1
|
Chen X, Kang W, Wu T, Cao D, Chen Y, Du Z, Yan L, Meng F, Wang X, You Q, Xiong B, Guo X, Jiang Z. Multi-Water Bridges Enable Design of BET BD1-Selective Inhibitors for Pancreatic Cancer Therapy. J Med Chem 2025; 68:5719-5735. [PMID: 40011026 DOI: 10.1021/acs.jmedchem.4c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Rational design of bromodomain (BD)-selective inhibitors could mitigate on-target toxicities associated with pan-BET inhibition but is challenging despite the availability of high-resolution structures. By simultaneously forming water bridges with BD1-specific residues in both the BC ring and the ZA channel, we identified a potent and orally bioavailable BET BD1-selective inhibitor DDO-8958, which exhibited a KD of 5.6 nM for BRD4 BD1 and a 214-fold selectivity for BRD4 BD1 over BD2. The cocrystal structure demonstrated a unique multi-water bridge mechanism involving BD1-specific residues K91- and D145-driven BD1 selectivity. DDO-8958 extensively influenced the oncogene expression and metabolic pathway, including oxidative phosphorylation in MIA PaCa-2. In vivo, DDO-8958 inhibited tumor growth and markedly augmented the therapeutic efficacy of the glycolysis inhibitor 2-DG. These findings illuminate that multi-water bridges enable design of BD1-selective inhibitors and a therapeutic strategy involving combined targeting of BD1-induced epigenetic reprogramming and glycolysis pathways for the management of pancreatic cancer.
Collapse
Affiliation(s)
- Xuetao Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenjing Kang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tingting Wu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Danyan Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yali Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiyan Du
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Leixin Yan
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Fanying Meng
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyue Wang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xiaoke Guo
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Shen H, Xu H, Jin W, Wu T, Hu J, Zhang C, Zhong Z, Li J, Mao R, Zhang S, Zhang X, Wu X, Smaill JB, Xu J, Zhang Y, Xu Y. Discovery of a Potent and Selective GSPT1 Molecular Glue Degrader for the Treatment of Castration-Resistant Prostate Cancer. J Med Chem 2025; 68:1553-1571. [PMID: 39746330 DOI: 10.1021/acs.jmedchem.4c02205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The treatment of castration-resistant prostate cancer (CRPC) remains a significant challenge, necessitating the development of new and promising therapeutic strategies. Utilizing molecular glue to degrade previously intractable cancer drivers represents an emerging and promising therapeutic approach to cancer treatment. In this study, we developed a novel CRBN-interacting molecular glue, 7d (XYD049), which exhibits potent and selective degradation of G1 to S phase transition 1 (GSPT1), a well-known untargetable cancer driver in diverse cancer cells. Importantly, 7d exhibits superior efficacy compared to 1 (CC-90009) in degrading GSPT1 in 22Rv1 cells with a DC50 value of 19 nM. It effectively suppresses the growth of 22Rv1 cells with an IC50 value of 0.007 ± 0.004 μM and demonstrates efficacy in inhibiting 22Rv1 tumor growth in mice. Mechanistically, via degradation of GSPT1, 7d downregulates CRPC-related oncogenes in 22Rv1 cells, including AR, AR-V7, PSA, and c-Myc. Thus, our work provides a novel GSPT1 selective degrader with potent effectiveness in targeting Myc-driven CRPC.
Collapse
Affiliation(s)
- Hui Shen
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Hongrui Xu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Weiqin Jin
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- Institutes of Material Science and Information Technology, Anhui University, Hefei 230601, China
| | - Tianbang Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Jiankang Hu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Cheng Zhang
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zhixin Zhong
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Junhua Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Rui Mao
- Laboratory Animal Research Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Sheng Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xiao Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xishan Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jinxin Xu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yan Zhang
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yong Xu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| |
Collapse
|
3
|
Chen Z, Yang H, Zhang Y, Lyu X, Shi Q, Zhang C, Wang X, Wang Z, Zhang Y, Deng Y, Wang Y, Huang Y, Xu Y, Huang X, Li Y. Discovery of CZL-046 with an ( S)-3-Fluoropyrrolidin-2-one Scaffold as a p300 Bromodomain Inhibitor for the Treatment of Multiple Myeloma. J Med Chem 2024; 67:18606-18628. [PMID: 39356741 DOI: 10.1021/acs.jmedchem.4c01984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
E1A binding protein (p300) is a promising therapeutic target for the treatment of cancer. Herein, we report the discovery of a series of novel inhibitors with an (S)-3-fluoropyrrolidin-2-one scaffold targeting p300 bromodomain. The best compound 29 (CZL-046) shows potent inhibitory activity of p300 bromodomain (IC50 = 3.3 nM) and antiproliferative activity in the multiple myeloma (MM) cell line (OPM-2 IC50 = 51.5 nM). 29 suppressed the mRNA levels of c-Myc and IRF4 and downregulated the expression of c-Myc and H3K27Ac. Compared to the lead compound 5, 29 exhibits significantly improved in vitro and in vivo metabolic properties. Oral administration of 29 with 30 mg/kg achieved a TGI value of 44% in the OPM-2 xenograft model, accompanied by good tolerability. The cocrystal structure of CREB binding protein bromodomain with 29 provides an insight into the precise binding mode. The results demonstrate that 29 is a promising p300 bromodomain inhibitor for the treatment of MM.
Collapse
Affiliation(s)
- Zonglong Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Hong Yang
- Lingang Laboratory, Shanghai 200031, P. R. China
| | - Yan Zhang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaodong Lyu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Qiongyu Shi
- Lingang Laboratory, Shanghai 200031, P. R. China
| | - Cheng Zhang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xingcan Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Zekun Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Ying Zhang
- Lingang Laboratory, Shanghai 200031, P. R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue Deng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yujie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Yuting Huang
- Lingang Laboratory, Shanghai 200031, P. R. China
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Xu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xun Huang
- Lingang Laboratory, Shanghai 200031, P. R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Yingxia Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| |
Collapse
|
4
|
Colarusso E, Gazzillo E, Boccia E, Terracciano S, Bruno I, Bifulco G, Chini MG, Lauro G. Identification of Novel Bromodomain-Containing Protein 4 (BRD4) Binders through 3D Pharmacophore-Based Repositioning Screening Campaign. Molecules 2024; 29:4025. [PMID: 39274873 PMCID: PMC11397543 DOI: 10.3390/molecules29174025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
A 3D structure-based pharmacophore model built for bromodomain-containing protein 4 (BRD4) is reported here, specifically developed for investigating and identifying the key structural features of the (+)-JQ1 known inhibitor within the BRD4 binding site. Using this pharmacophore model, 273 synthesized and purchased compounds previously considered for other targets but yielding poor results were screened in a drug repositioning campaign. Subsequently, only six compounds showed potential as BRD4 binders and were subjected to further biophysical and biochemical assays. Compounds 2, 5, and 6 showed high affinity for BRD4, with IC50 values of 0.60 ± 0.25 µM, 3.46 ± 1.22 µM, and 4.66 ± 0.52 µM, respectively. Additionally, these compounds were tested against two other bromodomains, BRD3 and BRD9, and two of them showed high selectivity for BRD4. The reported 3D structure-based pharmacophore model proves to be a straightforward and useful tool for selecting novel BRD4 ligands.
Collapse
Affiliation(s)
- Ester Colarusso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Erica Gazzillo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Eleonora Boccia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
5
|
Tavernelli LE, Alonso VL, Peña I, Rodríguez Araya E, Manarin R, Cantizani J, Martin J, Salamanca J, Bamborough P, Calderón F, Gabarro R, Serra E. Identification of novel bromodomain inhibitors of Trypanosoma cruzi bromodomain factor 2 ( TcBDF2) using a fluorescence polarization-based high-throughput assay. Antimicrob Agents Chemother 2024; 68:e0024324. [PMID: 39028190 PMCID: PMC11304739 DOI: 10.1128/aac.00243-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024] Open
Abstract
Bromodomains are structural folds present in all eukaryotic cells that bind to other proteins recognizing acetylated lysines. Most proteins with bromodomains are part of nuclear complexes that interact with acetylated histone residues and regulate DNA replication, transcription, and repair through chromatin structure remodeling. Bromodomain inhibitors are small molecules that bind to the hydrophobic pocket of bromodomains, interfering with the interaction with acetylated histones. Using a fluorescent probe, we have developed an assay to select inhibitors of the bromodomain factor 2 of Trypanosoma cruzi (TcBDF2) using fluorescence polarization. Initially, a library of 28,251 compounds was screened in an endpoint assay. The top 350-ranked compounds were further analyzed in a dose-response assay. From this analysis, seven compounds were obtained that had not been previously characterized as bromodomain inhibitors. Although these compounds did not exhibit significant trypanocidal activity, all showed bona fide interaction with TcBDF2 with dissociation constants between 1 and 3 µM validating these assays to search for bromodomain inhibitors.
