1
|
Li Y, Li X, Wang R, Liu W, Liu D, Song Z, Zhang Y, Zhang C, Tan Z. Total Chemical Synthesis of Glucagon Glycoforms Reveals the Remarkable Influence of Natural Glycosylation. J Am Chem Soc 2025. [PMID: 40337851 DOI: 10.1021/jacs.5c03757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Glycosylation plays a critical role in modulating protein and peptide properties, yet the impact of recently discovered natural mucin-type O-glycosylation on therapeutic peptides like glucagon remains underexplored due to challenges in obtaining homogeneous research samples. Here, we address this challenge by developing a streamlined multistep synthesis-one purification protocol, enabling the production of 21 glucagon glycoforms with systematically varied glycosylation patterns. Investigation of these glycoforms revealed a remarkable impact of natural glycosylation on two properties critical for glucagon: solubility increased by over 870-fold, and fibrillation was completely inhibited, even under stringent conditions, while biological activity in elevating blood glucose levels was preserved. Computational analyses indicated that sialylated glycans disrupt intermolecular associations in the solid state, enhancing solubility, and shift secondary structures from β-sheets to α-helices, mitigating fibrillation. These findings suggest that glycosylation may have evolved as a natural mechanism to optimize undesirable properties, offering valuable insights for the development of therapeutics based on glucagon and other proteins and peptides with similar challenges.
Collapse
Affiliation(s)
- Yaohao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ruihan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Chemical Engineering College, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| | - Wenqiang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zerun Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yajing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chuang Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
2
|
Nada H, Choi Y, Kim S, Jeong KS, Meanwell NA, Lee K. New insights into protein-protein interaction modulators in drug discovery and therapeutic advance. Signal Transduct Target Ther 2024; 9:341. [PMID: 39638817 PMCID: PMC11621763 DOI: 10.1038/s41392-024-02036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to cellular signaling and transduction which marks them as attractive therapeutic drug development targets. What were once considered to be undruggable targets have become increasingly feasible due to the progress that has been made over the last two decades and the rapid technological advances. This work explores the influence of technological innovations on PPI research and development. Additionally, the diverse strategies for discovering, modulating, and characterizing PPIs and their corresponding modulators are examined with the aim of presenting a streamlined pipeline for advancing PPI-targeted therapeutics. By showcasing carefully selected case studies in PPI modulator discovery and development, we aim to illustrate the efficacy of various strategies for identifying, optimizing, and overcoming challenges associated with PPI modulator design. The valuable lessons and insights gained from the identification, optimization, and approval of PPI modulators are discussed with the aim of demonstrating that PPI modulators have transitioned beyond early-stage drug discovery and now represent a prime opportunity with significant potential. The selected examples of PPI modulators encompass those developed for cancer, inflammation and immunomodulation, as well as antiviral applications. This perspective aims to establish a foundation for the effective targeting and modulation of PPIs using PPI modulators and pave the way for future drug development.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sungdo Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kwon Su Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Nicholas A Meanwell
- Baruch S. Blumberg Institute, Doylestown, PA, USA
- School of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Ernest Mario School of Pharmacy, Rutgers University New Brunswick, New Brunswick, NJ, USA
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
3
|
Dutta S, Chowdhury A, Bandyopadhyay A. Introducing Chemoselective Peptide Conjugation via N-Alkylation of Pyridyl-alanine: Solution and Solid Phase Applications. Org Lett 2024; 26:8206-8210. [PMID: 39269272 DOI: 10.1021/acs.orglett.4c03168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
A novel chemoselective peptide conjugation via late-stage N-alkylation of pyridyl-alanine (PAL) in the solution and solid phase, namely, NAP, is demonstrated. The method constructs functionally diverse and highly stable N-alkylated conjugates with various peptides. Notably, conjugations in the solid phase offered a more economical process. The method can provide the opportunity for dual labeling along with a cysteine handle in a peptide chain. Finally, we showcased that the antiproliferative activities of the p53 peptide (MDM2 inhibitor) could be 2-fold enhanced via NAP conjugation with the RGD peptide (selective integrin binder).
