chem 2017; 292:20989-20997. [PMID: 29046352 DOI: 10.1074/jbc.m117.812925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/05/2017] [Indexed: 01/22/2023] Open
Abstract
Dineolignans manassantin A and B from the plant Saururus cernuus are used in traditional medicine to manage a wide range of ailments such as edema, jaundice, and gonorrhea. Cell-based studies have identified several molecular target candidates of manassantin including NF-κB, MAPK, STAT3, and hypoxia-inducible factor 1α (HIF-1α). It is unclear whether or how these structurally diverse proteins or pathways mediate any of the medical benefits of manassantin in vivo Moreover, it has recently been reported that manassantin causes developmental arrest in zebrafish by inhibiting the mitochondrial complex I, but it is unknown whether manassantin inhibits mitochondrial respiration in intact mammalian cells and live animals. Here, we present direct evidence that manassantin potently and specifically inhibits the mitochondrial complex I and bioenergetic activity in mammalian systems. Manassantin had no effect on complex II- or complex IV-mediated respiration. Of note, it decreased NADH-ubiquinone reductase activity but not the activity of NADH-ferricyanide reductase. Treatment with manassantin reduced cellular ATP levels and concomitantly stimulated AMP-activated protein kinase in vitro and in vivo As an adaptive response to manassantin-induced bioenergetic deficiency, mammalian cells up-regulated aerobic glycolysis, a process mediated by AMP-activated protein kinase (AMPK) independently of HIF-1α. Together these results demonstrate a biologically important activity of manassantin in the control of complex I-mediated respiration and its profound effects on oxygen utilization, energy homeostasis, and glucose metabolism in mammalian cells.
Collapse
Affiliation(s)
- Yibao Ma
- From the Departments of Biochemistry and Molecular Biology
| | | | | | - Adam M Hawkridge
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298 and
| | - Wei Wang
- From the Departments of Biochemistry and Molecular Biology
| | | | | | | | - Edward J Lesnefsky
- From the Departments of Biochemistry and Molecular Biology.,Internal Medicine, and.,McGuire Veterans Affairs Medical Center, Richmond, Virginia 23298
| | - Xianjun Fang
- From the Departments of Biochemistry and Molecular Biology,
| |
Collapse
|
18
|
Geer Wallace MA, Kwon DY, Weitzel DH, Lee CT, Stephenson TN, Chi JT, Mook RA, Dewhirst MW, Hong J, Fitzgerald MC. Discovery of Manassantin A Protein Targets Using Large-Scale Protein Folding and Stability Measurements. J Proteome Res 2016; 15:2688-96. [PMID: 27322910 DOI: 10.1021/acs.jproteome.6b00237] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Manassantin A is a natural product that has been shown to have anticancer activity in cell-based assays, but has a largely unknown mode-of-action. Described here is the use of two different energetics-based approaches to identify protein targets of manassantin A. Using the stability of proteins from rates of oxidation technique with an isobaric mass tagging strategy (iTRAQ-SPROX) and the pulse proteolysis technique with a stable isotope labeling with amino acids in cell culture strategy (SILAC-PP), over 1000 proteins in a MDA-MB-231 cell lysate grown under hypoxic conditions were assayed for manassantin A interactions (both direct and indirect). A total of 28 protein hits were identified with manassantin A-induced thermodynamic stability changes. Two of the protein hits (filamin A and elongation factor 1α) were identified using both experimental approaches. The remaining 26 hit proteins were only assayed in either the iTRAQ-SPROX or the SILAC-PP experiment. The 28 potential protein targets of manassantin A identified here provide new experimental avenues along which to explore the molecular basis of manassantin A's mode of action. The current work also represents the first application iTRAQ-SPROX and SILAC-PP to the large-scale analysis of protein-ligand binding interactions involving a potential anticancer drug with an unknown mode-of-action.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- Department of Chemistry, Duke University , Durham, North Carolina 27708-0346, United States
| | - Do-Yeon Kwon
- Department of Chemistry, Duke University , Durham, North Carolina 27708-0346, United States
| | | | | | - Tesia N Stephenson
- Department of Chemistry, Duke University , Durham, North Carolina 27708-0346, United States
| | | | | | | | - Jiyong Hong
- Department of Chemistry, Duke University , Durham, North Carolina 27708-0346, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University , Durham, North Carolina 27708-0346, United States
| |
Collapse
|
19
|
Lai F, Liu Q, Liu X, Ji M, Xie P, Chen X. LXY6090 - a novel manassantin A derivative - limits breast cancer growth through hypoxia-inducible factor-1 inhibition. Onco Targets Ther 2016; 9:3829-40. [PMID: 27445487 PMCID: PMC4928675 DOI: 10.2147/ott.s106925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) represents a novel antitumor target owing to its involvement in vital processes considered hallmarks of cancer phenotypes. Manassantin A (MA) derived from Saururus cernuus has been reported as a selective HIF-1 inhibitor. Herein, the structure of MA was optimized to achieve new derivatives with simple chemical properties while retaining its activity. LXY6090 was designed to replace the central tetrahydrofuran moiety of MA with a cyclopentane ring and was identified as a potent HIF-1 inhibitor with an IC50 value of 4.11 nM. It not only inhibited the activity of HIF-1 in breast cancer cells but also downregulated the protein level of HIF-1α, which depended on von Hippel-Lindau for proteasome degradation. The related biological evaluation showed that the activity of HIF-1 target genes, VEGF and IGF-2, was decreased by LXY6090 in breast cancer cell lines. LXY6090 presented potent antitumor activity in vitro. Furthermore, LXY6090 showed in vivo anticancer efficacy by decreasing the HIF-1α expression in nude mice bearing MX-1 tumor xenografts. In conclusion, our data provide a basis for the future development of the novel compound LXY6090 as a potential therapeutic agent for breast cancer.
Collapse
Affiliation(s)
- Fangfang Lai
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Qian Liu
- Department of Pharmacology, National Institutes for Food and Drug Control
| | - Xiaoyu Liu
- Department of Pharmacochemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ming Ji
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Ping Xie
- Department of Pharmacochemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaoguang Chen
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College
| |
Collapse
|