Collapse
Affiliation(s)
- Luis E. Tavernelli
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Rosario, Argentina
- GlaxoSmithKline Global Health, Madrid, Spain
| | - Victoria L. Alonso
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Imanol Peña
- GlaxoSmithKline Global Health, Madrid, Spain
| | - Elvio Rodríguez Araya
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Romina Manarin
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | - Paul Bamborough
- Molecular Design, GlaxoSmithKline, Stevenage, United Kingdom
| | | | | | - Esteban Serra
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
6
|
Miyada MG, Choi Y, Stepanauskas R, Woyke T, La Clair JJ, Burkart MD. Fluorometric Analysis of Carrier-Protein-Dependent Biosynthesis through a Conformationally Sensitive Solvatochromic Pantetheinamide Probe. ACS Chem Biol 2024; 19:1416-1425. [PMID: 38909314 PMCID: PMC11622929 DOI: 10.1021/acschembio.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Carrier proteins (CPs) play a fundamental role in the biosynthesis of fatty acids, polyketides, and non-ribosomal peptides, encompassing many medicinally and pharmacologically relevant compounds. Current approaches to analyze novel carrier-protein-dependent synthetic pathways are hampered by a lack of activity-based assays for natural product biosynthesis. To fill this gap, we turned to 3-methoxychromones, highly solvatochromic fluorescent molecules whose emission intensity and wavelength are heavily dependent on their immediate molecular environment. We have developed a solvatochromic carrier-protein-targeting probe which is able to selectively fluoresce when bound to a target carrier protein. Additionally, the probe displays distinct responses upon CP binding in carrier-protein-dependent synthases. This discerning approach demonstrates the design of solvatochromic fluorophores with the ability to identify biosynthetically active CP-enzyme interactions.
Collapse
Affiliation(s)
- Matthew G. Miyada
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Yuran Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Ramunas Stepanauskas
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, United States
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
7
|
Lukoyanov AA, Aksenova SA, Tabolin AA, Sukhorukov AY. 3-Halo-5,6-dihydro-4 H-1,2-oxazine N-oxides as synthetic equivalents of unsaturated nitrile oxides in the [3 + 2]-cycloaddition with arynes: synthesis of substituted 3-vinyl-1,2-benzisoxazoles. Org Biomol Chem 2024; 22:3615-3621. [PMID: 38634451 DOI: 10.1039/d4ob00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The reaction of 3-halo-5,6-dihydro-4H-1,2-oxazine N-oxides with arynes was studied. Arynes were generated from o-silylaryl triflates and underwent consecutive [3 + 2]-cycloaddition/[4 + 2]-cycloreversion with N-oxides leading to substituted 3-vinyl-benzisoxazoles in high yields. In the presented sequence, 1,2-oxazine N-oxides act as surrogates of rarely employed unsaturated nitrile oxides. A broad substrate scope was demonstrated. The influence of the substitution pattern of an aryne on the reaction outcome was determined. In the presence of bulky substituents, polycyclic 4,4a-dihydro-3H-benzofuro[3,2-c][1,2]oxazines were selectively formed. Mechanistic schemes for the observed reaction pathways were proposed. The synthetic utility of the products was demonstrated by their follow-up modifications.
Collapse
Affiliation(s)
- Alexander A Lukoyanov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russian Federation.
| | - Svetlana A Aksenova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str. 28, Moscow, 119334, Russian Federation
| | - Andrey A Tabolin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russian Federation.
| | - Alexey Yu Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russian Federation.
| |
Collapse
|
8
|
Hu J, Xu H, Wu T, Zhang C, Shen H, Dong R, Hu Q, Xiang Q, Chai S, Luo G, Chen X, Huang Y, Zhao X, Peng C, Wu X, Lin B, Zhang Y, Xu Y. Discovery of Highly Potent and Efficient CBP/p300 Degraders with Strong In Vivo Antitumor Activity. J Med Chem 2024. [PMID: 38649304 DOI: 10.1021/acs.jmedchem.3c02195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The transcriptional coactivator cAMP response element binding protein (CREB)-binding protein (CBP) and its homologue p300 have emerged as attractive therapeutic targets for human cancers such as acute myeloid leukemia (AML). Herein, we report the design, synthesis, and biological evaluation of a series of cereblon (CRBN)-recruiting CBP/p300 proteolysis targeting chimeras (PROTACs) based on the inhibitor CCS1477. The representative compounds 14g (XYD190) and 14h (XYD198) potently inhibited the growth of AML cells with low nanomolar IC50 values and effectively degraded CBP and p300 proteins in a concentration- and time-dependent manner. Mechanistic studies confirmed that 14g and 14h can selectively bind to CBP/p300 bromodomains and induce CBP and p300 degradation in bromodomain family proteins in a CRBN- and proteasome-dependent manner. 14g and 14h displayed remarkable antitumor efficacy in the MV4;11 xenograft model (TGI = 88% and 93%, respectively). Our findings demonstrated that 14g and 14h are useful lead compounds and deserve further optimization and activity evaluation for the treatment of human cancers.
Collapse
Affiliation(s)
- Jiankang Hu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Hongrui Xu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
| | - Tianbang Wu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cheng Zhang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Hui Shen
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Ruibo Dong
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Qingqing Hu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Qiuping Xiang
- Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, China
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang 315010, China
| | - Shuang Chai
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Guolong Luo
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xiaoshan Chen
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Yumin Huang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Xiaofan Zhao
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
| | - Chao Peng
- Jiangsu S&T Exchange Center with Foreign Countries, No. 175 Longpan Road, Nanjing 210042, China
| | - Xishan Wu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Zhang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yong Xu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
9
|
Zhao S, Ali AS, Liu X, Yu Z, Kong X, Zhang Y, Paul Savage G, Xu Y, Lin B, Wu D, Francis CL. 1,3-Disubstituted-1,2,4-triazin-6-ones with potent activity against androgen receptor-dependent prostate cancer cells. Bioorg Med Chem 2024; 101:117634. [PMID: 38359754 DOI: 10.1016/j.bmc.2024.117634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Synthesis and biological evaluation of a small, focused library of 1,3-disubstituted-1,2,4-triazin-6-ones for in vitro inhibitory activity against androgen-receptor-dependent (22Rv1) and androgen-receptor independent (PC3) castration-resistant prostate cancer (CRPC) cells led to highly active compounds with in vitro IC50 values against 22Rv1 cells of <200 nM, and with apparent selectivity for this cell type over PC3 cells. From metabolic/PK evaluations of these compounds, a 3-benzyl-1-(2,4-dichlorobenzyl) derivative had superior properties and showed considerably stronger activity, by nearly an order of magnitude, against AR-dependent LNCaP and C4-2B cells compared to AR-independent DU145 cells. This lead compound decreased AR expression in a dose and time dependent manner and displayed promising therapeutic effects in a 22Rv1 CRPC xenograft mouse model. Computational target prediction and subsequent docking studies suggested three potential known prostate cancer targets: p38a MAPK, TGF-β1, and HGFR/c-Met, with the latter case of c-Met appearing stronger, owing to close structural similarity of the lead compound to known pyridazin-3-one derivatives with potent c-Met inhibitory activity. RNA-seq analysis showed dramatic reduction of AR signalling pathway and/or target genes by the lead compound, subsequently confirmed by quantitative PCR analysis. The lead compound was highly inhibitory against HGF, the c-Met ligand, which fitted well with the computational target prediction and docking studies. These results suggest that this compound could be a promising starting point for the development of an effective therapy for the treatment of CRPC.
Collapse
Affiliation(s)
- Shiting Zhao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou 511436, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Abdelsalam S Ali
- Drug Discovery Chemistry Team, CSIRO, Clayton, Victoria 3168, Australia
| | - Xiaomin Liu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou 511436, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Yu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyu Kong
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou 511436, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou 511436, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - G Paul Savage
- Drug Discovery Chemistry Team, CSIRO, Clayton, Victoria 3168, Australia
| | - Yong Xu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou 511436, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Donghai Wu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou 511436, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Craig L Francis
- Drug Discovery Chemistry Team, CSIRO, Clayton, Victoria 3168, Australia.
| |
Collapse
|
10
|
Hsia O, Hinterndorfer M, Cowan AD, Iso K, Ishida T, Sundaramoorthy R, Nakasone MA, Imrichova H, Schätz C, Rukavina A, Husnjak K, Wegner M, Correa-Sáez A, Craigon C, Casement R, Maniaci C, Testa A, Kaulich M, Dikic I, Winter GE, Ciulli A. Targeted protein degradation via intramolecular bivalent glues. Nature 2024; 627:204-211. [PMID: 38383787 PMCID: PMC10917667 DOI: 10.1038/s41586-024-07089-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Targeted protein degradation is a pharmacological modality that is based on the induced proximity of an E3 ubiquitin ligase and a target protein to promote target ubiquitination and proteasomal degradation. This has been achieved either via proteolysis-targeting chimeras (PROTACs)-bifunctional compounds composed of two separate moieties that individually bind the target and E3 ligase, or via molecular glues that monovalently bind either the ligase or the target1-4. Here, using orthogonal genetic screening, biophysical characterization and structural reconstitution, we investigate the mechanism of action of bifunctional degraders of BRD2 and BRD4, termed intramolecular bivalent glues (IBGs), and find that instead of connecting target and ligase in trans as PROTACs do, they simultaneously engage and connect two adjacent domains of the target protein in cis. This conformational change 'glues' BRD4 to the E3 ligases DCAF11 or DCAF16, leveraging intrinsic target-ligase affinities that do not translate to BRD4 degradation in the absence of compound. Structural insights into the ternary BRD4-IBG1-DCAF16 complex guided the rational design of improved degraders of low picomolar potency. We thus introduce a new modality in targeted protein degradation, which works by bridging protein domains in cis to enhance surface complementarity with E3 ligases for productive ubiquitination and degradation.