Collapse
Affiliation(s)
- Soumit Dutta
- Biomimetic Peptide Engineering Lab, Department of Chemistry, Indian Institute of Technology Ropar, Birla Farms, Rupnagar, Punjab 140001, India
| | - Arnab Chowdhury
- Biomimetic Peptide Engineering Lab, Department of Chemistry, Indian Institute of Technology Ropar, Birla Farms, Rupnagar, Punjab 140001, India
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Lab, Department of Chemistry, Indian Institute of Technology Ropar, Birla Farms, Rupnagar, Punjab 140001, India
| |
Collapse
|
4
|
Li J, Li Q, Xia S, Tu J, Zheng L, Wang Q, Jiang S, Wang C. Design of MERS-CoV entry inhibitory short peptides based on helix-stabilizing strategies. Bioorg Med Chem Lett 2024; 97:129569. [PMID: 38008340 DOI: 10.1016/j.bmcl.2023.129569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023]
Abstract
Interaction between Middle East respiratory syndrome coronavirus (MERS-CoV) spike (S) protein heptad repeat-1 domain (HR1) and heptad repeat-2 domain (HR2) is critical for the MERS-CoV fusion process. This interaction is mediated by the α-helical region from HR2 and the hydrophobic groove in a central HR1 trimeric coiled coil. We sought to develop a short peptidomimetic to act as a MERS-CoV fusion inhibitor by reproducing the key recognition features of HR2 helix. This was achieved by the use of helix-stabilizing strategies, including substitution with unnatural helix-favoring amino acids, introduction of ion pair interactions, and conjugation of palmitic acid. The resulting 23-mer lipopeptide, termed AEEA-C16, inhibits MERS-CoV S protein-mediated cell-cell fusion at a low micromolar level comparable to that of the 36-mer HR2 peptide HR2P-M2. Collectively, our studies provide new insights into developing short peptide-based antiviral agents to treat MERS-CoV infection.
Collapse
Affiliation(s)
- Jichun Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Qing Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Jiahuang Tu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Longbo Zheng
- Key Laboratory of Structure-based Drug Design & Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China.
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China.
| |
Collapse
|
5
|
Kanellopoulos P, Nock BA, Greifenstein L, Baum RP, Roesch F, Maina T. [ 68Ga]Ga-DATA 5m-LM4, a PET Radiotracer in the Diagnosis of SST 2R-Positive Tumors: Preclinical and First Clinical Results. Int J Mol Sci 2022; 23:ijms232314590. [PMID: 36498918 PMCID: PMC9740503 DOI: 10.3390/ijms232314590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Radiolabeled somatostatin subtype 2 receptor (SST2R)-antagonists have shown advantageous profiles for cancer theranostics compared with agonists. On the other hand, the newly introduced hybrid chelator (6-pentanoic acid)-6-(amino)methyl-1,4-diazepinetriacetate (DATA5m) rapidly binds Ga-68 (t1/2: 67.7 min) at much lower temperature, thus allowing for quick access to "ready-for-injection" [68Ga]Ga-tracers in hospitals. We herein introduce [68Ga]Ga-DATA5m-LM4 for PET/CT imaging of SST2R-positive human tumors. LM4 was obtained by 4Pal3/Tyr3-substitution in the known SST2R antagonist LM3 (H-DPhe-c[DCys-Tyr-DAph(Cbm)-Lys-Thr-Cys]-DTyr-NH2) and DATA5m was coupled at the N-terminus for labeling with radiogallium (Ga-67/68). [67Ga]Ga-DATA5m-LM4 was evaluated in HEK293-SST2R cells and mice models in a head-to-head comparison with [67Ga]Ga-DOTA-LM3. Clinical grade [68Ga]Ga-DATA5m-LM4 was prepared and injected in a neuroendocrine tumor (NET) patient for PET/CT imaging. DATA5m-LM4 displayed high SST2R binding affinity. [67Ga]Ga-DATA5m-LM4 showed markedly higher uptake in HEK293-SST2R cells versus [67Ga]Ga-DOTA-LM3 and was stable in vivo. In HEK293-SST2R xenograft-bearing mice, it achieved longer tumor retention and less kidney uptake than [67Ga]Ga-DOTA-LM3. [68Ga]Ga-DATA5m-LM4 accurately visualized tumor lesions with high contrast on PET/CT. In short, [68Ga]Ga-DATA5m-LM4 has shown excellent prospects for the PET/CT diagnosis of SST2R-positive tumors, further highlighting the benefits of Ga-68 labeling in a hospital environment via the DATA5m-chelator route.