Collapse
Affiliation(s)
- Oliver Hsia
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Matthias Hinterndorfer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Angus D Cowan
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Kentaro Iso
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
- Tsukuba Research Laboratory, Eisai Co., Ibaraki, Japan
| | - Tasuku Ishida
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
- Tsukuba Research Laboratory, Eisai Co., Ibaraki, Japan
| | | | - Mark A Nakasone
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Hana Imrichova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Caroline Schätz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andrea Rukavina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Koraljka Husnjak
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martin Wegner
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alejandro Correa-Sáez
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Conner Craigon
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ryan Casement
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chiara Maniaci
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andrea Testa
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
- Amphista Therapeutics, Cambridge, UK
| | - Manuel Kaulich
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
11
|
Li Y, Shen Z, Ratia K, Zhao J, Huang F, Dubrovyskyii O, Indukuri D, Fu J, Lozano Ramos O, Thatcher GRJ, Xiong R. Structure-Guided Design and Synthesis of Pyridinone-Based Selective Bromodomain and Extra-Terminal Domain (BET)-First Bromodomain (BD1) Inhibitors. J Med Chem 2024; 67:2712-2731. [PMID: 38295759 DOI: 10.1021/acs.jmedchem.3c01837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The bromodomain and extra-terminal domain (BET) proteins are epigenetic readers, regulating transcription via two highly homologous tandem bromodomains, BD1 and BD2. Clinical development of nonselective pan-BD BET inhibitors has been challenging, partly due to dose-limiting side effects such as thrombocytopenia. This has prompted the push for domain-selective BET inhibitors to achieve a more favorable therapeutic window. We report a structure-guided drug design campaign that led to the development of a potent BD1-selective BET inhibitor, 33 (XL-126), with a Kd of 8.9 nM and 185-fold BD1/BD2 selectivity. The high selectivity was first assayed by SPR, validated by a secondary time-resolved fluorescence energy transfer assay, and further corroborated by BROMOscan (∼57-373 fold selectivity). The cocrystal of 33 with BRD4 BD1 and BD2 demonstrates the source of selectivity: repulsion with His437 and lost binding with the leucine clamp. Notably, the BD1 selectivity of BET inhibitor 33 leads to both the preservation of platelets and potent anti-inflammatory efficacy.
Collapse
Affiliation(s)
- Yangfeng Li
- UICentre (Drug Discovery@UIC), University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| | - Zhengnan Shen
- UICentre (Drug Discovery@UIC), University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| | - Kiira Ratia
- UICentre (Drug Discovery@UIC), University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Jiong Zhao
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| | - Fei Huang
- UICentre (Drug Discovery@UIC), University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| | - Oleksii Dubrovyskyii
- UICentre (Drug Discovery@UIC), University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| | - Divakar Indukuri
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Jiqiang Fu
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Omar Lozano Ramos
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Gregory R J Thatcher
- UICentre (Drug Discovery@UIC), University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| | - Rui Xiong
- UICentre (Drug Discovery@UIC), University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| |
Collapse
|
12
|
Chen X, Wu T, Du Z, Kang W, Xu R, Meng F, Liu C, Chen Y, Bao Q, Shen J, You Q, Cao D, Jiang Z, Guo X. Discovery of a brain-permeable bromodomain and extra terminal domain (BET) inhibitor with selectivity for BD1 for the treatment of multiple sclerosis. Eur J Med Chem 2024; 265:116080. [PMID: 38142510 DOI: 10.1016/j.ejmech.2023.116080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease and lacks effective therapeutic agents. Dysregulation of transcription mediated by bromodomain and extra-terminal domain (BET) proteins containing two different bromodomains (BD1 and BD2) is an important factor in multiple diseases, including MS. Herein, we identified a series of BD1-biased inhibitors, in which compound 16 showed nanomolar potency for BD1 (Kd = 230 nM) and a 60-fold selectivity for BRD4 BD1 over BD2. The co-crystal structure of BRD4 BD1 with 16 indicated that the hydrogen bond interaction of 16 with BD1-specific Asp145 is important for BD1 selectivity. 16 showed favorable brain distribution in mice and PK properties in rats. 16 was able to inhibit microglia activation and had significant therapeutic effects on EAE mice including improvement of spinal cord inflammatory conditions and demyelination protection. Overall, these results suggest that brain-permeable BD1 inhibitors have the potential to be further investigated as therapeutic agents for MS.
Collapse
Affiliation(s)
- Xuetao Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tingting Wu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhiyan Du
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Wenjing Kang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Rujun Xu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Fanying Meng
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chihong Liu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yali Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qichao Bao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingkang Shen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Danyan Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaoke Guo
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Yu S, Zhang Y, Yang J, Xu H, Lan S, Zhao B, Luo M, Ma X, Zhang H, Wang S, Shen H, Zhang Y, Xu Y, Li R. Discovery of (R)-4-(8-methoxy-2-methyl-1-(1-phenylethy)-1H-imidazo[4,5-c]quinnolin-7-yl)-3,5-dimethylisoxazole as a potent and selective BET inhibitor for treatment of acute myeloid leukemia (AML) guided by FEP calculation. Eur J Med Chem 2024; 263:115924. [PMID: 37992518 DOI: 10.1016/j.ejmech.2023.115924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/24/2023]
Abstract
The functions of the bromodomain and extra terminal (BET) family of proteins have been proved to be involved in various diseases, particularly the acute myeloid leukemia (AML). In this work, guided by free energy perturbation (FEP) calculation, a methyl group was selected to be attached to the 1H-imidazo[4,5-c]quinoline skeleton, and a series of congeneric compounds were synthesized. Among them, compound 10 demonstrated outstanding activity against BRD4 BD1 with an IC50 value of 1.9 nM and exhibited remarkable antiproliferative effects against MV4-11 cells. The X-ray cocrystal structure proved that 10 occupied the acetylated lysine (KAc) binding cavity and the WPF shelf of BRD4 BD1. Additionally, 10 displayed high selectivity towards BET family members, effectively inhibiting the growth of AML cells, promoting apoptosis, and arresting the cell cycle at the G0/G1 phase. Further mechanistic studies demonstrated that compound 10 could suppress the expression of c-Myc and CDK6 while enhancing the expression of P21, PARP, and cleaved PARP. Moreover, 10 exhibited remarkable pharmacokinetic properties and significant antitumor efficacy in vivo. Therefore, compound 10 may represent a new, potent and selective BET bromodomain inhibitor for the development of therapeutics to treat AML.
Collapse
Affiliation(s)
- Su Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongrui Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530, China
| | - Suke Lan
- College of Chemistry & Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, China
| | - Binyan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongjia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shirui Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Shen
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530, China
| | - Yan Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530, China
| | - Yong Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou, 510530, China.
| | - Rui Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Shi M, Zheng X, Zhou Y, Yin Y, Lu Z, Zou Z, Hu Y, Liang Y, Chen T, Yang Y, Jing M, Lei D, Yang P, Li X. Selectivity Mechanism of Pyrrolopyridone Analogues Targeting Bromodomain 2 of Bromodomain-Containing Protein 4 from Molecular Dynamics Simulations. ACS OMEGA 2023; 8:33658-33674. [PMID: 37744850 PMCID: PMC10515184 DOI: 10.1021/acsomega.3c03935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Bromodomain and extra-terminal domain (BET) proteins play an important role in epigenetic regulation and are linked to several diseases; therefore, they are interesting targets. BET has two bromodomains: bromodomain 1 (BD1) and BD2. Selective targeting of BD1 or BD2 may produce different activities and greater effects than pan-BD inhibitors. However, the selective mechanism of the specific core must be studied at the atomic level. This study determined the effectiveness of pyrrolopyridone analogues to selectively inhibit BD2 using a pan-BD inhibitor (ABBV-075) and a selective-BD2 inhibitor (ABBV-744). Molecular dynamics simulations and calculations of binding free energies were used to systematically study the selectivity of BD2 inhibition by the pyrrolopyridone analogues. Overall, the pyrrolopyridone analogue inhibitors targeting BD2 interacted mainly with the following amino acid pairs between bromodomain-containing protein 4 (BRD4)-BD1 and BRD4-BD2 complexes: I146/V439, N140/N433, D144/H437, P82/P375, V87/V380, D88/D381, and Y139/Y432. The pyrrolopyridone analogues targeting BRD4-BD2 were divided into five regions based on selectivity mechanism. These results suggest that the R3 and R5 regions of pyrrolopyridone analogues can be modified to improve the selectivity between BRD4-BD1 and BRD4-BD2. The selectivity of BD2 inhibition by pyrrolopyridone analogues can be used to design novel BD2 inhibitors based on a pyrrolopyridone core.
Collapse
Affiliation(s)
- Mingsong Shi
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
- Innovation
Center of Nursing Research, Nursing Key Laboratory of Sichuan Province,
West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xueting Zheng
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yan Zhou
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yuan Yin
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Zhou Lu
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Zhiyan Zou
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yan Hu
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yuanyuan Liang
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Tingting Chen
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yuhan Yang
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Meng Jing
- Department
of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of
China, Mianyang 621099, Sichuan, China
| | - Dan Lei
- School
of Life Science and Engineering, Southwest
University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Pei Yang
- Department
of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of
China, Mianyang 621099, Sichuan, China
| | - Xiaoan Li
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| |
Collapse
|
15
|
Çınaroğlu SS, Biggin PC. The role of loop dynamics in the prediction of ligand-protein binding enthalpy. Chem Sci 2023; 14:6792-6805. [PMID: 37350814 PMCID: PMC10284145 DOI: 10.1039/d2sc06471e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/31/2023] [Indexed: 06/24/2023] Open
Abstract
The enthalpic and entropic components of ligand-protein binding free energy reflect the interactions and dynamics between ligand and protein. Despite decades of study, our understanding and hence our ability to predict these individual components remains poor. In recent years, there has been substantial effort and success in the prediction of relative and absolute binding free energies, but the prediction of the enthalpic (and entropic) contributions in biomolecular systems remains challenging. Indeed, it is not even clear what kind of performance in terms of accuracy could currently be obtained for such systems. It is, however, relatively straight-forward to compute the enthalpy of binding. We thus evaluated the performance of absolute enthalpy of binding calculations using molecular dynamics simulation for ten inhibitors against a member of the bromodomain family, BRD4-1, against isothermal titration calorimetry data. Initial calculations, with the AMBER force-field showed good agreement with experiment (R2 = 0.60) and surprisingly good accuracy with an average of root-mean-square error (RMSE) = 2.49 kcal mol-1. Of the ten predictions, three were obvious outliers that were all over-predicted compared to experiment. Analysis of various simulation factors, including parameterization, buffer concentration and conformational dynamics, revealed that the behaviour of a loop (the ZA loop on the periphery of the binding site) strongly dictates the enthalpic prediction. Consistent with previous observations, the loop exists in two distinct conformational states and by considering one or the other or both states, the prediction for the three outliers can be improved dramatically to the point where the R2 = 0.95 and the accuracy in terms of RMSE improves to 0.90 kcal mol-1. However, performance across force-fields is not consistent: if OPLS and CHARMM are used, different outliers are observed and the correlation with the ZA loop behaviour is not recapitulated, likely reflecting parameterization as a confounding problem. The results provide a benchmark standard for future study and comparison.
Collapse
Affiliation(s)
- Süleyman Selim Çınaroğlu
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK +44 (0)1865 613238 +44 (0)1865 613305
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK +44 (0)1865 613238 +44 (0)1865 613305
| |
Collapse
|
16
|
Pan Z, Zhao Y, Wang X, Xie X, Liu M, Zhang K, Wang L, Bai D, Foster LJ, Shu R, He G. Targeting bromodomain-containing proteins: research advances of drug discovery. MOLECULAR BIOMEDICINE 2023; 4:13. [PMID: 37142850 PMCID: PMC10159834 DOI: 10.1186/s43556-023-00127-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/02/2023] [Indexed: 05/06/2023] Open
Abstract
Bromodomain (BD) is an evolutionarily conserved protein module found in 46 different BD-containing proteins (BCPs). BD acts as a specific reader for acetylated lysine residues (KAc) and serves an essential role in transcriptional regulation, chromatin remodeling, DNA damage repair, and cell proliferation. On the other hand, BCPs have been shown to be involved in the pathogenesis of a variety of diseases, including cancers, inflammation, cardiovascular diseases, and viral infections. Over the past decade, researchers have brought new therapeutic strategies to relevant diseases by inhibiting the activity or downregulating the expression of BCPs to interfere with the transcription of pathogenic genes. An increasing number of potent inhibitors and degraders of BCPs have been developed, some of which are already in clinical trials. In this paper, we provide a comprehensive review of recent advances in the study of drugs that inhibit or down-regulate BCPs, focusing on the development history, molecular structure, biological activity, interaction with BCPs and therapeutic potentials of these drugs. In addition, we discuss current challenges, issues to be addressed and future research directions for the development of BCPs inhibitors. Lessons learned from the successful or unsuccessful development experiences of these inhibitors or degraders will facilitate the further development of efficient, selective and less toxic inhibitors of BCPs and eventually achieve drug application in the clinic.
Collapse
Affiliation(s)
- Zhaoping Pan
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyun Wang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mingxia Liu
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyao Zhang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lian Wang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Gu He
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Li J, Zhu R, Zhuang X, Zhang C, Shen H, Wu X, Zhang M, Huang C, Xiang Q, Zhao L, Xu Y, Zhang Y. Rational Design, Synthesis and Biological Evaluation of Benzo[d]isoxazole Derivatives as Potent BET Bivalent Inhibitors for Potential Treatment of Prostate Cancer. Bioorg Chem 2023; 135:106495. [PMID: 37004437 DOI: 10.1016/j.bioorg.2023.106495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Multivalency is an attractive strategy for effective binding to target protein. Bromodomain and extra-terminal (BET) family features two tandem bromodomains (BD1, BD2), which are considered to be potential new targets for prostate cancer. Herein, we report the rational design, optimization, and evaluation of a class of novel BET bivalent inhibitors based on our monovalent BET inhibitor 7 (Y06037). The representative bivalent inhibitor 17b effectively inhibited the cell growth of LNCaP, exhibiting 32 folds more potency than monovalent inhibitor 7. Besides, 17b induced 95.1 % PSA regression in LNCaP cell at 2 μM. Docking study was further carried out to reveal the potential binding mode of 17b with two BET bromodomains. Our study demonstrates that 17b (Y13021) is a promising BET bivalent inhibitor for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Junhua Li
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Run Zhu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoxi Zhuang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Cheng Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Hui Shen
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xishan Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Maofeng Zhang
- Suzhou Vocational Health College, No. 28 Kehua Road, Suzhou 215009, China
| | - Cen Huang
- Jiangsu S&T Exchange Center with Foreign Countries, No. 175 Longpan Road, Nanjing 210042, China
| | - Qiuping Xiang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yong Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Yan Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
18
|
Zhao S, Ali AS, Kong X, Zhang Y, Liu X, Skidmore MA, Forsyth CM, Savage GP, Wu D, Xu Y, Francis CL. 1-Benzyloxy-5-phenyltetrazole derivatives highly active against androgen receptor-dependent prostate cancer cells. Eur J Med Chem 2023; 246:114982. [PMID: 36495632 DOI: 10.1016/j.ejmech.2022.114982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022]
Abstract
A series of 1-benzyloxy-5-phenyltetrazole derivatives and similar compounds were synthesized and evaluated for their in vitro inhibitory activity against androgen-receptor-dependent (22Rv1) and androgen-receptor independent (PC3) prostate cancer cells. The most active compounds had in vitro IC50 values against 22Rv1 cells of <50 nM and showed apparent selectivity for this cell type over PC3 cells; however, these active compounds had short half-lives when incubated with mouse liver microsomes and/or when plasma concentration was monitored during in vivo pharmacokinetic studies in mice or rats. Importantly, lead compound 1 exhibited promising inhibitory effects on cell proliferation, expression of AR and its splicing variant AR-v7 as well as AR regulated target genes in 22Rv1 cells, which are so called castration-resistant prostate cancer (CRPC) cells, and a 22Rv1 CRPC xenograft tumour model in mice. Structural changes which omitted the N-O-benzyl moiety led to dramatic or total loss of activity and S-benzylation of a cysteine derivative, as a surrogate for in vivo S-nucleophiles, by representative highly active compounds, suggested a possible chemical reactivity basis for this "activity cliff" and poor pharmacokinetic profile. However, representative highly active compounds did not inhibit a cysteine protease, indicating that the mode of activity is unlikely to be protein modification by S-benzylation. Despite our efforts to elucidate the mode of action, the mechanism remains unclear.
Collapse
Affiliation(s)
- Shiting Zhao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangzhou Medical University, Guangzhou, 511436, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Abdelsalam S Ali
- Drug Discovery Chemistry Team, CSIRO, Clayton, VIC, 3168, Australia
| | - Xinyu Kong
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Zhang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomin Liu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | | | - Craig M Forsyth
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - G Paul Savage
- Drug Discovery Chemistry Team, CSIRO, Clayton, VIC, 3168, Australia
| | - Donghai Wu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangzhou Medical University, Guangzhou, 511436, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yong Xu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangzhou Medical University, Guangzhou, 511436, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Craig L Francis
- Drug Discovery Chemistry Team, CSIRO, Clayton, VIC, 3168, Australia.
| |
Collapse
|
19
|
Zhang MF, Luo XY, Zhang C, Wang C, Wu XS, Xiang QP, Xu Y, Zhang Y. Design, synthesis and pharmacological characterization of N-(3-ethylbenzo[d]isoxazol-5-yl) sulfonamide derivatives as BRD4 inhibitors against acute myeloid leukemia. Acta Pharmacol Sin 2022; 43:2735-2748. [PMID: 35264812 PMCID: PMC8905034 DOI: 10.1038/s41401-022-00881-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022]
Abstract
BRD4 plays a key role in the regulation of gene transcription and has been identified as an attractive target for cancer treatment. In this study, we designed 26 new compounds by modifying 3-ethyl-benzo[d]isoxazole core with sulfonamides. Most compounds exhibited potent BRD4 binding activities with ΔTm values exceeding 6 °C. Two crystal structures of 11h and 11r in complex with BRD4(1) were obtained to characterize the binding patterns. Compounds 11h and 11r were effective for BRD4(1) binding and showed remarkable anti-proliferative activity against MV4-11 cells with IC50 values of 0.78 and 0.87 μM. Furthermore, 11r (0.5-10 μM) concentration-dependently inhibited the expression levels of oncogenes including c-Myc and CDK6 in MV4-11 cells. Moreover, 11r (0.5-10 μM) concentration-dependently blocked cell cycle in MV4-11 cells at G0/G1 phase and induced cell apoptosis. Compound 11r may serve as a new lead compound for further drug development.