Collapse
Affiliation(s)
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, GR-15310 Athens, Greece
| | - Lukas Greifenstein
- CURANOSTICUM Wiesbaden-Frankfurt, DKD Helios Klinik, D-65191 Wiesbaden, Germany
| | - Richard P. Baum
- CURANOSTICUM Wiesbaden-Frankfurt, DKD Helios Klinik, D-65191 Wiesbaden, Germany
| | - Frank Roesch
- Department Chemie, Standort TRIGA, Johannes Gutenberg-Universität Mainz, D-55126 Mainz, Germany
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, GR-15310 Athens, Greece
- Correspondence: ; Tel.: +30-210-650-3908 (ext. 3891)
| |
Collapse
|
6
|
Guzelj S, Bizjak Š, Jakopin Ž. Discovery of Desmuramylpeptide NOD2 Agonists with Single-Digit Nanomolar Potency. ACS Med Chem Lett 2022; 13:1270-1277. [PMID: 35978688 PMCID: PMC9377006 DOI: 10.1021/acsmedchemlett.2c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Samo Guzelj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Špela Bizjak
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Liu M, Zhao P, Uddin MH, Li W, Lin F, Chandrashekar C, Nishiuchi Y, Kajihara Y, Forbes BE, Wootten D, Wade JD, Hossain MA. Chemical Synthesis and Characterization of a Nonfibrillating Glycoglucagon. Bioconjug Chem 2021; 32:2148-2153. [PMID: 34494823 DOI: 10.1021/acs.bioconjchem.1c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The current commercially available glucagon formulations for the treatment of severe hypoglycemia must be reconstituted immediately prior to use, owing to the susceptibility of glucagon to fibrillation and aggregation in an aqueous solution. This results in the inconvenience of handling, misuse, and wastage of this drug. To address these issues, we synthesized a glycosylated glucagon analogue in which the 25th residue (Trp) was replaced with a cysteine (Cys) and a Br-disialyloligosaccharide was conjugated at the Cys thiol moiety. The resulting analogue, glycoglucagon, is a highly potent full agonist at the glucagon receptor. Importantly, glycoglucagon exhibits markedly reduced propensity for fibrillation and enhanced thermal and metabolic stability. This novel analogue is thus a valuable lead for producing stable liquid glucagon formulations that will improve patient compliance and minimize wastage.