Collapse
Affiliation(s)
- Mao-Feng Zhang
- College of Pharmacy, Taizhou Polytechnic College, Taizhou, 225300, China.
| | - Xiao-Yu Luo
- Guangzhou Younan Technology Co., Ltd, Guangzhou, 510663, China
| | - Cheng Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chao Wang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Shan Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qiu-Ping Xiang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yong Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
| | - Yan Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
20
|
Guo Z, Sun Y, Liang L, Lu W, Luo B, Wu Z, Huo B, Hu Y, Huang P, Wu Q, Wen S. Design and Synthesis of Dual EZH2/BRD4 Inhibitors to Target Solid Tumors. J Med Chem 2022; 65:6573-6592. [PMID: 35500243 DOI: 10.1021/acs.jmedchem.1c01876] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
EZH2 inhibitors that prevent trimethylation of histone lysine 27 (H3K27) are often limited to the treatment of a subset of hematological malignancies. In most solid tumors, EZH2 inhibitors induce reciprocal H3K27 acetylation that subsequently results in acquired drug resistance. The combination of EZH2 and BRD4 inhibitors to resensitize solid cancer cells to EZH2 inhibitors has proven to be effective, underlying the significance of developing dual inhibitors. Herein, we present the design, synthesis, and biological evaluation of first-in-class dual EZH2/BRD4 inhibitors. Our most promising compound, YM458, displays potent inhibitory activity against EZH2 and BRD4 and remarkable antiproliferative capacity against 11 solid cancer cell lines. Its in vivo therapeutic potential is validated in both lung cancer and pancreatic cancer xenograft tumor mice models, highlighting the potential of EZH2/BRD4 dual inhibitors to target a broad scope of EZH2 inhibitor-resistant solid tumors.
Collapse
Affiliation(s)
- Zhirong Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yameng Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Liyun Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Zhouming Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Bitao Huo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yumin Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Qiang Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau 999078
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| |
Collapse
|
21
|
Li J, Zhang C, Xu H, Wang C, Dong R, Shen H, Zhuang X, Chen X, Li Q, Lu J, Zhang M, Wu X, Loomes KM, Zhou Y, Zhang Y, Liu J, Xu Y. Structure-Based Discovery and Optimization of Furo[3,2- c]pyridin-4(5 H)-one Derivatives as Potent and Second Bromodomain (BD2)-Selective Bromo and Extra Terminal Domain (BET) Inhibitors. J Med Chem 2022; 65:5760-5799. [PMID: 35333526 DOI: 10.1021/acs.jmedchem.2c00100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pan-bromodomain and extra terminal (Pan-BET) inhibitors show profound efficacy but exhibit pharmacology-driven toxicities in clinical trials. The development of domain-selective BET inhibitors to separate efficacy and toxicity is urgently needed. Herein, we report a series of furo[3,2-c]pyridin-4(5H)-one derivatives as novel BD2-selective BET inhibitors. The representative compound 8l (XY153) potently bound to BRD4 BD2 with an half-maximum inhibitory concentration (IC50) value of 0.79 nM and displayed 354-fold selectivity over BRD4 BD1. Besides, 8l exhibited 6-fold BRD4 BD2 domain selectivity over other BET BD2 domains. Compound 8l displayed potent antiproliferative activity against multiple tumor cell lines, especially MV4-11 (IC50 = 0.55 nM), while showing weak cytotoxicity against the normal lung fibroblast cell line. It highlights the safety profile of this series of BD2 inhibitors. 8l also demonstrated good metabolic stability in vitro. These data indicate that 8l may serve as a new and valuable lead compound for the development of potential therapeutics against acute myeloid leukemia (AML).
Collapse
Affiliation(s)
- Junhua Li
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Cheng Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Hongrui Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chao Wang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Ruibo Dong
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Hui Shen
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Xiaoxi Zhuang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xiaoshan Chen
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Qiu Li
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Jibu Lu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Maofeng Zhang
- College of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China
| | - Xishan Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Kerry M Loomes
- School of Biological Sciences & Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand
| | - Yulai Zhou
- School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Yan Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Jinsong Liu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yong Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
22
|
Zhong S, Peng S, Chen Z, Chen Z, Luo JL. Choosing Kinase Inhibitors for Androgen Deprivation Therapy-Resistant Prostate Cancer. Pharmaceutics 2022; 14:498. [PMID: 35335873 PMCID: PMC8950316 DOI: 10.3390/pharmaceutics14030498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
Androgen deprivation therapy (ADT) is a systemic therapy for advanced prostate cancer (PCa). Although most patients initially respond to ADT, almost all cancers eventually develop castration resistance. Castration-resistant PCa (CRPC) is associated with a very poor prognosis, and the treatment of which is a serious clinical challenge. Accumulating evidence suggests that abnormal expression and activation of various kinases are associated with the emergence and maintenance of CRPC. Many efforts have been made to develop small molecule inhibitors to target the key kinases in CRPC. These inhibitors are designed to suppress the kinase activity or interrupt kinase-mediated signal pathways that are associated with PCa androgen-independent (AI) growth and CRPC development. In this review, we briefly summarize the roles of the kinases that are abnormally expressed and/or activated in CRPC and the recent advances in the development of small molecule inhibitors that target kinases for the treatment of CRPC.
Collapse
Affiliation(s)
- Shangwei Zhong
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33459, USA
| | - Shoujiao Peng
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33459, USA
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
| | - Zhikang Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
| | - Jun-Li Luo
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33459, USA
| |
Collapse
|
23
|
Virtual Screening of Antitumor Inhibitors Targeting BRD4 Based on Machine Learning Methods. ChemistrySelect 2022. [DOI: 10.1002/slct.202104054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Shi M, He J, Weng T, Shi N, Qi W, Guo Y, Chen T, Chen L, Xu D. The binding mechanism of NHWD-870 to bromodomain-containing protein 4 based on molecular dynamics simulations and free energy calculation. Phys Chem Chem Phys 2022; 24:5125-5137. [PMID: 35156677 DOI: 10.1039/d1cp05490b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bromodomain and extra-terminal (BET) proteins (BRD2, BRD3, BRD4, and BRDT) are epigenetic readers with tandem bromodomains.
Collapse
Affiliation(s)
- Mingsong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun He
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Tiantian Weng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Na Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenyan Qi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yong Guo
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
25
|
He Z, Jiao H, An Q, Zhang X, Zengyangzong D, Xu J, Liu H, Ma L, Zhao W. Discovery of novel 4-phenylquinazoline-based BRD4 inhibitors for cardiac fibrosis. Acta Pharm Sin B 2022; 12:291-307. [PMID: 35127386 PMCID: PMC8799877 DOI: 10.1016/j.apsb.2021.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/27/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Bromodomain containing protein 4 (BRD4), as an epigenetic reader, can specifically bind to the acetyl lysine residues of histones and has emerged as an attractive therapeutic target for various diseases, including cancer, cardiac remodeling and heart failure. Herein, we described the discovery of hit 5 bearing 4-phenylquinazoline skeleton through a high-throughput virtual screen using 2,003,400 compound library (enamine). Then, structure-activity relationship (SAR) study was performed and 47 new 4-phenylquinazoline derivatives toward BRD4 were further designed, synthesized and evaluated, using HTRF assay set up in our lab. Eventually, we identified compound C-34, which possessed better pharmacokinetic and physicochemical properties as well as lower cytotoxicity against NRCF and NRCM cells, compared to the positive control JQ1. Using computer-based molecular docking and cellular thermal shift assay, we further verified that C-34 could target BRD4 at molecular and cellular levels. Furthermore, treatment with C-34 effectively alleviated fibroblast activation in vitro and cardiac fibrosis in vivo, which was correlated with the decreased expression of BRD4 downstream target c-MYC as well as the depressed TGF-β1/Smad2/3 signaling pathway. Taken together, our findings indicate that novel BRD4 inhibitor C-34 tethering a 4-phenylquinazoline scaffold can serve as a lead compound for further development to treat fibrotic cardiovascular disease.
Collapse
Affiliation(s)
- Zhangxu He
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haomiao Jiao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qi An
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dan Zengyangzong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiale Xu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Liying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- China Meheco Topfond Pharmaceutical Co., Zhumadian 463000, China
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
26
|
A synthetic resveratrol analog termed Q205 reactivates latent HIV-1 through activation of P-TEFb. Biochem Pharmacol 2021; 197:114901. [PMID: 34971588 DOI: 10.1016/j.bcp.2021.114901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022]
Abstract
The persistence of HIV-1 latent reservoir creates the major obstacle toward an HIV-1 cure. The "shock and kill" strategy aims to reverse HIV-1 proviral latency using latency-reversing agents (LRAs), thus boosting immune recognition and clearance to residual infected cells. Unfortunately, to date, none of these tested LRA candidates has been demonstrated effectiveness and/or safety in reactivation HIV-1 latency. The discovery and development of effective, safe and affordable LRA candidates are urgently needed for creating an HIV-1 functional cure. Here, we designed and synthesized a series of small-molecule phenoxyacetic acid derivatives based on the resveratrol scaffold and found one of them, named 5, 7-dimethoxy-2-(5-(methoxymethyl) furan-2-yl) quinazolin-4(3H)-one (Q205), effectively reactivated latent HIV-1 in latent HIV-1-infected cells without a corresponding increase in induction of potentially damaging cytokines. The molecular mechanism of Q205 is shown to increase the phosphorylation of the CDK9 T-loop at position Thr186, dissociate positive transcription elongation factor b (P-TEFb) from BRD4, and promote the Tat-mediated HIV-1 transcription and RNA polymerase II (RNAPII) C-terminal domain (CTD) on Ser (CTD-Ser2P) to bind to the HIV promoter. This study provides a unique insight into resveratrol modified derivatives as promising leads for preclinical LRAs, which in turn may help toward inhibitor design and chemical optimization for improving HIV-1 shock-and kill-based efforts.