Collapse
Affiliation(s)
| | - Peishen Zhao
- Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Md Hemayet Uddin
- Melbourne Centre for Nanofabrication, Melbourne, Victoria 3168, Australia
| | | | | | | | - Yuji Nishiuchi
- GlyTech, Inc., 134 Chudoji Minamimachi, Kyoto, 600-8813, Japan
- Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Yasuhiro Kajihara
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | - Briony E Forbes
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia
| | - Denise Wootten
- Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
8
|
Dougherty PG, Karpurapu M, Koley A, Lukowski JK, Qian Z, Nirujogi TS, Rusu L, Chung S, Hummon AB, Li HW, Christman JW, Pei D. A Peptidyl Inhibitor that Blocks Calcineurin-NFAT Interaction and Prevents Acute Lung Injury. J Med Chem 2020; 63:12853-12872. [PMID: 33073986 PMCID: PMC8011862 DOI: 10.1021/acs.jmedchem.0c01236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is an inflammatory lung disease with a high morbidity and mortality rate, for which no pharmacologic treatment is currently available. Our previous studies discovered that a pivotal step in the disease process is the activation of the nuclear factor of activated T cells (NFAT) c3 in lung macrophages, suggesting that inhibitors against the upstream protein phosphatase calcineurin should be effective for prevention/treatment of ARDS. Herein, we report the development of a highly potent, cell-permeable, and metabolically stable peptidyl inhibitor, CNI103, which selectively blocks the interaction between calcineurin and NFATc3, through computational and medicinal chemistry. CNI103 specifically inhibited calcineurin signaling in vitro and in vivo and exhibited a favorable pharmacokinetic profile, broad tissue distribution following different routes of administration, and minimal toxicity. Our data indicate that CNI103 is a promising novel treatment for ARDS and other inflammatory diseases.
Collapse
Affiliation(s)
- Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
- Entrada Therapeutics, 50 Northern Avenue, Boston, MA 02210, United States
| | - Manjula Karpurapu
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
| | - Amritendu Koley
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
| | - Jessica K. Lukowski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ziqing Qian
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
- Entrada Therapeutics, 50 Northern Avenue, Boston, MA 02210, United States
| | - Teja Srinivas Nirujogi
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
- East Liverpool City Hospital, 425 W 5th Street, East Liverpool, Ohio 43920, United States
| | - Luiza Rusu
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
| | - Sangwoon Chung
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, United States
| | - Hao W. Li
- Columbia Center for Translational Immunology, Columbia University, 650 W. 168 Street, New York, New York 10032, United States
| | - John W. Christman
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
| |
Collapse
|
9
|
Chabenne JR, Mroz PA, Mayer JP, DiMarchi RD. Structural Refinement of Glucagon for Therapeutic Use. J Med Chem 2019; 63:3447-3460. [PMID: 31774682 DOI: 10.1021/acs.jmedchem.9b01493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucagon counters insulin's effects on glucose metabolism and serves as a rescue medicine in the treatment of hypoglycemia. Acute hypoglycemia, a common occurrence in insulin-dependent diabetes, is the central obstacle to correcting high blood glucose, a primary cause of long-term microvascular complications. As a result, there has been a resurgence of interest in improved glucagon therapy, including nonconventional liquid formulations, alternative routes of administration, and novel analogs with optimized biophysical properties. These options collectively minimize the complexity of glucagon delivery and enable its application in ways not feasible with conventional emergency rescue kits. These advances have indirectly promoted the integrated use of glucagon agonism with other hormones in a manner that runs counter to the long-standing pursuit of glucagon antagonism. This review summarizes novel approaches to glucagon optimization, methods with potential application to the broader family of therapeutic peptides, where biophysical challenges may be encountered.
Collapse
Affiliation(s)
- Joseph R Chabenne
- Novo Nordisk Research Center, Indianapolis, Indiana 46241, United States
| | - Piotr A Mroz
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John P Mayer
- MCD Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Richard D DiMarchi
- Novo Nordisk Research Center, Indianapolis, Indiana 46241, United States.,Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
10
|
Stereochemical inversion as a route to improved biophysical properties of therapeutic peptides exemplified by glucagon. Commun Chem 2019. [DOI: 10.1038/s42004-018-0100-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
11
|
DiMarchi RD, Mayer JP, Gelfanov VM, Tschöp M. Max Bergmann award lecture:Macromolecular medicinal chemistry as applied to metabolic diseases. J Pept Sci 2018; 24. [PMID: 29322647 DOI: 10.1002/psc.3056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 11/06/2022]
Abstract
This review presents the scope of research presented in an October 2016 lecture pertaining to the award of the 2015 Max Bergmann Medal. The advancement in synthetic and biosynthetic chemistry as applied to the discovery of novel macromolecular drug candidates is reviewed. The evolution of the technology from the design, synthesis, and development of the first biosynthetic peptides through the emergence of peptide-based incretin agonists that function by multiple biological mechanisms is exemplified by the progression of such peptides from preclinical to clinical study. A closing section highlights recent progress made in total chemical synthesis of insulin and related peptides.