Collapse
|
27
|
Jiang W, Wang X, Shu C, Hou Q, Yang K, Wu X. Design, synthesis, and evaluation of novel pyridone derivatives as potent BRD4 inhibitors for the potential treatment of prostate cancer. Bioorg Chem 2021; 119:105575. [PMID: 34995979 DOI: 10.1016/j.bioorg.2021.105575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022]
Abstract
Since androgen receptor (AR) can bind to BRD4 protein and this binding can be blocked by BRD4 inhibitors, targeting BRD4 has emerged as a promising approach for the treatment of prostate cancer (PC). Herein, we designed and synthesized a series of 5-(1-benzyl-1H-indazol-6-yl)-4-ethoxy-1-methylpyridin-2(1H)-one derivatives as novel BRD4 inhibitors for prostate cancer. Among them, compound 13 displayed the most robust BRD4 inhibitory activity with an IC50 value of 18 nM. Furthermore, 13 showed potent anti-proliferative activity against enzalutamide-resistant 22RV1 cells. The mechanism of action studies demonstrated that 13 induced cell apoptosis by regulating Bcl-2/Bax proteins and activating caspase-3 signaling pathway. In addition, the c-Myc level was significantly reduced in 22RV1 cells on the western blot assay. These findings collectively suggested that compound 13 might find potential use for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Wenhua Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaohui Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chengxia Shu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qiangqiang Hou
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Kexin Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoxing Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
28
|
Wu TB, Xiang QP, Wang C, Wu C, Zhang C, Zhang MF, Liu ZX, Zhang Y, Xiao LJ, Xu Y. Y06014 is a selective BET inhibitor for the treatment of prostate cancer. Acta Pharmacol Sin 2021; 42:2120-2131. [PMID: 33654218 DOI: 10.1038/s41401-021-00614-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Bromodomain and extra-terminal proteins (BETs) are potential targets for the therapeutic treatment of prostate cancer (PC). Herein, we report the design, the synthesis, and a structure-activity relationship study of 6-(3,5-dimethylisoxazol-4-yl)benzo[cd]indol-2(1H)-one derivative as novel selective BET inhibitors. One representative compound, 19 (Y06014), bound to BRD4(1) in the low micromolar range and demonstrated high selectivity for BRD4(1) over other non-BET bromodomain-containing proteins. This molecule also potently inhibited cell growth, colony formation, and mRNA expression of AR-regulated genes in PC cell lines. Y06014 also shows stronger activity than the second-generation antiandrogen enzalutamide. Y06014 may serve as a new small molecule probe for further validation of BET as a molecular target for PC drug development.
Collapse
|
29
|
Feng L, Wang G, Chen Y, He G, Liu B, Liu J, Chiang CM, Ouyang L. Dual-target inhibitors of bromodomain and extra-terminal proteins in cancer: A review from medicinal chemistry perspectives. Med Res Rev 2021; 42:710-743. [PMID: 34633088 DOI: 10.1002/med.21859] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/14/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023]
Abstract
Bromodomain-containing protein 4 (BRD4), as the most studied member of the bromodomain and extra-terminal (BET) family, is a chromatin reader protein interpreting epigenetic codes through binding to acetylated histones and non-histone proteins, thereby regulating diverse cellular processes including cell cycle, cell differentiation, and cell proliferation. As a promising drug target, BRD4 function is closely related to cancer, inflammation, cardiovascular disease, and liver fibrosis. Currently, clinical resistance to BET inhibitors has limited their applications but synergistic antitumor effects have been observed when used in combination with other tumor inhibitors targeting additional cellular components such as PLK1, HDAC, CDK, and PARP1. Therefore, designing dual-target inhibitors of BET bromodomains is a rational strategy in cancer treatment to increase potency and reduce drug resistance. This review summarizes the protein structures and biological functions of BRD4 and discusses recent advances of dual BET inhibitors from a medicinal chemistry perspective. We also discuss the current design and discovery strategies for dual BET inhibitors, providing insight into potential discovery of additional dual-target BET inhibitors.
Collapse
Affiliation(s)
- Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Shi NN, Yin XM, Gao WS, Wang JM, Zhang SF, Fan YH, Wang M. Competition between electrocatalytic CO2 reduction and H+ reduction by Cu(II), Co(II) complexes containing redox-active ligand. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Zhang M, Yan X, Wang L, Liu Z. Facile Synthesis of New Imidazo[4',5':4,5]benzo[1,2-d] isoxazol-6-one Derivatives and In Silico Studies of Their Drug-like Profiles. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2021.1920303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Maofeng Zhang
- College of Pharmacy, Jiangsu Solid Preparation Engineering Technology Research and Development Center, Taizhou Polytechnic College, Taizhou, P. R. China
| | - Xingli Yan
- College of Pharmacy, Jiangsu Solid Preparation Engineering Technology Research and Development Center, Taizhou Polytechnic College, Taizhou, P. R. China
| | - Lizhong Wang
- College of Pharmacy, Jiangsu Solid Preparation Engineering Technology Research and Development Center, Taizhou Polytechnic College, Taizhou, P. R. China
| | - Zhuyun Liu
- College of Pharmacy, Jiangsu Solid Preparation Engineering Technology Research and Development Center, Taizhou Polytechnic College, Taizhou, P. R. China
| |
Collapse
|
32
|
Bao X, Zhu J, Ren C, Zhao A, Zhang M, Zhu Z, Lu X, Zhang Y, Li X, Sima X, Li J, Zhang Q, Ma B. β-elemonic acid inhibits growth and triggers apoptosis in human castration-resistant prostate cancer cells through the suppression of JAK2/STAT3/MCL-1 and NF-ĸB signal pathways. Chem Biol Interact 2021; 342:109477. [PMID: 33878321 DOI: 10.1016/j.cbi.2021.109477] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022]
Abstract
Castration-resistant prostate cancer (CRPC) has become a significant problem in the current treatment of prostate cancer (PCa) with the characteristics of high metastatic potential, resistance and easy recurrence. The abnormal activation of JAK2/STAT3/MCL-1 and NF-κB has been confirmed as the main reason for the development of CRPC. We previously found that β-elemonic acid (β-EA) as a natural triterpene has potential anti-inflammatory and anti-osteosarcoma effects with lower toxicity. But it remains unknown whether it had effects on CRPC. The present research in vitro and in vivo systematically investigates anti-cancer effects and mechanisms of β-EA on human CRPC. β-EA treatment resulted in apoptotic cell death in human PCa cells by mitochondrial apoptotic pathways (including up-regulation of cleaved caspase-3, cleaved PARP, and Bax or down-regulation of Bcl-2). Besides, β-EA at relatively lower levels inhibited colony-forming, the migration and invasion potential of PCa cells, indicating its anti-proliferation and anti-metastasis activities. After exploring the potential mechanism, our results suggested that it subsequently inhibited the activation of JAK2/STAT3/MCL-1 and NF-κB signaling pathway by the administration of β-EA. The silencing of NF-κB/p65, JAK2 and STAT3, respectively, increased the sensitivity of the PCa cells to β-EA induced apoptosis. Moreover, β-EA exhibited a strong affinity with its essential proteins JAK2, RELA/p65, NF-κBIα/IκBα by molecular docking analysis. Importantly, β-EA retards tumor growth in a murine xenograft model, consistent with our study in vitro. Taken together, findings from this study reveal for the first time the potential role and mechanisms of β-EA on CRPC.
Collapse
Affiliation(s)
- Xiaowen Bao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Jianwei Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Chaoxing Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Ang Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Mingya Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zhiming Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Xuanzhao Lu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Yuning Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Xiaotian Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xinyu Sima
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
33
|
Haghshenas H, Kaviani B, Firouzeh M, Tavakol H. Developing a variation of 3D-QSAR/MD method in drug design. J Comput Chem 2021; 42:917-929. [PMID: 33719136 DOI: 10.1002/jcc.26514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022]
Abstract
In continuation of the previous reports on a combination of 3D-quantitative structure-activity relationships (QSAR) with computational molecular dynamics (MD) studies, a new variation of 3D-QSAR/MD method has been employed for drug-design as an alternative or supplementary for the typical experimental methods. The presented method is more cost-effective and less time-consuming than the previous methods and avoids several restrictions of experimental methods, such as validity estimation, and predictability. For this purpose, seven inhibitors for bromodomain (BRD)-containing protein, as an important protein in the development of different types of cancer and responsible for oncogenic rearrangements, have been selected to study of their interactions by docking and MD simulations using molecular mechanics/generalized born surface area (MM/GBSA) method. To build the proposed model, a common variant of 3D-QSAR methods, comparative molecular field analysis has been employed using a dataset of 100 MD-extracted ligand conformations and their corresponding MM/GBSA BRD4-binding energies. The results showed excellent predictability of the generated model for both the training set and test groups. Finally, two new inhibitors were selected among total 4000 designed derivatives (generated through evolutionary techniques) using the proposed 3D-QSAR-MD model. The potentials of these inhibitors were assessed by MD simulations, which showed the higher inhibitory of these compounds than the previous inhibitors. Therefore, this method showed high potentials for acceleration of the procedure of drug design and a basis for joining researchers in computational biology and pharmaceutical sciences.
Collapse
Affiliation(s)
- Hamed Haghshenas
- Division of Biochemistry, Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Bita Kaviani
- Division of Genetics, Department of Biology, Faculty of Sciences, Islamic Azad University, Shahrekord, Iran
| | - Monireh Firouzeh
- Department of Nanobiotechnology, NourDanesh Institute of Higher Education, Isfahan, Iran
| | - Hossein Tavakol
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
34
|
Zhang R, Huang C, Xiao X, Zhou J. Improving Strategies in the Development of Protein-Downregulation-Based Antiandrogens. ChemMedChem 2021; 16:2021-2033. [PMID: 33554455 DOI: 10.1002/cmdc.202100033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 12/20/2022]
Abstract
The androgen receptor (AR) plays a crucial role in the occurrence and development of prostate cancer (PCa), and its signaling pathway remains active in castration-resistant prostate cancer (CRPC) patients. The resistance against antiandrogen drugs in current clinical use is a major challenge for the treatment of PCa, and thus the development of new generations of antiandrogens is under high demand. Recently, strategies for downregulating the AR have attracted significant attention, given its potential in the discovery and development of new antiandrogens, including G-quadruplex stabilizers, ROR-γ inhibitors, AR-targeting proteolysis targeting chimeras (PROTACs), and other selective AR degraders (SARDs), which are able to overcome current resistance mechanisms such as acquired AR mutations, the expression of AR variable splices, or overexpression of AR. This review summarizes the various strategies for downregulating the AR protein, at either the mRNA or protein level, thus providing new ideas for the development of promising antiandrogen drugs.
Collapse
Affiliation(s)
- Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China.,Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Chenchao Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Xiaohui Xiao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China.,Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China.,Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| |
Collapse
|
35
|
Synthesis, evaluation and in silico studies of novel BRD4 bromodomain inhibitors bearing a benzo[d]isoxazol scaffold. J CHEM SCI 2021. [DOI: 10.1007/s12039-020-01874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Wu SL, Wang LF, Sun HB, Wang W, Yu YX. Probing molecular mechanism of inhibitor bindings to bromodomain-containing protein 4 based on molecular dynamics simulations and principal component analysis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:547-570. [PMID: 32657160 DOI: 10.1080/1062936x.2020.1777584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
It is well known that bromodomain-containing protein 4 (BRD4) has been thought as a promising target utilized for treating various human diseases, such as inflammatory disorders, malignant tumours, acute myelogenous leukaemia (AML), bone diseases, etc. For this study, molecular dynamics (MD) simulations, binding free energy calculations, and principal component analysis (PCA) were integrated together to uncover binding modes of inhibitors 8P9, 8PU, and 8PX to BRD4(1). The results obtained from binding free energy calculations show that van der Waals interactions act as the main regulator in bindings of inhibitors to BRD4(1). The information stemming from PCA reveals that inhibitor associations extremely affect conformational changes, internal dynamics, and movement patterns of BRD4(1). Residue-based free energy decomposition method was wielded to unveil contributions of independent residues to inhibitor bindings and the data signify that hydrogen bonding interactions and hydrophobic interactions are decisive factors affecting bindings of inhibitors to BRD4(1). Meanwhile, eight residues Trp81, Pro82, Val87, Leu92, Leu94, Cys136, Asn140, and Ile146 are recognized as the common hot interaction spots of three inhibitors with BRD4(1). The results from this work are expected to provide a meaningfully theoretical guidance for design and development of effective inhibitors inhibiting of the activity of BRD4.
Collapse
Affiliation(s)
- S L Wu
- School of Science, Shandong Jiaotong University , Jinan, China
| | - L F Wang
- School of Science, Shandong Jiaotong University , Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University , Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University , Jinan, China
| | - Y X Yu
- School of Science, Shandong Jiaotong University , Jinan, China
| |
Collapse
|
37
|
Yu J, Zhou P, Du W, Xu R, Yan G, Deng Y, Li X, Chen Y. Metabolically stable diphenylamine derivatives suppress androgen receptor and BET protein in prostate cancer. Biochem Pharmacol 2020; 177:113946. [PMID: 32247852 DOI: 10.1016/j.bcp.2020.113946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/31/2020] [Indexed: 02/05/2023]
Abstract
Androgen receptor (AR) is a crucial driver of prostate cancer (PC). AR-relevant resistance remains a major challenge in castration-resistant prostate cancer (CRPC). Bromodomain and extra-terminal domain (BET) family are critical AR coregulators. Here, we developed several diphenylamine derivatives and identified compound 7d that disrupted the functions of AR and BET family in prostate cancer and exhibited favorable metabolic stability in vitro and high drug exposure in vivo. We showed 7d not only bound to AR, suppressed transactivation of wild-type AR (wt-AR) and the mutant that mediates Enzalutamide resistance, but also reduced c-Myc protein expression through BET inhibition. In addition, 7d inhibited the proliferation of AR-positive PC cells with favorable selectivity and suppressed AR-V7-expressing VCaP and 22Rv1 xenografts growth in vivo. Collectively, these results indicate the potential of lead compound 7d as an orally available AR and BET inhibitor to treat CRPC and overcome antiandrogen resistance.
Collapse
Affiliation(s)
- Jiang Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Peiting Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Wu Du
- Hinova Pharmaceuticals Inc., 4th Floor, Building RongYao A, No. 5, Keyuan South Road, Chengdu 610041, China
| | - Ruixue Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Guoyi Yan
- Department of Hepatobiliary Pancreatic Surgery, Henan Province People's Hospital, Zhengzhou 450003, China
| | - Yufang Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xinghai Li
- Hinova Pharmaceuticals Inc., 4th Floor, Building RongYao A, No. 5, Keyuan South Road, Chengdu 610041, China
| | - Yuanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Hinova Pharmaceuticals Inc., 4th Floor, Building RongYao A, No. 5, Keyuan South Road, Chengdu 610041, China.
| |
Collapse
|
38
|
Politanskaya L, Tretyakov E, Xi C. Synthesis of polyfluorinated o-hydroxyacetophenones – convenient precursors of 3-benzylidene-2-phenylchroman-4-ones. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2019.109435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Wang L, Wang Y, Sun H, Zhao J, Wang Q. Theoretical insight into molecular mechanisms of inhibitor bindings to bromodomain-containing protein 4 using molecular dynamics simulations and calculations of binding free energies. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Hu Q, Wang C, Xiang Q, Wang R, Zhang C, Zhang M, Xue X, Luo G, Liu X, Wu X, Zhang Y, Wu D, Xu Y. Discovery and optimization of novel N-benzyl-3,6-dimethylbenzo[d]isoxazol-5-amine derivatives as potent and selective TRIM24 bromodomain inhibitors with potential anti-cancer activities. Bioorg Chem 2019; 94:103424. [PMID: 31776034 DOI: 10.1016/j.bioorg.2019.103424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/02/2019] [Accepted: 11/05/2019] [Indexed: 01/17/2023]
Abstract
Tripartite motif-containing protein 24 (TRIM24), recognized as an epigenetic reader for acetylated H3K23 (H3K23ac) via its bromodomain, has been closely involved in tumorigenesis or tumor progression of several cancers. Developing inhibitors of TRIM24 is significant for functional studies and drug discovery. Herein, we report the identification, optimization and evaluation of N-benzyl-3,6-dimethylbenzo[d]isoxazol-5-amines as TRIM24 bromodomain inhibitors starting from an in house library screening. Structure-based optimization leads to two potent and selective compounds 11d and 11h in an Alphascreen assay with IC50 values of 1.88 μM and 2.53 μM, respectively. The viability assay demonstrates the great potential of this series of compounds as inhibitors of proliferation of prostate cancer (PC) cells LNCaP, C4-2B. A colony formation assay further supports this inhibitory activity. Compounds 11d and 11h inhibit cell proliferation of other cancer types such as non-small cell lung cancer (NSCLC) cells A549 with IC50 values of 1.08 μM and 0.75 μM, respectively. These data suggests that compounds 11d and 11h are promising lead compounds for further research.
Collapse
Affiliation(s)
- Qingqing Hu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Qiuping Xiang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Rui Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Cheng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Maofeng Zhang
- Taizhou Polytechnic College, No. 8 Tianxing Road, Medical High-tech Development Zone, Taizhou 225300, Jiangsu Province, China
| | - Xiaoqian Xue
- School of Life Science, Huizhou University, Huizhou 516007, China
| | - Guolong Luo
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Xiaomin Liu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Xishan Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Donghai Wu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China.
| |
Collapse
|
41
|
Chen D, Lu T, Yan Z, Lu W, Zhou F, Lyu X, Xu B, Jiang H, Chen K, Luo C, Zhao Y. Discovery, structural insight, and bioactivities of BY27 as a selective inhibitor of the second bromodomains of BET proteins. Eur J Med Chem 2019; 182:111633. [PMID: 31461688 DOI: 10.1016/j.ejmech.2019.111633] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022]
Abstract
Recently, selective inhibition of BET BD2 is emerging as a promising strategy for drug discovery. Despite significant progress in this area, systematic studies of selective BET BD2 inhibitors are still few. In this study, we report the discovery of a potent and selective BET BD2 inhibitor BY27 (47). Our high resolution co-crystal structures of 47/BRD2 BD1 and BD2 showed that the triazole group of 47, water molecules, H433 and N429 in BRD2 BD2 established a water-bridged H-bonding network, which is responsible for the observed selectivities. DNA microarray analysis of HepG2 cells treated with 47 or OTX015 demonstrated the transcriptome impact differences between a BET BD2 selective inhibitor and a pan BET inhibitor. In a MV4-11 mouse xenograft model, 47 caused 67% of tumor growth inhibition and was less toxic than a pan BET inhibitor 1 at high doses. We conclude that the improved safety profile of selective BET BD2 inhibitors warrant future studies in BET associated diseases.