Collapse
Affiliation(s)
- Richard D DiMarchi
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, 46241, USA
| | - John P Mayer
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, 46241, USA
| | - Vasily M Gelfanov
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, 46241, USA
| | - Matthias Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333, Munich, Germany
| |
Collapse
|
12
|
Henninot A, Collins JC, Nuss JM. The Current State of Peptide Drug Discovery: Back to the Future? J Med Chem 2017; 61:1382-1414. [PMID: 28737935 DOI: 10.1021/acs.jmedchem.7b00318] [Citation(s) in RCA: 704] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past decade, peptide drug discovery has experienced a revival of interest and scientific momentum, as the pharmaceutical industry has come to appreciate the role that peptide therapeutics can play in addressing unmet medical needs and how this class of compounds can be an excellent complement or even preferable alternative to small molecule and biological therapeutics. In this Perspective, we give a concise description of the recent progress in peptide drug discovery in a holistic manner, highlighting enabling technological advances affecting nearly every aspect of this field: from lead discovery, to synthesis and optimization, to peptide drug delivery. An emphasis is placed on describing research efforts to overcome the inherent weaknesses of peptide drugs, in particular their poor pharmacokinetic properties, and how these efforts have been critical to the discovery, design, and subsequent development of novel therapeutics.
Collapse
Affiliation(s)
- Antoine Henninot
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - James C Collins
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - John M Nuss
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| |
Collapse
|
13
|
Mroz PA, Perez-Tilve D, Liu F, Mayer JP, DiMarchi RD. Native Design of Soluble, Aggregation-Resistant Bioactive Peptides: Chemical Evolution of Human Glucagon. ACS Chem Biol 2016; 11:3412-3420. [PMID: 27797473 DOI: 10.1021/acschembio.6b00923] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Peptide-based therapeutics commonly suffer from biophysical properties that compromise pharmacology and medicinal use. Structural optimization of the primary sequence is the usual route to address such challenges while trying to maintain as much native character and avoiding introduction of any foreign element that might evoke an immunological response. Glucagon serves a seminal physiological role in buffering against hypoglycemia, but its low aqueous solubility, chemical instability, and propensity to self-aggregate severely complicate its medicinal use. Selective amide bond replacement with metastable ester bonds is a preferred approach to the preparation of peptides with biophysical properties that otherwise inhibit synthesis. We have recruited such chemistry in the design and development of unique glucagon prodrugs that have physical properties suitable for medicinal use and yet rapidly convert to native hormone upon exposure to slightly alkaline pH. These prodrugs demonstrate in vitro and in vivo pharmacology when formulated in physiological buffers that are nearly identical to native hormone when solubilized in conventional dilute hydrochloric acid. This approach provides the best of both worlds, where the pro-drug delivers chemical properties supportive of aqueous formulation and the native biological properties.
Collapse
Affiliation(s)
- Piotr A. Mroz
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Diego Perez-Tilve
- Department
of Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Fa Liu
- Novo Nordisk Research Center, Indianapolis, Indiana 46241, United States
| | - John P. Mayer
- Novo Nordisk Research Center, Indianapolis, Indiana 46241, United States
| | - Richard D. DiMarchi
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- Novo Nordisk Research Center, Indianapolis, Indiana 46241, United States
| |
Collapse
|