Collapse
Affiliation(s)
- Deheng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd., Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Tian Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd., Shanghai, 201203, China; Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd., Shanghai, 201203, China
| | - Wenchao Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd., Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Feilong Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd., Shanghai, 201203, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd., Shanghai, 201203, China
| | - Biling Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd., Shanghai, 201203, China; School of Life Science and Medicine, Dalian University of Technology, 2 Dagong Road, Panjin, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd., Shanghai, 201203, China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd., Shanghai, 201203, China; Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd., Shanghai, 201203, China; Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| | - Yujun Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd., Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
42
|
Discovery of a novel 2,3-dimethylimidazo[1,2-a]pyrazine-6-carboxamide M 4 positive allosteric modulator (PAM) chemotype. Bioorg Med Chem Lett 2019; 30:126812. [PMID: 31784320 DOI: 10.1016/j.bmcl.2019.126812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 11/20/2022]
Abstract
This Letter details our efforts to discover structurally unique M4 PAMs containing 5,6-heteroaryl ring systems. In an attempt to improve the DMPK profiles of the 2,3-dimethyl-2H-indazole-5-carboxamide and 1-methyl-1H-benzo[d][1,2,3]triazole-6-carboxamide cores, we investigated a plethora of core replacements. This exercise identified a novel 2,3-dimethylimidazo[1,2-a]pyrazine-6-carboxamide core that provided improved M4 PAM activity and CNS penetration.
Collapse
|
43
|
Wu W, Li C, Zhou F, Li J, Xu X, Jiang H. Synthesis of
β
‐Isoxazole Carbonyl Derivatives and their Analogues
via
Palladium‐Catalyzed Sequential C(
sp
2
)−O/C(
sp
2
)−C(
sp
3
) Bond Formations. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wanqing Wu
- State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 People's Republic of China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 People's Republic of China
| | - Can Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 People's Republic of China
| | - Fei Zhou
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 People's Republic of China
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 People's Republic of China
| | - Xiaoqing Xu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 People's Republic of China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 People's Republic of China
| |
Collapse
|
44
|
Zhang Y, Wu X, Xue X, Li C, Wang J, Wang R, Zhang C, Wang C, Shi Y, Zou L, Li Q, Huang Z, Hao X, Loomes K, Wu D, Chen HW, Xu J, Xu Y. Discovery and Characterization of XY101, a Potent, Selective, and Orally Bioavailable RORγ Inverse Agonist for Treatment of Castration-Resistant Prostate Cancer. J Med Chem 2019; 62:4716-4730. [DOI: 10.1021/acs.jmedchem.9b00327] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yan Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Xishan Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Xiaoqian Xue
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
- School of Life Science, Huizhou University, Huizhou 516007, China
| | - Chenchang Li
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Rui Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
| | - Cheng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
- School of Pharmaceutical Sciences, Jilin University, No.1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Yudan Shi
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Lingjiao Zou
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Qiu Li
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | | | - Xiaojuan Hao
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Vic 3168, Australia
| | - Kerry Loomes
- School of Biological Sciences & Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand
| | - Donghai Wu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | - Jinxin Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| |
Collapse
|
45
|
Arshad F, Khan MF, Akhtar W, Alam MM, Nainwal LM, Kaushik SK, Akhter M, Parvez S, Hasan SM, Shaquiquzzaman M. Revealing quinquennial anticancer journey of morpholine: A SAR based review. Eur J Med Chem 2019; 167:324-356. [PMID: 30776694 DOI: 10.1016/j.ejmech.2019.02.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Morpholine, a six-membered heterocycle containing one nitrogen and one oxygen atom, is a moiety of great significance. It forms an important intermediate in many industrial and organic syntheses. Morpholine containing drugs are of high therapeutic value. Its wide array of pharmacological activity includes anti-diabetic, anti-emetic, growth stimulant, anti-depressant, bronchodilator and anticancer. Multi-drug resistance in cancer cases have emerged in the last few years and have led to the failure of many chemotherapeutic drugs. Newer treatment methods and drugs are being developed to overcome this problem. Target based drug discovery is an effective method to develop novel anticancer drugs. To develop newer drugs, previously reported work needs to be studied. Keeping this in mind, last five year's literature on morpholine used as anticancer agents has been reviewed and summarized in the paper herein.
Collapse
Affiliation(s)
- Fatima Arshad
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohemmed Faraz Khan
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Wasim Akhtar
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Lalit Mohan Nainwal
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sumit Kumar Kaushik
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | | | - Mohammad Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
46
|
Zhong H, Wang Z, Wang X, Liu H, Li D, Liu H, Yao X, Hou T. Importance of a crystalline water network in docking-based virtual screening: a case study of BRD4. Phys Chem Chem Phys 2019; 21:25276-25289. [DOI: 10.1039/c9cp04290c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a member of the bromodomain and extra terminal domain (BET) protein family, bromodomain-containing protein 4 (BRD4) is an epigenetic reader and can recognize acetylated lysine residues in histones.
Collapse
Affiliation(s)
- Haiyang Zhong
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry
- Lanzhou University
- Lanzhou 730000
- China
- College of Pharmaceutical Sciences
| | - Zhe Wang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Xuwen Wang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Hui Liu
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Dan Li
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Huanxiang Liu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry
- Lanzhou University
- Lanzhou 730000
- China
- State Key Laboratory of Quality Research in Chinese Medicine
| | - Tingjun Hou
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
47
|
Duan Y, Guan Y, Qin W, Zhai X, Yu B, Liu H. Targeting Brd4 for cancer therapy: inhibitors and degraders. MEDCHEMCOMM 2018; 9:1779-1802. [PMID: 30542529 PMCID: PMC6238758 DOI: 10.1039/c8md00198g] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/03/2018] [Indexed: 12/24/2022]
Abstract
Bromodomain-containing protein 4 (Brd4) plays an important role in mediating the expression of genes involved in cancers and non-cancer diseases such as inflammatory diseases and acute heart failure. Inactivating Brd4 or downregulating its expression inhibits cancer development, leading to the current interest in Brd4 as a promising anticancer drug target. Numerous Brd4 inhibitors have been studied in recent years and some of them are currently in various phases of clinical trials. Recently, selective degradation of target proteins by small bifunctional molecules (PROTACs) has emerged as an attractive drug discovery approach owing to the advantages it could offer over traditional small-molecule inhibitors. A number of Brd4 degraders have been reported and showed more efficient anticancer activities than just protein inhibition. In this review, we will discuss recent findings in the discovery and development of small-molecule inhibitors and degraders that target Brd4 as a potential anticancer agent.
Collapse
Affiliation(s)
- Yingchao Duan
- School of Pharmacy , Xinxiang Medical University , Xinxiang , Henan 453003 , China
| | - Yuanyuan Guan
- School of Pharmacy , Xinxiang Medical University , Xinxiang , Henan 453003 , China
| | - Wenping Qin
- School of Pharmacy , Xinxiang Medical University , Xinxiang , Henan 453003 , China
| | - Xiaoyu Zhai
- School of Pharmacy , Xinxiang Medical University , Xinxiang , Henan 453003 , China
| | - Bin Yu
- Key Laboratory of Advanced Pharmaceutical Technology , Ministry of Education of China , Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety , Institute of Drug Discovery and Development , School of Pharmaceutical Sciences , Zhengzhou University , 100 Kexue Avenue , Zhengzhou , Henan 450001 , China . ;
| | - Hongmin Liu
- Key Laboratory of Advanced Pharmaceutical Technology , Ministry of Education of China , Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety , Institute of Drug Discovery and Development , School of Pharmaceutical Sciences , Zhengzhou University , 100 Kexue Avenue , Zhengzhou , Henan 450001 , China . ;
| |
Collapse
|
48
|
Qin C, Hu Y, Zhou B, Fernandez-Salas E, Yang CY, Liu L, McEachern D, Przybranowski S, Wang M, Stuckey J, Meagher J, Bai L, Chen Z, Lin M, Yang J, Xu F, Hu J, Xing W, Huang L, Li S, Wen B, Sun D, Wang S, Wang S. Discovery of QCA570 as an Exceptionally Potent and Efficacious Proteolysis Targeting Chimera (PROTAC) Degrader of the Bromodomain and Extra-Terminal (BET) Proteins Capable of Inducing Complete and Durable Tumor Regression. J Med Chem 2018; 61:6685-6704. [PMID: 30019901 PMCID: PMC6545111 DOI: 10.1021/acs.jmedchem.8b00506] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteins of the bromodomain and extra-terminal (BET) family are epigenetics "readers" and promising therapeutic targets for cancer and other human diseases. We describe herein a structure-guided design of [1,4]oxazepines as a new class of BET inhibitors and our subsequent design, synthesis, and evaluation of proteolysis-targeting chimeric (PROTAC) small-molecule BET degraders. Our efforts have led to the discovery of extremely potent BET degraders, exemplified by QCA570, which effectively induces degradation of BET proteins and inhibits cell growth in human acute leukemia cell lines even at low picomolar concentrations. QCA570 achieves complete and durable tumor regression in leukemia xenograft models in mice at well-tolerated dose-schedules. QCA570 is the most potent and efficacious BET degrader reported to date.
Collapse
Affiliation(s)
- Chong Qin
- The Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Yang Hu
- The Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Bing Zhou
- The Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Ester Fernandez-Salas
- The Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Chao-Yie Yang
- The Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Liu Liu
- The Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- The Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Sally Przybranowski
- The Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Mi Wang
- The Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jeanne Stuckey
- Life Sciences Institute, University of Michigan, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer Meagher
- Life Sciences Institute, University of Michigan, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Longchuan Bai
- The Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Zhuo Chen
- The Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Mei Lin
- The Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jiuling Yang
- The Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Fuming Xu
- The Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jiantao Hu
- The Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Weiguo Xing
- The Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Liyue Huang
- The Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Siwei Li
- Pharmacokinetics Core, College of Pharmacy, University of Michigan, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Pharmacokinetics Core, College of Pharmacy, University of Michigan, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Pharmacokinetics Core, College of Pharmacy, University of Michigan, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- The Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Department of Medicinal Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,Corresponding Author: Professor Shaomeng Wang at
| | | |
Collapse
|